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A new fault tree analysis method: fuzzy dynamic fault tree analysis 

Nowa metoda analizy drzewa uszkodzeń: Rozmyta analiza 
dynamicznego drzewa uszkodzeń

Fault tree analysis (FTA) is a widely used reliability assessment tool for large and complex engineering systems. The conventional 
fault tree analysis method, which contains AND, OR, and Voting gates, etc., can efficiently build an analytical model to repre-
sent combinations of component failures that cause the failure of a system. However, due to its limited modeling capability, we 
may confront difficulties when modeling dynamic systems which involve complicated dynamic characteristics such as sequence 
dependency and functional dependency. Markov-based dynamic fault tree analysis (DFTA) extends the static FTA by introducing 
additional gates to model such complicated interactions among events. In many circumstances, it is quite difficult to obtain an 
accurate system reliability estimate due to limited data. To overcome this issue, a fuzzy dynamic fault tree model is put forth to 
assess system reliability. To obtain the membership function of the fuzzy probability for the top event of the studied fault trees, the 
extension principle is employed to calculate the associated membership function via a pair of parametric programming problems. 
Finally, a case study is presented to demonstrate the application of the proposed approach for the hydraulic system of a CNC 
machining centre.

Keywords: Fault tree analysis, Dynamic fault tree, Fuzzy number, Fuzzy Markov model, Parametric programming.

Analiza drzewa uszkodzeń (FTA) znajduje szerokie zastosowanie jako narzędzie oceny niezawodności dużych i złożonych syste-
mów inżynierskich. Tradycyjna metoda analizy drzewa uszkodzeń z bramkami logicznymi typu AND, OR, k-z-n, itd. pozwala na 
sprawne konstruowanie modeli analitycznych reprezentujących kombinacje uszkodzeń elementarnych składowych systemu, które 
prowadzą do awarii systemu jako całości. Jednakże ograniczone możliwości modelowania jakie daje ta metoda mogą prowadzić 
do trudności przy modelowaniu systemów dynamicznych posiadających złożone charakterystyki dynamiczne, takie jak zależność 
sekwencyjna czy zależność funkcjonalna. Analiza dynamicznych drzew uszkodzeń (DFTA) oparta na metodzie Markowa stanowi 
rozszerzenie tradycyjnej FTA. Wprowadza ona dodatkowe bramki, pozwalając na modelowanie wspomnianych wyżej złożonych 
interakcji między zdarzeniami. W wielu okolicznościach, ograniczone dane nie pozwalają na otrzymanie dokładnej oceny nieza-
wodności systemu. By rozwiązać ten problem, zaproponowano zastosowanie rozmytego modelu dynamicznego drzewa uszkodzeń 
do oceny niezawodności systemu. Aby otrzymać funkcję przynależności rozmytego prawdopodobieństwa wystąpienia zdarzenia 
szczytowego badanego drzewa uszkodzeń, obliczono, na podstawie pary problemów programowania parametrycznego, skoja-
rzoną funkcję przynależności wykorzystując zasadę rozszerzenia. Na zakończenie przedstawiono studium przypadku, w którym 
proponowane podejście zastosowano do analizy systemu hydraulicznego centrum obróbkowego CNC.

Słowa kluczowe: Analiza drzewa uszkodzeń, dynamiczne drzewo uszkodzeń, liczba rozmyta, rozmyty model Mar-
kowa, programowanie parametryczne.

Introduction 

Fault tree analysis (FTA) is a logical and graphic method being 
widely used to evaluate the reliability of complex engineering sys-
tems from both qualitative and quantitative perspectives. Fault tree 
provides a graphical representation of combinations of component 
failures leading to an undesired system failure [22, 25].

Fault tree (FT) was first introduced in 1961 by H. A. Watson of 
Bell telephone laboratories in connection with a U.S. Air Force con-
tract to study the minuteman missile launch control system [5]. In the 
1965 safety symposium, sponsored by the University of Washington 
and the Boeing company, several papers were presented, which ex-
pounded the virtues of fault-tree analysis [21]. Since then, a variety of 
methods for modeling and evaluating the complex system reliability 
via FTA have been reported [1, 2, 4, 6].

However, in many situations, the behaviour of components in a 
complex system and their interactions, such as failure priority, sequen-

tially dependent failures, functional dependent failures, and dynamic 
redundancy management, cannot be adequately addressed by tradi-
tional FT due to its limited modeling capability. Several approaches 
have been proposed to overcome these difficulties. Dugan et al. [9, 
10, 16] introduced a modularization method to identify the independ-
ent sub-trees with dynamic gates. Markov models were used to solve 
these dynamic fault trees. Amari et al. [3] proposed a numerical inte-
gration technique to solve dynamic gates without converting them to 
Markov models. By using the probability distribution and conditional 
probability distribution of the basic events, this method can accurately 
assess the fault tree behaviour with dynamic gates and repeated basic 
events. Bobbio et al. [7-8] proposed a Bayesian network-based meth-
od to further reduce the complexity of solving dynamic FTs based on 
a state-space approach.

The aforementioned state-based approaches are capable of evalu-
ating the reliability of complex systems either qualitatively or quan-
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titatively. We can obtain the accurate failure probability value of the 
top event by using these state-based fault tree analysis methods. When 
performing a system reliability evaluation, both operation states and 
failure states of components are generally assumed to be known. That 
is to say, components are assumed in either functioning state or failed 
state, and the probability for being in each individual state can be de-
termined in advance. Actually, this is not always the case in many real 
engineering systems due to two main reasons:

(1) The states of components/systems often deteriorate over time, 
so failures of these components/systems may not occur at a certain 
point in time. Sometimes, we cannot exactly identify the state of a 
component or a system due to various kinds of uncertain factors, such 
as inaccurate measurements and human errors. In addition, ambiguity 
of system and component behaviour, and the dynamic operating en-
vironment of a system introduces additional difficulties in estimating 
the exact failure probabilities of basic events.

(2) Obtaining large and accurate failure data is costly, difficult, 
or even impossible for many real and complex systems. This is true 
especially for those systems with components whose failure rates are 
very low and/or with new designs. In these situations, it is not realistic 
or possible to represent the component failure behaviour using crisp 
values.

Fuzzy set theory proposed by Zadeh [23-24] has shown to be a use-
ful methodology to cope with these cases where subjective judgement or 
estimation of an individual plays a vital and useful role in dealing with 
the ambiguity or uncertainty. Many papers have been published to in-
corporate the fuzzy set theory into the fault tree analysis for reliability 
analysis. Tanaka et al. [20] proposed an enumeration approach to esti-
mate the cut sets of FT for which the trapezoidal fuzzy number is used to 
represent failure probabilities of events. Singer [19] used triangular fuzzy 
numbers to substitute the exact probability value as a representation of 
failure probabilities for basic events and top events. Based on the exten-
sion principle, Misra and Weber [17], Liang and Wang [13], described the 
fuzzy arithmetic operations for fault tree analysis. To avoid uncertainty in 
probabilistic risk assessment, Singer [19], Lai et al. [12] and Sawyer [18] 
introduced fuzzy set theory into safety and reliability modeling process. 
Based on posbist reliability theory, posbist fault tree analysis of coher-
ent systems was proposed by Huang et al. [11]. In their approach, event 
failure behaviour is characterized in the context of possibilistic measures, 
and the structure function of the posbist fault tree of a coherent system is 
defined.

In this paper, triangular fuzzy membership functions are used to 
describe the vagueness of quantification of failure probability for basic 
events. Based on a fuzzy transition rate matrix, a fuzzy Markov model is 
introduced to capture dynamic behaviour of systems. Finally, a numerical 
example is provided to illustrate the application of the proposed method.

2. Dynamic fault tree 

2.1.	 Dynamic gates

A major disadvantage of the traditional FTA is its inability to 
capture sequence dependencies in the system while still allowing an 
analytic solution [9-10]. To overcome this difficulty, Dugan proposed 
a new reliability analysis method called Dynamic Fault Tree Analysis 
(DFTA) by introducing several dynamic gates to describe the dynamic 
behaviours of these systems [9, 10, 16]. There are four major basic 
dynamic gates which will be elaborated in follows.

2.1.1.	 Priority-AND gate (PAND gate)

The PAND gate has two inputs, A and B, both of which could be a 
basic event or the output of other logic gates. The PAND gate reaches 
a failure state if all its input components have failed in a pre-assigned 
order (generally from left to right in a graphical notation).

2.1.2.	 Functional dependency gate (FDEP gate)

The FDEP gate frequently includes one trigger input (either a 
basic event or a output of another gate) and one or more dependent 
events. The dependent events are functionally relying on the trigger 
event. When the trigger event occurs, the dependent basic events are 
forced to occur.

2.1.3. 	 Sequence enforcing gate (SEQ gate)

The SEQ gate forces its inputs to fail in a particular order. It never 
happens if the failure sequence takes place in different orders. While 
the SEQ gate allows events to occur only in a pre-specified order and 
state that a different failure sequence can never take place, the PAND 
gate does not impose such a strong assumption: it simply detects the 
failure order and a failure triggered upon the match with the order.

2.1.4.	 Spare gates

The spares often include one principal component that can be sub-
stituted by one or more backups that have the same function with the 
principal one. The Spare gate is classified into three types of backups, 
i.e., Cold Spare (CSP), Warm Spare (WSP) and Hot Spare (HSP). 
Suppose λ  being the failure rate of a component, and then the failure 
rate alters to αλ  while being used as a spare. If α = 0 , the spare is a 
CSP and α =1 , the spare is a HSP, otherwise it’s a WSP for the case 
where 0<α<1.

The four different categories of dynamic gates are enumerated in 
Table 1 with their input information, failure criteria, and correspond-
ing symbols.

2.2.	 Markov model

In a dynamic fault tree, the occurrence of a top event depends 
not only on the combination of component failures, but also on the 
sequence of occurrences of these events. Thus, the Markov model has 
been used as a quantitative method to model the failure process and 
evaluate system reliability. 

Let T be an infinite real set, t T∈ , then { }X t t T( ), ∈  is called a 
stochastic process. For each t T∈ , X t( )  is a random variable. A  typ-

ical continuous stochastic process { }X t t T( ), ∈  is called a Markov 
process if its conditional probability satisfies the relation

	
P X t x X t x X t x X t xn n n n{ ( ) ( ) , ( ) , , ( ) }= = = =

=
− −1 1 2 2 1 1

              PP X t x X t xn n n n{ ( ) ( ) }= =− −1 1
      (1)

where x Si ∈ , S is the state space of the stochastic process and 

t t t tn n1 2 1< < < <− . This memory-less characteristic means that the 

probability of this stochastic process being in state xi  at time ti  de-

pends only on the state at time ti−1  and is independent of the state at 

time t i ni ( , , , )= −1 2 2 .

The occurrence of component failure is a frequent stochastic proc-
ess which can be represented by certain types of probability distribu-
tion functions. In a dynamic system, the failure process of the system 
can be represented by a Markov process. Suppose that the system 

has n states ( 1,2, , )is i n=  , is S∈ , and S is the state space of the 
Markov process { ( ),  0}S t t ≥ . The transition rate from state i  to state 
j  is denoted by λi j, . Then the failure process of the system can be 

represented by a transition diagram shown in Fig. 1.
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Let ( ),  1,2, ,iP t i n=   be the probability of the system being on 

state ( 1,2, , )is i n=  , the differential equations for the aforemen-
tioned dynamic process take the form as follows:

	

dp t
dt

p t

dp t
dt

p t p t

j
j

n

i
j

j

i

j i i
j i

1
1 1

2

1

1

( ) ( )

( ) ( ) ( )

,

,

= −

= −

=

=

−

=

∑

∑

λ

λ
++

=

−

∑

∑

< < ≥

=
















1

1

1

1 0
n

i j

n
j j n

j

n

i n t

dp t
dt

p t

λ

λ

,

,

, ,

( ) ( )

       (2)

Solving the equations with the initial condition:

	

1(0) 1,
(0) 0, 2, ,i

P
P i n

=
 = = 

we can obtain the probability value ( )nP t , which is also the fail-
ure probability of the top event corresponding to the Markov state 
transition diagram.

3. Fuzzy set theory

3.1.	 Fuzzy set and fuzzy number

During the evaluation of reliability of complex engineering sys-
tems, there exist two kinds of uncertainties, i.e. aleatory uncertainty 
and epistemic uncertainty. Zadeh [23-24] proposed a set of systematic 
mathematical theories, namely fuzzy set theory, which can deal with 
fuzzy characteristics of uncertainty in real engineering systems.

Given a universal set U , for a set A , and for each u , there exits 
a real number µ

A u( ) [ , ]∈ 0 1  that corresponds to u , which represents 

the degree of u belonging to A . We call the set A  a fuzzy set, and the 

value µ
A u( )  the membership degree of u  to A .

µ

µ




A

A

U

u u

: [ , ]

( )

→

→

0 1
 

For a fuzzy set A , it becomes a fuzzy number if it is a normal as 
well as a convex fuzzy set. Triangular fuzzy number, normal fuzzy 
number, and trapezoidal fuzzy number are among the mostly used 
fuzzy numbers.

A typical triangular fuzzy number ( , , )A a b c  can be defined by its 
membership function as follows. Its graphic representation is shown 
in Fig. 2.
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3.2.	 Extension principle

The concept of fuzzy set and fuzzy number proposed by Zadeh 
[23-24] provides a means to represent and quantify fuzzy information. 
Besides, Zadeh introduced the extension principle for fuzzy opera-
tions between fuzzy numbers.

Given ( 1,2, , )iX i n=


 are fuzzy numbers corresponding to uni-

versal set ( 1,2, , )iR i n=  , respectively. ( 1,2, , )i ix R i n∈ =   are 

the variables associated with each fuzzy number ( 1,2, , )iX i n=


. 

1 2( ,  ,..., )nf x x x  is a function that maps the variables ( 1,2, , )ix i n=   
to a variable ( )y y R∈ . Then we can induce (generate) a fuzzy number 

Fig. 1. A sample state transition diagram
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Fig. 2. Membership function of the triangular fuzzy number

Table 1.  Dynamic gates and failure mechanism

Dynamic gate Input events 
information Failure criteria Symbol

PAND Gate The PAND Gate 
has two inputs, 
A and B, both 
of which can 
be basic events 
or outputs of 
other logic 
gates.

The output of 
this gate is true 
if both inputs 
have occurred, 
and A occurred 
before B.

 

FDEP Gate The FDEP Gate 
has a trigger 
event and mul-
tiple dependent 
basic events.

If the trigger 
event occurs, all 
the dependent 
events occur 
subsequently, 
and the output 
becomes true.

 

 

FDEP 

SEQ Gate The SEQ Gate 
has multiple 
inputs

The sequence-
enforcing gate 
(SEQ) forces its 
inputs to occur 
in a particular 
order. If all the 
inputs occur, 
the output is 
true.

 

 

SEQ 

… 1 n 

Spare Gate The Spare has 
one primary in-
put and one or 
more alternate 
inputs

If the primary 
unit fails, the 
first alternate 
component 
begins to func-
tion, till all the 
replacements 
fail, the output 
becomes true.

 

CSP 

… 
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Y  from fuzzy numbers ( 1,2, , )iX i n=


 by function 1 2( ,  ,..., )nf x x x  . 

The membership function of Y  can be obtained by the extension prin-
ciple shown as follow:

1 2

1 2

1 2
( 1,2, , )

( , , , )

( ) sup min( ( ), ( ), , ( ))
n

i i
n

nY X X X
x R i n
y f x x x

u y u x u x u x
∈ =
=

=
   







    (4)

According to the extension principle, the interval of the α-cut of 
the fuzzy number Y  is given by:

	


 
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      (5)

Thus, the lower and upper bounds of Y  can be obtained by fol-
lowing a pair of parametric programming problems
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We can easily obtain the intervals at different α-cut levels by the 
extension principle.

4. Fuzzy dynamic fault tree (FDFT)

Combining the Markov model with the fuzzy set theory, we pro-
pose a reliability analysis method called Fuzzy Dynamic Fault Tree 
(FDFT) to estimate the reliability of systems having dynamic charac-
teristics and fuzzy uncertainty.

The fuzzy Markov model corresponds to the Dynamic Fault Tree 

(DFT) with n states ,1is i n≤ ≤ , and the crisp state transition rate λi j,  

of Markov model is replaced by fuzzy state transition rate λi j,  due to 
difficulty of estimating accurate values. Then the fuzzy state transi-
tion rate matrix A  is given as follows:

	  
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	  (8)

Thus, the state transition diagram is given as Fig. 3.

As a result, the differential equations with the fuzzy transition rate 
take the form of:
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To solve the differential equations, the Laplace-Stieltjes transform 

can be used with the initial condition: 1(0) 1, (0) 0( 1)ip p i= = ≠  . 
The corresponding linear equations take the form as follows:
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After solving the linear equations to obtain ( )np s , and the in-

verse Laplace-Stieltjes transform can be used to solve ( )np t . Then 

the interval of the probability of ( )np t  can be solved by the extension 
principle mentioned in Section 3.

5. Reliability analysis for CNC via FDFT

5.1.	 Brief introduction of CNC hydraulic systems

A complete hydraulic system is mainly composed of five parts: 
power components, control components, executive components, aux-
iliary components, and hydraulic oil. The studied system here is com-
posed of four circuits, i.e. spindle balancing circuit, spindle releasing 
circuit, C axle clamping and releasing circuit, and D axle clamping and 
releasing circuit. In this section the Spindle balancing circuit is analysed 
by using FDFT model. The configuration of the spindle is shown in 
Fig. 4. It is composed of a tank, three filters, one hydraulic gear pump, 
three shut-off valves, check valve, one pressure relief valve, two pres-
sure gauges, one pressure relay, two overflow valves, one cylinder, and 
one power accumulator. 

Its operation principle can be described as follows. The oil is 
pumped from the tank to the main oil line through the control valves 
aforementioned. When the pressure value exceeds 140 bar, the oil will 
flow back to the tank through the overflow valve to reduce the pressure 
down to 140 bar. The pressure will drop to 65 bar through the pressure 
relief valve. The power accumulator can be accumulated when the pres-
sure is over 50 bar. The operation of the pump will be blackout by the 
pressure delay when the pressure of the main circuit is over 60 bar. Af-
terwards, it will start again until the pressure value drops below 55 bar.

Fig. 3 The fuzzy state transition diagram for a non-repairable system
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5.2.	 Construction of dynamic fault tree of spindle balance 
circuit

The event of the insufficiency of pressure in the balance circuit is 
considered as the top event in the following analysis. The filter failure 
and pressure gauge failure are ignored due to their low failure rate. 
The basic events are enumerated as follows. 

1 :x  pressure relay failure; 2 :x  pump failure; 3 :x  power accu-

mulator failure; 4 :x  tank failure; 5 :x  check valve failure; 6 :x  cylin-

der failure; 7 :x  shut-off valve 1 failure; 8 :x  shut-off valve 2 failure; 

9 :x  pressure relief valve failure; 10 :x  overflow valve 1 failure; 11 :x  
overflow valve 2 failure. The dynamic fault tree is shown in Fig. 5.

5.3.	 Quantitative assessment of FDFT

According to the FDFT shown in Section 5.2 and the basic failure 
data shown in Table 2, the reliability of the spindle in hydraulic sys-
tem is analysed based on FDFT. The failure rate of each component is 
represented by triangular fuzzy numbers shown in Table 2. The DFT 
is transformed into the fuzzy Markov model shown in Fig. 6.

The corresponding fuzzy state transition rate matrix is as follows:
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The dynamic differential equations take the form:
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Fig. 4 Spindle carrier balance circuit of CNC machining center

Fig. 5 Dynamic fault tree of the hydraulic system

Fig. 6 State transition diagram of the spindle circuit of hydraulic system`

Table 2. Basic event and failure rate

Basic 
event

Fuzzy failure rate 

λ( )t (×10-6)
Basic 
event

Fuzzy failure rate 

λ( )t (×10-6)

1x
(0.0425,0.0500,0.0575) 7x (7.2250,8.5000,9.7750)

2x (11.4750,13.5000,15.5250)
8x (7.2250,8.5000,9.7750)

3x (6.1200,7.2000,8.2800)
9x (1.8190,2.1400,2.4610)

4x (1.2750,1.5000,1.7250)
10x (4.8450,5.7000,6.5550)

5x (4.2500,5.0000,5.7500)
11x (4.8450,5.7000,6.5550)

6x (0.0068,0.0080,0.0092)
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with the initial conditions p1 0 1( ) =  and p ii ( ) ( )0 0 1 5= < ≤ . The 

Laplace-Stieltjes transform can be used to solve the differential equa-
tions. After the transform, the differential equations become a set of 
linear equations as follows:
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Then, the fuzzy probability of state s5  can be obtained as
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By taking the inverse Laplace-Stieltjes transform, the fuzzy prob-

ability of state 5s  can be derived as a function of t. 
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Using Eqs. (4)-(7), the membership of fuzzy probability of state 5s  at 
different cut level α can be calculated as shown in Figs.7-9.

The membership function of fuzzy failure probability presented 
in Fig.7 is obtained by Eqs. (6) and (7) at different α-cut level at time 

5000t =  hours. The median value of fuzzy failure probability is 
0.1631 at time 5000t =  hours. The membership functions of fuzzy 
failure probability at time 10000t =  and 15000t =  are obtained by 
the same way with the median value 0.2892 and 0.3875 shown in 
Fig.8 and Fig.9

The reliability curve is presented in Fig.10. The blue one is ob-
tained by the fuzzy failure rates corresponding to α =0. The red one 
which falls into the blue one is obtained by the crisp failure rates cor-
responding to α =1.

Fig.7 The membership of 5p  at 5000 ht = Fig.8 The membership of 5p  at 10000 ht =

Fig.9 The membership of 5p  at 15000 ht = Fig.10 The fuzzy reliability of the system with α = 0 and α = 1
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6. Conclusion

This paper applied the fuzzy Markov model to evaluate the reli-
ability of a complex mechanical system used in CNC machine centre. 
When modeling of the fault tree, the dynamic logic gates are used 
to capture the dynamic behaviour in the system. The Markov model 
and Laplace-Stieltjes transform are used to solve the fault tree mod-

el. Fuzzy set theory is shown to be quite effective in quantifying the 
information uncertainty in the system under study. Triangular fuzzy 
numbers and the extension principle are used to solve the Markov 
model with fuzzy uncertainty. The result shows that the proposed 
method is a promising approach to reliability analysis.
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