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Abstract

When the failure probability of a system is extremely small or necessary statistical data from the system is scarce, it is very difficult or

impossible to evaluate its reliability and safety with conventional fault tree analysis (FTA) techniques. New techniques are needed to predict

and diagnose such a system’s failures and evaluate its reliability and safety. In this paper, we first provide a concise overview of FTA. Then,

based on the posbist reliability theory, event failure behavior is characterized in the context of possibility measures and the structure function

of the posbist fault tree of a coherent system is defined. In addition, we define the AND operator and the OR operator based on the minimal

cut of a posbist fault tree. Finally, a model of posbist fault tree analysis (posbist FTA) of coherent systems is presented. The use of the model

for quantitative analysis is demonstrated with a real-life safety system.

q 2003 Elsevier Ltd. All rights reserved.

Keywords: Posbist reliability theory; Fault tree; Coherent system; Structure functions; Possibility distributions; Posbist fault tree analysis

1. Introduction

Fault tree analysis (FTA) is a powerful and compu-

tationally efficient technique for analyzing and predicting

system reliability and safety. Many theoretical advances

and practical applications have been achieved in this field

to date. FTA is based on Boolean algebra and probability

theory and is consistent with conventional reliability

theory. It assumes that exact probabilities of events are

given and many failure data are available. However,

many modern systems are highly reliable and thus, it is

often very difficult to obtain sufficient statistical data to

estimate precise failure rates or failure probabilities.

Moreover, the inaccuracy in system models that is caused

by human errors is difficult to deal with solely by means

of the probist reliability theory1. These fundamental

problems of probist reliability theory have led researchers

to look for new models or new reliability theories which

do not have the shortcomings of the classical probabil-

istic definition of reliability. Among others, we mention

Tanaka et al. [1], Singer [2], Onisawa [3], Cappelle and

Kerre [4], Cremona and Gao [5], Utkin and Gurov [6]

and Cai et al. [7–9] who have all tried to define

reliability in terms other than probabilistic ones.

According to [10], several forms of fuzzy reliability

theories, including profust reliability theory [7], posbist

reliability theory [8], and posfust reliability theory, are

proposed using new assumptions, such as the possibility

assumption and the fuzzy-state assumption, in place of

the probability assumption or the binary-state assumption.

For systems with extremely small failure probabilities or

when necessary statistical data is scarce, posbist

reliability theory demonstrates its advantages over probist

reliability theory [6,8,9].

Owing to this, it is necessary to develop a new model

of FTA corresponding to posbist reliability theory to

evaluate system reliability and safety. In this paper, based

on posbist reliability theory, event failure behavior is

characterized in the context of possibility measures. A

model of posbist fault tree analysis (posbist FTA) is

proposed for predicting and diagnosing failures and

evaluating reliability and safety of systems. The model

of posbist FTA in posbist reliability theory plays a role

that is analogous—though not completely—to that of

probist FTA (Conventional FTA) in probist reliability
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theory. As will be seen in the sequel, the model of posbist

FTA constructed in this paper, where the failure behavior

of the basic events is characterized in the context of

possibility measures, is different from various reported

models of fuzzy probist FTA, where the basic events are

considered as fuzzy numbers. Furthermore, it will be

noted that the proposed model corresponds to posbist

reliability theory developed by Cai [8].

2. A concise overview of fault tree analysis

Conventional fault tree analysis was first applied to the

analysis of system reliability by Watson in 1961. A fault

tree is a logic diagram consisting of a top event and a

structure delineating the ways in which the top event may

occur. Up to now, the scope of conventional FTA has

expanded from the aviation/space industry and nuclear

industry to electronics, electric power, and the chemical

industry as well as mechanical engineering, traffic,

architecture, etc. It is a mature tool for analyzing coherent

systems.

The pioneering work on fuzzy fault tree analysis (fuzzy

FTA) belongs to Tanaka et al. [1]. They treated

probabilities of basic events as trapezoidal fuzzy numbers,

and applied the fuzzy extension principle to calculating

the probability of the top event. At the same time, they

defined an index function analogous to importance

measures for evaluating to what extent a basic event

contributes to the top event. Singer [2] analyzed fuzzy

reliability by using L–R type fuzzy numbers. He

considered the relative frequencies of the basic events as

fuzzy numbers and used possibility instead of probability

measures. However, these approaches cannot be applied to

a fault tree with repeated events. In order to deal with

repeated basic events, Soman and Misra [11] provided a

simple method for fuzzy FTA based on the a-cut method,

also known as resolution identity. This method was then

extended to deal with multistate FTA [12]. Sawyer and

Rao [13] used the a-cut method to calculate the failure

probability of the top event in fuzzy FTA of mechanical

systems. Huang [14] employed fuzzy fault tree to analyze

railway traffic safety. Many other results on fuzzy FTA

are reported in [15–19].

There is one common characteristic in the above-

mentioned works: the notion of fuzziness is introduced to

conventional FTA and the probabilities of events are

fuzzified into the fuzzy numbers in the unit interval [0,1].

However, we note that these works are based on

probist FTA (i.e. conventional FTA). More precisely, we

can say that these works fall within the scope of fuzzy

probist FTA.

Furuta and Shiraishi [20] proposed a kind of import-

ance measure using fuzzy integrals assuming that the

basic events in a fault tree are fuzzy. Feng and Wu [21]

developed a model of profust FTA based on the theory of

‘probability of fuzzy events’ and provided partial

quantitative analysis when the state space is discrete.

Their model is based on two assumptions: (1) the failure

behavior of components is defined in a fuzzy way and (2)

the probability assumption is used.

Based on the foregoing overview, we can itemize the

main categories of the methods of FTA to date:

(1) Probist FTA (conventional FTA),

(2) Fuzzy probist FTA (or fuzzy FTA), and

(3) Profust FTA (corresponding to profust reliability

theory).

Furthermore, we can find that the study of fuzzy probist

FTA is confined to the algorithm itself, the cited engineering

applications are overly simplified, and the obtained results

lack comparability. On the other hand, the study of profust

FTA has appeared only recently and the study of posbist

FTA is not reported at all.

3. Posbist reliability theory based on state variables

Posbist reliability theory was developed by Cai in 1991,

in an attempt to give an alternative to probabilistic

reliability theory. It is based on the following two

assumptions [8]:

(1) The possibility assumption: The system failure beha-

vior is fully characterized in the context of possibility

measures.

(2) The binary-state assumption: The system demon-

strates only two crisp states: fully functioning or

completely failed. At any time the system is in one

of the two states.

Though the system states are defined precisely, we

cannot determine accurately the system state at a specified

future instant. According to the possibility assumption,

this uncertainty is characterized by possibility measures

rather than probability measures; therefore, the system

state can be treated as a fuzzy variable. However, we

should note that such a fuzzy variable takes only one (i.e.

fully functioning) or zero (i.e. completely failed) as its

value.

For ease of reference, in the following we provide some

essential concepts in posbist reliability theory. For more

details, refer to [8].

Definition 3.1. A fuzzy variable is a real valued function

defined on a possibility space ðU;F;PossÞ; where U is the

universe of discourse, F is the discrete topology on U (that

is, the power set or the class of all subsets of U), and the

scale, Poss; which is a mapping from U to [0,1], satisfies the

following properties:
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(1) PossðQÞ ¼ 0 and PossðUÞ ¼ 1; where Q denotes the

empty set.

(2) For any arbitrary collection of sets Aa of F;

Poss

[
a

Aa

 !
¼ sup

a

PossðAaÞ:

Definition 3.2. The possibility distribution function

of a fuzzy variable X; denoted by pX ; is a

mapping from R (the set of real numbers) to the unit

interval [0,1] and is given by pXðxÞ ¼ Poss{v : XðvÞ ¼ x}

for all x [ R:

Definition 3.3. Given a possibility space ðU;F;PossÞ; the

sets A1;A2; · · ·;An , F are said to be mutually unrelated if

for any permutation of the set {1; 2;…; n}; denoted by

i1; i2; · · ·; ik for 1 # k # n;

PossðAi1
> Ai2

> · · · > Ain
Þ

¼ minðPossðAi1
Þ;PossðAi2

Þ; · · ·;PossðAin
ÞÞ:

Definition 3.4. Given a possibility space ðU;F;PossÞ; the

fuzzy variables X1;X2;…;Xn are said to be mutually

unrelated if for any permutation of the set {1; 2;…; n};

denoted by i1; i2;…; ik; for 1 # k # n; the sets

{Xi1
¼ x1}; {Xi2

¼ x2};…; {Xik
¼ xk}

are unrelated for all x1; x2;…; xk [ R:

Formally, we assume that the state of the system is

determined completely by the states of the components, so

the structure function of a system of n components is

denoted by

f ¼ fðXÞ

X ¼ ðX1;X2;…;XnÞ ð1Þ

where X is the system state vector and Xi represents the state

of component i:

Assume that X1;X2;…;Xn and f are all binary fuzzy

variables defined on possibility space ðU;F;PossÞ

Xi : U ! {0; 1}; i ¼ 1; 2;…; n

f : U ! {0; 1}:

Then we assume

Xi ¼
1; if the component i is functioning

0; if the component i is failed
and

(

f ¼
1; if the system is functioning

0; if the system is failed

(

According to above-mentioned analysis, the system posbist

reliability, denoted by R; is defined as

R ¼ Possðf ¼ 1Þ ð2Þ

and the system posbist unreliability, denoted by F; is defined

as

F ¼ Possðf ¼ 0Þ: ð3Þ

Furthermore, we note that the system reliability defined

in terms of system states coincides with the system

reliability defined in terms of system lifetimes. Refer to

[8] for more details on posbist reliability theory in terms

of system states.

4. Posbist fault tree analysis of coherent systems

4.1. Basic definitions of coherent systems

Here we give several basic redefinitions of coherent

systems that are indispensable to the model of posbist FTA

that we will construct. Refer to [22] for a more detailed

treatment of coherent systems.

Definition 4.1.1. In the context of posbist reliability theory,

the ith component is irrelevant to the structure f if f is

constant in zi; that is,

fð1i;ZÞ ¼ fð0i;ZÞ

for all ð†i;ZÞ: Otherwise the ith component is relevant to the

structure. Here we employ notations

ð1i; ZÞ ¼ ðz1;…; zi21; 1; ziþ1;…; znÞ

ð0i; ZÞ ¼ ðz1;…; zi21; 0; ziþ1;…; znÞ

ð†i; ZÞ ¼ ðz1;…; zi21;†; ziþ1;…; znÞ

Definition 4.1.2. A system of components is coherent in the

context of posbist reliability theory if (1) every component

of it is relevant to the system and (2) its structure function f

is increasing in every component. We can denote a coherent

system by f; or more precisely by ðC;fÞ; where the set C is

a set of integers designating the components.

To be brief, coherent systems are monotone systems

wherein no unit irrelevant to the system exists since the

units irrelevant to the system are removed by Boolean

calculation after their reliability behavior is analyzed. We

will use possibility measures rather than probability

measures to characterize the failure behavior of coherent

systems. We note that the definition of coherent systems

here is the same as that of coherent systems in

conventional reliability theory. This is because
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the binary-state assumption is also valid in posbist

reliability theory [8].

Definition 4.1.3. A path set, denoted by P; of a coherent

system ðC;fÞ in the context of posbist reliability theory is a

subset of C that makes f functioning. P is minimal if any

real subset of it will not make f functioning. A cut set,

denoted by K; of a coherent system ðC;fÞ is a subset of C

that makes f failed. K is minimal if any real subset of it will

not make f failed.

Suppose a coherent system f in the context of

posbist reliability theory with p minimal path sets

ðP1;P2;…;PpÞ and k minimal cut sets ðK1;K2;…;KkÞ:

Define

PjðXÞ ¼
\
i[Pj

xi

and

KjðXÞ ¼
[

i[Kj

xi:

Then the structure function f can be expressed as

fðXÞ ¼
[p
j¼1

PjðXÞ ¼ max
1#j#p

min
i[Pj

xi ð4Þ

or

fðXÞ ¼
\k
j¼1

KjðXÞ ¼ min
1#j#k

max
i[Kj

xi: ð5Þ

4.2. Basic assumptions

It is necessary for the construction of the model of

posbist FTA to make the following assumptions:

(1) The states of events are crisp: occurrence or non-

occurrence. However, the event state is uncertain at a

given future instant.

(2) The failure behaviors of events are characterized in

the context of possibility measures. Furthermore,

the possibility distribution functions of events have

been obtained by adopting a certain technique (or

several techniques) for estimating possibility

distributions.

(3) The events are mutually unrelated.

4.3. Construction of the model of posbist fault tree analysis

According to the equivalent conversion of special

logic gates [23], we can convert an arbitrary

fault tree of coherent systems into a basic fault

tree that consists only of AND gates, OR gates and

basic events.

4.3.1. The structure function of posbist fault tree

Consider a coherent system S of n components. The

failure of the system is the top event and the failures of

the components are basic events. Since the system and its

components demonstrate only two crisp states, i.e. fully

functioning or completely failed, we can use 0 and 1 to

represent the states of the top event and basic events. Thus,

we assume

Xi ¼
1; if the basic event i occurs

0; if the basic event i does not occur
i ¼ 1;2;…;n

(

wðXÞ ¼
1; if the top event occurs

0; if the top event does not occur

(

X ¼ ðX1;X2;…;XnÞ:

Then the function wðXÞ is called the structure function of a

posbist fault tree. We can call it a posbist fault tree wðXÞ; or

more precisely, a posbist fault tree ðC;wðXÞÞ; where the set

C is a set of integers designating basic events.

Analogous to the conventional fault tree, we can easily

obtain the following results:

For a posbist fault tree consisting of AND gates, we have

wðXÞ ¼
Yn

i¼1

Xi ¼ minðX1;X2; · · ·;XnÞ: ð6Þ

For a posbist fault tree consisting of OR gates, we have

wðXÞ ¼ 1 2
Yn

i¼1

ð1 2 XiÞ ¼ maxðX1;X2;…;XnÞ: ð7Þ

Definition 4.3.1.1. A path set, denoted by Pa; of a posbist

fault tree wðXÞ is a subset of C that will not make the top

event occur. Pa is minimal if any real subset of it will make

the top event occur. A cut set, denoted by Ku; of a posbist

fault tree wðXÞ is a subset of C that makes the top event

occur. Ku is minimal if any real subset of it will not make the

top event occur.

Then, suppose a fault tree wðXÞ of a coherent system with

p minimal path sets ðPa1;Pa2;…;PapÞ and k minimal cut sets

ðKu1;Ku2;…;KukÞ: Define

PajðXÞ ¼
\

i[Paj

xi

and

KujðXÞ ¼
[

i[Kuj

xi:

Thus, the structure function wðXÞ of the posbist fault tree can

be expressed as

wðXÞ ¼
\p
j¼1

PajðXÞ
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¼ min
1#j#p

max
i[Paj

xi: ð8Þ

or

wðXÞ ¼
[k

j¼1

KujðXÞ

¼ max
1#j#k

min
i[Kuj

xi: ð9Þ

4.3.2. Estimation of possibility distributions

The estimation of possibility distributions is a crucial

step in the application of possibilistic reliability theory

(for example, posbist reliability theory). In the theory of

possibilistic reliability, the concept of a possibility

distribution plays a role that is analogous—though not

completely—to that of a probability distribution in the

theory of probabilistic reliability. Because the concept of

membership functions bears a close relation to the

concept of possibility distributions [24], in this

paper, we believe that all the methods for generating

membership functions can be used to construct

the relevant possibility distributions in principle.

For more details of methods for generating

membership functions (i.e. the methods for generating

possibility distributions), we can refer to [25–28].

However, we should realize that it might be

difficult, if not impossible, to come up with a general

possibility distribution method which will work for all

applications. Much future work is yet to be done on

this subject.

Here, we present two techniques for estimating possi-

bility distributions from probability distributions.

(i) Bijective transformation method

Let X ¼ {xili ¼ 1; 2;…; n} be the universe of dis-

course. If the histograms (or the probability distribution)

of the variable X is ranged in a decreasing rate:

pðx1Þ $ pðx2Þ $ … $ pðxnÞ

then, the corresponding possibility distribution can be

constructed as follows:

pXðxiÞ ¼
Xn

j¼1

minðpðxiÞ; pðxjÞÞ ¼ ipðxiÞ þ
Xn

j¼iþ1

pðxjÞ: ð10Þ

Generally, the histograms can be renormalized by setting

the maximal value to 1, i.e.

pXðxiÞ ¼
pðxiÞ

max
n

i¼1
pðxiÞ

ð11Þ

where ðpðxiÞÞ1#i#n is a histogram of X:

(ii) Conservation of uncertainty method

As the name suggests, this method is based on

the principle of uncertainty conservation [29]. When

uncertainty is transformed from one theory T1 to another

T2; the following requirements must be met:

(1) The amount of inherent uncertainty should be

preserved when the transformation is made from

T1 to T2:

(2) All relevant numerical values in T1 must be

converted to their counterparts in T2 by an

appropriate scale.

The method is:

pXðxiÞ ¼
pðxiÞ

pðx1Þ

� 	a
;a [ ½0; 1�: ð12Þ

Sometimes, the immediate judgments of experts or

technologists are used to construct possibility distri-

butions. In that case, most of the universes of discourse

are discrete.

It should be pointed out that we usually combine or use

several methods for constructing possibility distributions in

order to obtain all the possibility distribution functions of

the fuzzy variables involved.

4.3.3. Quantitative analysis

According to posbist reliability theory based on state

variables (i.e. system states) and the basic assumptions in

Section 4.2, we have:

The failure possibility of the basic event i is

Possi
¼ PossðXi ¼ 1Þ: ð13Þ

The failure possibility of the top event is

PossT
¼ Possðw ¼ 1Þ: ð14Þ

Theorem 1. For the AND gate, the operator is

PAND
ossT

¼ minðPoss1
;Poss2

; · · ·;Possn
Þ: ð15Þ

Proof.

PAND
ossT

¼ Possðw ¼ 1Þ

¼ Poss

Yn

i¼1

Xi ¼ 1

 !
¼ PossðminðX1;X2; · · ·;XnÞ ¼ 1Þ

¼ PossðX1 ¼ 1;X2 ¼ 1; · · ·;Xn ¼ 1Þ:

Since the basic events are mutually unrelated, we have

PAND
ossT

¼ minðPossðX1 ¼ 1Þ;PossðX2 ¼ 1Þ;…;PossðXn ¼ 1ÞÞ

¼ minðPoss1
;Poss2

;…;Possn
Þ A
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Theorem 2. For the OR gate, the operator is

POR
ossT

¼ maxðPoss1
;Poss2

;…;Possn
Þ: ð16Þ

Proof.

POR
ossT

¼ Possðw ¼ 1Þ ¼ PossðmaxðX1;X2;…;XnÞ ¼ 1Þ

¼ PossððX1 ¼ 1Þ< ðX2 ¼ 1Þ< … < ðXn ¼ 1ÞÞ

¼ maxðPossðX1 ¼ 1Þ;PossðX2 ¼ 1Þ;…;PossðXn ¼ 1ÞÞ

¼ maxðPoss1
;Poss2

;…;Possn
Þ A

Theorem 3. For a posbist fault tree wðXÞ of a coherent

system with mutually unrelated basic events, suppose there

are k minimal cut sets ðKu1;Ku2;…;KukÞ: Let Possi
be the

failure possibility of the basic event i: Then

PossT
¼ max

1#j#k
ðmin
i[Kuj

Possi
Þ: ð17Þ

Proof. From Eq. (9), we have

wðXÞ ¼
[k

j¼1

KujðXÞ ¼ max
1#j#k

min
i[Kuj

xi:

Since all the basic events of the posbist fault tree are

mutually unrelated, we may arrive at

PossðKujðXÞ ¼ 1Þ ¼ Possðmin
i[Kuj

xi ¼ 1Þ ¼ min
i[Kuj

ðPossi
Þ:

The above equation is due to Theorem 1. Then according to

Theorem 2, we have

PossT
¼ PossðwðXÞ ¼ 1Þ

¼ Possðmax
1#j#k

KujðXÞ ¼ 1Þ

¼ max
1#j#k

ðmin
i[Kuj

Possi
Þ

where we can find that the unrelatedness of {KujðXÞ; j ¼

1; 2;…; k} is not required. A

Thus, as long as we know the failure possibility of every

basic event, we can use the above-mentioned operators to

obtain the failure possibility of the top event.

5. Example

Consider the problem of a failure caused by the break of

the hoisting rope of a crane. For a failure analysis of a broken

hoisting rope, we can refer to [30]. In [30], the authors

concluded that the main reasons for the failure of the crane’s

hoisting rope were fatigue and poor inspection. But they

considered only the failures of the steel wires themselves. In

fact, there are many factors (materials and/or human errors)

that caused the break of the hoisting rope of the crane. It is

not enough to consider the failure of the steel wires only.

The fault tree of a failure of the hoisting rope of a

crane has been constructed in Fig. 1. By means of the

technique for analyzing a fault tree, we can derive

almost all the main reasons for the failure of the crane’s

hoisting rope. The events of the fault tree are illustrated

in Table 1.

For a failure such as that of the hoisting rope of a crane, it

is often very difficult to estimate precise failure rates or

failure probabilities of individual components or failure

events. This is because the failure events consist of not only

the failure of components (e.g. drawback of materials) but

also human factors (e.g. insufficient inspection). According

to Zadeh’s consistency principle [24], it may be feasible to

Fig. 1. The fault tree of a failure of the rope on a crane.

Table 1

The events and the failure possibility of every basic event of the fault tree

Symbol Event Failure possibility

T Broken

E1 Hoisting objects aslant

E2 Inadequate strength

E3 Drawback of manufacturing

E4 Drawback of use

X1 Overloading 0.05

X2 Dragging 0.03

X3 Hoisting objects alternately 0.004

X4 Drawback of materials 0.002

X5 Drawback of machining 0.001

X6 Insufficient inspection 0.003

X7 Unsuitable diameter 0.005

X8 Inadequate overhauling 0.02

X9 Arriving at limit of failure 0.5
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use possibility measures as a rough estimate of probability

measures.

Using the judgments of experts or technologists, we can

obtain the failure possibility of every basic event illustrated

in Table 1. Thus, we can deduce the failure possibility of the

top event by use of the technique presented in this paper.

According to Eq. (16), we arrive at

PossðE1Þ ¼ maxðPossðX2Þ;PossðX3ÞÞ ¼ maxð0:03; 0:004Þ

¼ 0:03:

PossðE3Þ ¼ maxðPossðX4Þ;PossðX5Þ;PossðX6ÞÞ

¼ maxð0:002; 0:001; 0:003Þ ¼ 0:003:

PossðE2Þ ¼ maxðPossðE3Þ;PossðE4ÞÞ ¼ maxð0:003; 0:02Þ

¼ 0:02:

Further, according to Eq. (15), we arrive at

PossðE4Þ ¼ minðPossðX8Þ;PossðX9ÞÞ ¼ minð0:02; 0:5Þ ¼ 0:02:

In this way, we can arrive at the failure possibility of the top

event according to Eq. (16)

PossðTÞ ¼ maxðPossðX1Þ;PossðE1Þ;PossðE2ÞÞ

¼ maxð0:05; 0:03; 0:02Þ ¼ 0:05:

6. Concluding remarks

(1) The model of posbist FTA constructed in this paper can

be used to evaluate the failure possibility of those

systems, in which the statistical data is scarce or the

failure probability is extremely small (e.g. 1027). It is

very difficult, however, to evaluate the safety and

reliability of such systems using conventional FTA.

(2) As long as the failure possibilities of basic events can

be obtained, the failure possibility of the top event can

be derived according to the technique outlined in this

paper. Thus, it is crucial to estimate possibility

distributions of basic events. In this paper, we have

pointed out that all the methods for generating

membership functions can be used to construct the

relevant possibility distributions in principle, and we

have provided several methods for constructing

possibility distributions. Nevertheless, further research

is needed.

(3) We should note that the model of posbist FTA

proposed in the present paper, where the uncertainty

is characterized in the context of possibility measures

rather than probability measures, is different from the

reported models of fuzzy FTA and the model of profust

FTA.
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