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Abstract. Fault tree analysis (FTA), as one of the powerful
tools in reliability engineering, has been widely used to en-
hance system quality attributes. In most fault tree analyses,
precise values are adopted to represent the probabilities of
occurrence of those events. Due to the lack of sufficient data
or imprecision of existing data at the early stage of product
design, it is often difficult to accurately estimate the fail-
ure rates of individual events or the probabilities of occur-
rence of the events. Therefore, such imprecision and uncer-
tainty need to be taken into account in reliability analysis.
In this paper, the evidential networks (EN) are employed to
quantify and propagate the aforementioned uncertainty and
imprecision in fault tree analysis. The detailed conversion
processes of some logic gates to EN are described in fault
tree (FT). The figures of the logic gates and the converted
equivalent EN, together with the associated truth tables and
the conditional belief mass tables, are also presented in this
work. The new epistemic importance is proposed to de-
scribe the effect of ignorance degree of event. The fault tree
of an aircraft engine damaged by oil filter plugs is presented
to demonstrate the proposed method.
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1 Introduction

High reliability and safety are desired by a great multitude
for advanced engineered systems and products. With the
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increasing requirements on system complexity and perfor-
mance, these quality attributes become even more impor-
tant. In order to enhance the quality attributes of a system,
many methods have been developed and proposed [1–3],
and FTA is the one among these methods. FTA was first in-
troduced to evaluate the Minuteman I Intercontinental Bal-
listic Missile (ICVM) Launch Control System by Watson at
Bell Laboratories in 1962. It is a methodology to systemat-
ically describe the causes leading to a top event at different
levels of detail down to the component’s level [4]. A FT is a
logical graph which consists of events and logic gates. Due
to its extensive applications, great efforts have been made
to investigate the FTA method in the literature. Contini [4]
proposed a method to analyze large coherent fault trees in
the cases where working memory is not sufficient to con-
struct the Binary Decision Diagrams (BDD). Considering
the dependencies among fault events in FTA, Dugan pro-
posed the dynamic fault tree (DFA) [31]. Zineb [5] pro-
posed an approach to filter the faults. This method has
solved two problems. They are related to the filtering of
false alarms, and the reduction in the size of the ambiguity
of fault isolation related to the fault occurrence. Moreover,
a set of new dynamic gates have been defined to translate
the new dependencies and relationships. When a FT is ex-
tremely large and complex, the conventional BDD technol-
ogy is infeasible. In order to solve this problem, Cristina [6]
proposed a reduction process by using the information pro-
vided by a set of the most relevant minimal cut sets of the
model. This method allows controlling the degree of re-
duction, and therefore impacts the simplification of the fi-
nal quantification results. Liang [7] applied FTA to an un-
derwater dry maintenance cabin. The weakest links of the
system were identified and an effective preventive mainte-
nance strategy was determined. In order to improve the pre-
diction of the potential risk of coal and gas outburst events
during the underground mining of thick and deep Chinese
coal seams, Zhang [8] proposed a method coupling FTA
and artificial neural network (ANN) models. The dominant
influence on the potential occurrence of in-situ coal and gas
outburst events mining was identified. The outline of con-
structing and applying a generic FTA model was presented
based on the coal seam gas factors and the geological con-
ditions that exist within the Huabei coalfield. Renjith [9]
outlined the estimation of the probability of release of chlo-
rine from storage and filling facility of chlor-alkali industry
using FTA. An attempt had also been made to obtain the
probability of chlorine release using expert elicitation and
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proven fuzzy logic technique for Indian conditions. Sensi-
tivity analysis has been performed to evaluate the percent-
age of each basic event that contributes to chlorine release.
Two-dimensional fuzzy FTA (TDFFTA) has been proposed
to balance the hesitation factor involved in expert elicita-
tion. One can take the tolerances of the probability values of
hazards and the estimation uncertainty of the system com-
ponent failure rates or the probabilities of undesired event
occurrence due to the lack of sufficient data. Ayhan [3]
proposed a new FTA method based on the fuzzy set the-
ory and applied to the spread mooring system. Choi [10]
proposed a method to quantify the two sources of uncer-
tainties based on a Monte Carlo simulation technique and
estimate the probability of the discarded minimal cut sets
and the sum of disjoint products approach complemented
by the correction factor approach (CFA). The method pro-
vides a tool to accurately quantify the two uncertainties and
estimate the top event probability and importance measures
of large coherent fault trees. Remenyte-Prescott [11] pro-
posed an alternative approach to overcome the limitation in
the size of the final binary decision diagram (BDD) in FTA.
The method constructed from each of the gate types were
built and merged to represent a parent gate.

The aforementioned review indicates the limitations of
the conventional FTA. However, little attention has been fo-
cused on the situation where the data is insufficient and im-
precise, especially in early stage of product design. This
may lead to the difficulty of estimating the failure rates
of individual events or the probabilities of occurrence of
events accurately [28–30]. Imprecision and uncertainty
must be considered in the quantification of the probability
of event occurrence. Carreras [12] encoded inherent uncer-
tainty in input data by modeling such data in terms of inter-
vals. Appropriate interval arithmetic was used to propagate
the data standard FTs to generate the output distributions
which reflect the uncertainty of the input data. Popescu [13]
used the Dempster-Shafer (D-S) evidence theory to accom-
modate the imprecise or vague input data and showed how
a pattern of false-negative can be observed. It is illustrated
that the D-S evidence theory has a clear advantage over bi-
nary assignments in representing vagueness. Limbourg [14]
used the D-S evidence theory which merges interval-based
and probabilistic uncertainty modeling on a FTA in the au-
tomotive area. In this paper, the EN is employed to quantify
and propagate the imprecision and uncertainty in FTA. The
conversion process from FT to EN is introduced in details.
The FT of aircraft engines damaged by oil filter plugs is
analyzed and compared with the results from the EN.

The remainder of this paper is organized as follows. In
Section 2, the D-S evidence theory and EN are briefly intro-
duced. The conversion process from FT to EN is provided
in Section 3. Section 4 describes the conversion procedure
from FT to EN. The importance measure is represented in
Section 5. Section 6 uses the FT of the aircraft engines

damaged by oil filter plugs to illustrate the process of con-
version. The conclusion is provided at last.

2 A Brief Introduction to D-S Evidence Theory and
Evidential Networks

In this section, the basic concepts of Dempster-Shafer
(D-S) evidence theory and evidential networks are briefly
reviewed, and related functions, notations, and reasoning
mechanism are introduced.

2.1 D-S Evidence Theory

The evidence theory, also called Dempster-Shafer evidence
theory, is developed and expanded by Shafer [15] based on
the innovative work of Dempster on the upper and lower
bounds of belief assignment to hypothesis in ref. [16]. The
D-S evidence theory may be interpreted as a generalization
of probability theory where probabilities can be distributed
to sets as opposed to mutually exclusive singletons [17]. It
can distinguish the ignorance and uncertainty to the hypoth-
esis by adopting the belief interval. Due to the flexibility of
the basic axioms in evidence theory, no further assumptions
are needed for quantifying the uncertain information of sys-
tem [18].

2.1.1 The Frame of Discernment

The D-S evidence theory starts with defining the frame of
discernment (FD). The FD is a finite nonempty exhaustive
set of mutually exclusive possibilities, denoted by‚, which
includes all the elementary proposition of the problem:

‚ D ¹q1; q2; : : : ; qnº : (1)

The power set of ‚ consists of all the possible subsets,
noted as 2‚. There are 2n elements in the 2‚:

2‚D¹;;¹q1º; : : : ; ¹qnº;¹q1; q2º;¹q1; q3º; : : : ; ¹q1; qnº; : : : ;

¹qn�1; qnº; ¹q1; q2; q3º; : : : ; ¹q1; q2; : : : ; qnºº : (2)

For example, if ‚ D ¹¹upº; ¹downºº and n D 2, the power
set is 2‚ D ¹;; ¹upº; ¹downº; ¹up,downºº, where ; denotes
the empty set.

2.1.2 The Basic Belief Assignment (BBA)

The basic belief assignment is a primitive of evidence the-
ory, which is denoted by m.A/. The function m.A/ is a
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mapping: m.A/ W 2‚ ! Œ0; 1�, and satisfies the following
conditions:

m.;/ D 0 ; (3)

X

A22‚

m.A/ D 1 ; (4)

0 6 m.A/ 6 1 A 2 2‚ ; (5)

where m.A/ indicates the precise probability in which the
evidence corresponds to m supports proposition X . Other
functions are evolved and ratiocinated based on the BBA
which is a basic function in D-S evidence theory.

2.1.3 Belief Function (Bel)

A belief function is a mapping: Bel W 2‚ ! Œ0; 1�

Bel.A/ D
X

B�A

m.B/ ; (6)

where Bel.A/ represents the total amount of probability that
must be distributed among elements of A. It reflects the in-
evitability, signifies the total degree of belief of A, and con-
stitutes a lower limit function on the probability of A [19].
For example:

‚ D ¹q1; q2; q3º;

Bel.¹q1; q2º/ D m.¹q1º/Cm.¹q2º/Cm.¹q1; q2º/ :

Bel.A/ can be obtained by BBA. Symmetrically, BBA can
be obtained by Bel.A/ through the Möbius transforma-
tion" [20]:

m.A/ D
X

B�A

.�1/jA�B jBel.B/ ; (7)

whereA; B 2 2‚, and j � j denotes the cardinality function.

2.1.4 Plausibility Function (Pl)

A plausibility function (Pl) is a mapping: Pl W 2‚ ! Œ0; 1�.
It is defined as follows

Pl.A/ D 1 � Bel.A/ D
X

A\B¤;

m.B/ ; (8)

where A is the negation of a hypothesis A. Pl.A/ mea-
sures the maximal amount of probability that can be dis-
tributed among the elements in A. It describes the to-
tal degree of belief related to A and constitutes an upper
limit function on the probability of A [19]. For example,
‚ D ¹q1; q2; q3º, Pl.¹q1; q2; q3º/ D m.¹q1º/Cm.¹q2º/C

m.¹q3º/ C m.¹q1; q2º/ C m.¹q1; q3º/ C m.¹q2; q3º/ C

m.¹q1; q2; q3º/.
In an analogous way, the basic probability assignment

function can lead to the plausibility function using the fol-
lowing formula [20]:

m.A/ D
X

B�A

.�1/jAj�jBjC1Pl.B/ : (9)

Moreover, the relationship of the belief function, plausibil-
ity function, and probability of hypothesis can be described
as:

Bel.A/ 6 P.A/ 6 Pl.A/ ; (10)

where P.A/ is the probability of the hypothesis A.
ŒBel.A/;Pl.A/] is the posteriori confidence interval

which expresses the uncertainty of A. When the ignorance
to proposition X is decreased, the length of interval is di-
minished.

Probability interval ŒP.A/; P.A/� is often regarded as a
measure for modeling uncertainty. Probability interval can
be directly transformed into the posteriori confidence inter-
val [21]:

P.A/ D Bel.A/ ; (11)

P.A/ D Pl.A/ : (12)

2.2 Evidential Networks

Evidential networks were originally proposed by Si-
mon [21]. It is a directed acyclic graphs (DAG) which can
deal with the aleatory, epistemic uncertainties in reliabil-
ity engineering. It represents the conditional dependencies
between variables in a description space integrating uncer-
tainty as belief masses [24].

An EN is a DAG G D ..N;A/;M/. .N;A/ represents
the graph, N is a set of nodes, A is a set of arcs, and M
expresses the set of belief distributions that are distributed
to each node [23]. For a root node, its priori belief mass
table is defined. When a node is not a root node, its belief
mass distribution is defined by a conditional belief mass ta-
ble given the relations between the node and its parents [21].

Each conditional belief mass table defines the relation
between the belief masses on the frame of variable discern-
ment of each parent’s nodes and the belief masses of the
discernment frame of the child node [22]. Simultaneously,
to compute the marginal belief mass distributions of each
node in evidential networks, the inference algorithm is pro-
posed by Simon [21]. This algorithm updates the marginal
belief mass distributions on each node according to the ad-
ditional evidence introduced into the evidential networks.
More details can be found in refs [21, 23, 24].
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3 Evidential Networks for Fault Tree Analysis

FTA is a logical and diagrammatic method to evaluate the
probability of an accident resulting from sequences and
combinations of faults and failure events in the processing
of system design. It can be regarded as a special case of
event tree analysis [27]. Conventionally, the precise value
is adopted to represent the probabilities of the events. Due
to the lack of sufficient data and imprecise knowledge in
early stage of product design, it is often difficult to estimate
accurately the failure rates of individual events or the prob-
abilities of occurrence of events. The uncertainty needs to
be taken into account [12]. Evidential networks can deal
with aleatory and epistemic uncertainties in reliability engi-
neering. Consequently, the conversion algorithm from FT
to evidential networks should be detailed.

The basic assumption of the standard FTA is that events
have binary states. In evidential networks, the correspond-
ing frame of discernment is described as the following:

‚ D ¹¹upº; ¹downºº ; (13)

2‚ D ¹;; ¹upº; ¹downº; ¹up; downºº ; (14)

where ¹upº means the occurrence of the event, {downº
means the non-occurrence of the event.

If the basic belief assignment of ¹up; downº is equal to
zero, FTA is a conventional probability reasoning method.
If the basic belief assignment of ¹up; downº is nonzero, the
conventional method based on the probability theory cannot
deal with this situation. This characterizes the ignorance on
the real state of the event, and the event may be in the state
¹upº or {downº. Using Eqs. (6), (8), (11), and (12), the
posteriori confidence interval of the occurrence of event is
gained. This describes the uncertainty of occurrence of an
event in FT.

A FT includes two types of elements, event and logic
gate. A logic gate represents the relation and causes among
the events. The AND=OR gates are the two main gates. The
AND gate denotes that an output event occurs if and only if
all the input events occur. The OR gate delineates that an
output event occurs if at least one of the input events occurs.
Simon [21] shows the conversion of an AND=OR gate into
equivalent nodes in an EN. For more details, readers are
referred to [21].

In some situations, AND=OR cannot completely repre-
sent the relations and causes among the events, so other
gates are adopted to model the FT. Consequently, the con-
version of other gates to equivalent nodes in an EN should
be investigated. In the remainder of this section, the conver-
sions of EXCLUSIVE OR gate, EXCLUSIVE NOR gate,
NOT OR gate, NOT AND gate, and Inhibit gate to EN are
provided, respectively.

3.1 EXCLUSIVE OR Gate

EXCLUSIVE OR gate denotes that there is no output un-
less one and only one of the input events occurs. The input
of this gate may be basic events or intermediate events. For
example, there are two fault modes in electronic systems:
the open-circuit fault and the short-circuit fault. These two
fault modes cannot appear simultaneously. Consequently,
the EXCLUSIVE OR gate must express the relation be-
tween the fault modes.

Due to the uncertainty of event occurrence probability,
the conventional EXCLUSIVE OR gate cannot manipulate
this situation. Evidential networks can be used to address
this issue. Through reasoning, the EXCLUSIVE OR gate
and its equivalent evidential networks model are presented
in Figure 1. The truth tables of EXCLUSIVE OR gate in
EN is shown in Table 1. Table 2 represents the conditional
belief mass table. Ci.i D1, 2) denotes the state of the event,
and E1 corresponds to the state of the event and to the output
of the gate. C1 and C2 are the inputs to the EXCLUSIVE
OR gate. Bel.E1 D up/ is the lower limit belief function
to the occurrence of the event and Pl.E1 D up/ is the upper
limit plausibility function to the occurrence of the event.
The logical algebraic expression of EXCLUSIVE OR gate
is as follows:

E1 D
�
C1 \ C2

�
[
�
C1 \ C2

�
: (15)

E1

C1 C2
            

 (a)                                                            (b)   

Figure 1. EXCLUSIVE OR gate and its equivalent eviden-
tial network.

EXCLUSIVE OR
Gate

{Up} {Down} {Up, Down}

{Up} {Down} {Up} {Up, Down}

{Down} {Up} {Down} {Up, Down}

{Up, Down} {Up, Down} {Up, Down} {Up, Down}

Table 1. Truth table of an EXCLUSIVE OR gate.
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C1 C2
E1

{Up} {Down} {Up, Down}

{Up} {Up} 0 1 0

{Down} {Up} 1 0 0

{Up, Down} {Up} 0 0 1

{Up} {Down} 1 0 0

{Down} {Down} 0 1 0

{Up, Down} {Down} 0 0 1

{Up} {Up, Down} 0 0 1

{Down} {Up, Down} 0 0 1

{Up, Down} {Up, Down} 0 0 1

Table 2. Conditional belief mass table of an EXCLUSIVE
OR gate.

3.2 EXCLUSIVE NOR Gate

EXCLUSIVE NOR gate is a combination EXCLUSIVE
OR gate followed by a NOT gate. It denotes that there is
output if the input events occur and do not occur simultane-
ously. When one and one of the input events occurs, there is
no output. The input events may be basic and intermediate
events. The output may be intermediate event or top event.
The output only has one element.

In the conventional FT, the occurrence probability of in-
put event of an EXCLUSIVE NOR gate does not consider
the imprecise probability. In order to deal with this situa-
tion, the EN is adopted. The EXCLUSIVE NOR gate and
its corresponding EN model are presented in Figure 2. The
truth table of the EXCLUSIVE NOR gate in EN is shown
in Table 3. Table 4 represents the conditional belief mass
table. Ci.i D1, 2) denotes the state of the event, and E1

corresponds to the state of the event. If the state of one of
the input events is {Up, Down}, the state of output event,
E1, is {Up, Down}. The logical algebraic expression of
EXCLUSIVE NOR gate is following:

E1 D
�
C1 \ C2

�
[ .C1 \ C2/ : (16)

E1

C1 C2
             

(a)                                                                 (b) 

Figure 2. EXCLUSIVE NOR gate and its equivalent evi-
dential network.

EXCLUSIVE
NOR Gate

{Up} {Down} {Up, Down}

{Up} {Up} {Down} {Up, Down}

{Down} {Down} {Up} {Up, Down}

{Up, Down} {Up, Down} {Up, Down} {Up, Down}

Table 3. Truth table of an EXCLUSIVE NOR gate.

C1 C2
E1

{Up} {Down} {Up, Down}

{Up} {Up} 1 0 0

{Down} {Up} 0 1 0

{Up, Down} {Up} 0 0 1

{Up} {Down} 0 1 0

{Down} {Down} 1 0 0

{Up, Down} {Down} 0 0 1

{Up} {Up, Down} 0 0 1

{Down} {Up, Down} 0 0 1

{Up, Down} {Up, Down} 0 0 1

Table 4. Conditional belief mass table of an EXCLUSIVE
NOR gate.

3.3 NOT AND Gate

NOT AND gate is a combination of AND gate and NOT
gate. It denotes that an output event does not occur if and
only if all the input events occur. The input events may be
the basic events, intermediate events, or a combination of
the basic events and intermediate events. NOT AND gate
may have two or more than two input events and one output.
The output event could be the intermediate events or the top
event.

Taking into account the uncertainty of occurrence of the
event, the conventional FTA has some limitations and EN
can be adopted to deal with this situation. The conversion of
the NOT AND gate to EN is shown in Figure 3. In Figure 3,
the two input events are considered. The truth table of a
NOT AND gate is presented in Table 5. If C1 and C2 occur,
then the output event E1 does not occur. When the state of
C2 contains epistemic uncertainty and thus the event could
be either {Up} or {Down}, the state of the output event
E1 could also be either {Up} or {Down}. The conditional
belief mass table of a NOT AND gate is presented in Table
6 for the case with only two input events. When there are n
input events, the logical algebraic expression of NOT AND
gate is as follows:

E1 D C1\ C2 \ � � � \ Cn : (17)
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E1

C1 C2
                 

(a)                                                               (b) 

Figure 3. NOT AND gate and its equivalent evidential net-
work.

NOT AND GATE {Up} {Down} {Up, Down}

{Up} {Down} {Up} {Up, Down}

{Down} {Up} {Up} {Up}

{Up, Down} {Up, Down} {Up} {Up, Down}

Table 5. Truth table of a NOT AND gate.

C1 C2
E1

{Up} {Down} {Up, Down}

{Up} {Up} 0 1 0

{Down} {Up} 1 0 0

{Up, Down} {Up} 0 0 1

{Up} {Down} 1 0 0

{Down} {Down} 1 0 0

{Up, Down} {Down} 1 0 0

{Up} {Up, Down} 0 0 1

{Down} {Up, Down} 1 0 0

{Up, Down} {Up, Down} 0 0 1

Table 6. Conditional belief mass table of a NOT AND gate.

3.4 NOT OR Gate

NOT OR gate is a combination of an OR gate and a NOT
gate. It denotes that an output event occurs if and only if
all the input events do not occur. The input events may be
the basic events, intermediate events or a combination of
these events. NOT OR gate may have two or more than
two input events and one output. The output event could be
either the intermediate events or the top event. The same
as the analysis of the NOT AND gate, the conversion of the
NOT OR gate to EN is presented in Figure 4. The truth
table of a NOT OR gate and the conditional belief mass
table of a NOT OR gate are expressed in Table 7 and Table
8, respectively. When there are n input events, the logical
algebraic expression of NOT OR gate is as follows:

E1 D C1 [ C2 [ � � � [ Cn : (18)

E1

C1 C2
             

(a)                                                            (b) 

Figure 4. NOT OR gate and its equivalent evidential net-
work.

NOT OR GATE {Up} {Down} {Up, Down}

{Up} {Down} {Down} {Down}

{Down} {Down} {Up} {Up, Down}

{Up, Down} {Down} {Up, Down} {Up, Down}

Table 7. Truth table of a NOT OR gate.

C1 C2
E1

{Up} {Down} {Up, Down}

{Up} {Up} 0 1 0

{Down} {Up} 0 1 0

{Up, Down} {Up} 0 1 0

{Up} {Down} 0 1 0

{Down} {Down} 1 0 0

{Up, Down} {Down} 0 0 1

{Up} {Up, Down} 0 1 0

{Down} {Up, Down} 0 0 1

{Up, Down} {Up, Down} 0 0 1

Table 8. Conditional belief mass table of a NOT OR gate.

3.5 Inhibit Gate

Inhibit gate denotes that the output event occurs if all in-
put events and an additional conditional event occur. The
input of this gate may be basic events, intermediate events
or a combination of these events. The output of this gate
may be intermediate event or top event. However, the con-
ditional event is special and independent. Inhibit gate may
have multiple input events and multiple conditional events.
The inhibit gate is logically equal to an “AND” gate when
the conditional events are regarded as the input events. The
truth table of this gate is equal to “AND” gate. The con-
version of the inhibit gate to EN is presented in Figure 5
which includes the two input events C1 and C2, and one
conditional event A. The corresponding belief mass table
is represented in Table 9. When there are n input events
and kconditional events, the logical algebraic expression of
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C1 C2 A
E1

{Up} {Down} {Up, Down}

{Up} {Up} {Up} 1 0 0

{Down} {Up} {Up} 0 1 0

{Up, Down} {Up} {Up} 0 0 1

{Up} {Down} {Down} 0 1 0

{Down} {Down} {Down} 0 1 0

{Up, Down} {Down} {Down} 0 1 0

{Up} {Up, Down} {Up, Down} 0 0 1

{Down} {Up, Down} {Up, Down} 0 0 1

{Up, Down} {Up, Down} {Up, Down} 0 0 1

Table 9. Conditional belief mass table of an inhibit gate.

A

C1 C2

E1

         

(a)                                                               (b) 

Figure 5. Inhibit gate and its equivalent evidential network.

inhibit gate is as follows:

E1 D .C1\C2\ � � �\Cn/\ .A1\A2\ � � �\Ak/ : (19)

4 The Description of Conversion Procedure from FT
to EN

FT is a logical block diagram to describe the relationship
of events. It adopts the events, logical gates, and transfer
symbols to analyze the event causality form top-down. Ac-
cording to conversion method of the logic gates, FT can
be mapped to EN models. The basic event, intermediate
event, and top event in FT correspond to the parent node,
the child node and the most top-level child node in EN re-
spectively. The logical relationship among the events in FT
corresponds to the arc in EN. FT is constructed from top-
down, while EN is constructed from down-top. The detailed
conversion procedure is described in the following steps:

1) Determine every event (basic event, intermediate
event, and top event) and their logical relationship
(logic gates) in FT;

2) Construct the truth table and conditional belief mass
table of every logic gate according to Section 3;

3) Construct the node sets of EN. Each basic event in FT
is converted into parent node in EN. According to Sec-
tion 3, every logic gate is converted into child node.
For the basic event which is repeated in EN, only a
child node is used to represent the basic event Also,
the one arc is only increased from parent node to child
node;

4) Construct the arc between nodes in EN. According to
Step 2 and Sept 3, the arc is constructed between par-
ent child and child node.

5) Assign BPA to every child node corresponding to the
basic event. Through the computation, the BPA of ev-
ery child node can be attained.

Every node in EN is corresponding to the event in FT.
The logical relationship of event in FT is reflected by the
conditional BPA. Through the above steps, the FT can be
converted into the EN which can deal with the imprecise
probability.

5 Importance Measure

In FT, the effect of state change of every basic event to the
state change of top event is different. The occurrence of
some of the basic events will cause the occurrence of top
event. Importance measure is adopted to describe the dif-
ferent effect of basic events. Importance measure is an in-
dication of the contribution of the occurrence of basic event
to the occurrence of the top event. Through the impor-
tance measure, the contribution ranking of effect of basic
events to the top event can be attained. This is significant
in identifying the weak parts in system design, improving
the system design and reliability, providing guidance for
preventive maintenance, and reasonable allocation of main-
tenance resources. Because of the different structures of
FT, different logical relationships of event, and the differ-
ent contributions of event, the unified importance measure
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can not be constructed. The two common importance mea-
sures, namely probability importance and structure impor-
tance, will be introduced in EN. Probability importance ex-
pressed the degree of change of incidence of top event when
the state of basic event is from {down} to {up}. In EN, the
computation of probability importance is same to the con-
ventional FT. The only difference is on using BPA in EN
instead of the incidence in FT. The structure importance de-
scribes the important degree of the location of event in FT
and is not related to the incidence of all of events. In EN,
the computation of structure importance is the same as the
one in the conventional FT.

Because the epistemic state {Up, Down} of event is con-
sidered in EN, the contribution of the occurrence of epis-
temic state of every basic event to the occurrence of epis-
temic state of top event must be evaluated. In order to de-
scribe the situation, the new importance measure, epistemic
importance, can be defined as:

Iuni D 2m.E D ¹Up,Downº jC i D ¹Up,downº /

�m.E D ¹Up,downº jC i D ¹Downº /

�m.E D ¹Up,Downº jC i D ¹upº / ; (20)

where C i; 1 6 i 6 m, represents the basic event, Iuni ex-
presses the epistemic importance of basic event, and C i , E
represents the top event.

Epistemic importance expresses the degree of change of
belief of epistemic state of top event results from the state of
basic event changing from certainty state to epistemic state.
The larger this factor, the greater the impact on the epis-
temic state of the basic event to the top event. The epistemic
importance is not related to the incidence of this event; how-
ever, it is related to its location in FT and the epistemic state
of other basic event. Using Eq. (20), the epistemic impor-
tance of all of the basic events can be attained. This will
be significant in decreasing the ignorance of event and con-
structing experimental Analysis.

6 An Example

The oil subsystem is one of the important parts of aero-
engines. The fault of this system can lead to the damage
of aero-engines and affect the safety of aircraft. In order
to improve the system safety, reliability analysis of the oil
subsystem is necessary. After a preliminary analysis, there
are two major faults which seriously endanger the safety of
aero-engines. One fault is aircraft engine damage resulting
from oil starvation caused by the low inlet pressure of oil
subsystem. Instructions are not given by oil pressure indi-
cator, and warning signal is not generated by oil pressure
warning system. The other fault is similar aircraft engine
damage which happens when the oil filter is plugged and
the oil pressure indicator does not give instructions [32].

EXCLU-
SIVE OR OR1

C1 C3C2

E4

C4 C5

OR2

E3

E2

C6

AND1

E1

Figure 6. The fault tree of the aero-engine damage caused
by the oil filter plug.

C1 C2 C3 C4 C5 C6

P(Ci/ 0.120 0.080 0.100 0.025 0.030 0.012

Table 10. Probabilities of the basic events.

In this paper, the second fault is analyzed. The FT of
the aircraft engine damage caused by the oil filter plug is
provided in Figure 6. The top event is E1. The intermediate
events and basic event are denoted by Ei (i D2, 3, 4) and
Ci.i D1, 2, 3, 4, 5, 6) respectively. The probabilities of the
basic events are expressed in Table 10. Meanwhile, these
events represent the following practical situations:

E1: The aero-engine damage caused by oil filter plug;

E2: The warring light does not shine when the oil pressure
difference >50 mpa=m2;

E3: The fault of power supply II;

E4: The fault of oil pressure difference device in the oil
pressure warning system;

C1: The fault of differential pressure switches of oil filter;

C2: The fault of wire component;

C3: The fault of oil catheter;

C4: The open-circuit fault of power supply II;

C5: The short-circuit fault of power supply II;

C6: The oil filter plug.
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          (a)  

 

(b)            

Figure 7. Evidential network to modeling fault tree and basic belief assignments without imprecise input.

Using the conventional fault tree analysis method, the
minimal cut sets can be attained. All of the minimal cut sets
Ki ; 1 6 i 6 5 are listed: K1 D C1C6, K2 D C2C6, K3 D
C3C6, K4 D C4C5C6, and K5 D C4C5C6. Because the
minimal cutset is not disjoint, the sum of disjoint product
should be used to attain sum of disjoint of minimal cutset
in the computation of occurrence probability of top event.
The computation process is as follows:

T D K1 [K2 [K3 [K4 [K5

D K1 CK1 .K2 [K3 [K4 [K5/

D C1C6C C1C6

�
�
C2C6 [ C3C6 [ C4C5C6 [ C4C5C6

�

D C1C6C
�
C1 [ C6

�

�
�
C2C6 [ C3C6 [ C4C5C6 [ C4C5C6

�

D C1C6C C1C2C6C C1C2C6

�
�
C1C3C6 [ C1C4C5C6 [ C1C4C5C6

�

D C1C6C C1C2C6C C1C2C3C6

C C1C2C3C4C5C6C C1C2C3C4C5C6 :

Consequently,

P system D ¹upº/ D P.T /

D P.C1C6/C P.C1C2C6/

C P.C1C2C3C6/

C P.C1C2C3C4C5C6/

C P.C1C2C3C4C5C6/

D 0:37 � 10�2 :

According to Section 4, the ENs can be mapped from FT.
Its structure defined in Bayesialab [25] is depicted in Figure
7 (a).

Firstly, without imprecision on the failure rates, belief
massmCi¹up,downº D 0 (i D1, 2, 3, 4, 5, 6) expresses that
the evidential networks being degraded into Bayesian net-
works and Bel.C i D ¹upº/ D P.C i D ¹upº/ D Pl.C i D
¹upº/. Bobbio has claimed that FT can be directly mapped
into Bayesian networks [26]. After computation, the conse-
quence of evidential networks is equal to that of FT. Figure
7 (b) shows that the evidential networks compute the exact
value of probability of the top event.

Bel .system D ¹upº/ D P .system D ¹upº/

D Pl .system D ¹upº/

D 0:37 � 10�2:

In FTA, at an early design stage, it is often difficult to ac-
curately estimate the probability of occurrence of events
because the available data are insufficient or imprecise.
Therefore, imprecise probabilities should be considered.
In this example, the probability of C1, the fault of differ-
ential pressure switches of oil filter, is in an interval of
Œ0:808 � 10�1; 1:808 � 10�1�. A priori belief mass distri-
bution defining the event state is obtained via Eqs. (7), (9),
(11) and (12):

mC1¹upº D 0:808 � 10�1;

mC1¹downº D 8:192 � 10�1;

mC1¹up; downº D 1:0 � 10�1 :
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(a) (b)

Figure 8. Evidential network for modeling FT and basic belief assignments with m.C1 D ¹up; downº/ D 0:1 and
m.C6 D ¹up; downº/ D 0:018.

The interval probability of C6, the oil filter plug, is Œ0:7 �
10�2; 0:25 � 10�1�. A priori belief mass distribution defin-
ing event state is also obtained by Eq. (7), (9), (11), (12):

mC6¹upº D 0:7 � 10�2;

mC6¹downº D 9:75 � 10�1;

mC6¹up; downº D 0:18 � �10�1 :

Figure 8 (b) shows the consequence using the evidential
networks. The probability of the top event is in the inter-
val ŒP.E1/; P.E1/� D Œ0:20 � 10�2; 0:9 � 10�2�. Com-
paring to the consequence obtained in the previous section,
the bounding property in Eq. (10) is verified. Moreover,
the imprecision probabilities of the events are propagated
through the evidential networks shown in Figure 8 (a). This
demonstrates that the evidential networks can delineate the
propagation of the imprecise probability.

As shown in this section, evidential networks can deal
with both aleatory and epistemic uncertainties in FTA. Im-
precise probabilities on basic events can be propagated
through the ENs. The imprecision is regarded as a priori
belief masses, and imprecise results can be obtained.

The three importance measures are computed respec-
tively and expressed in Table 11.

Based on the results shown in Table 11, the probabil-
ity importance of C6 has the largest value. C6 is also the
most important event, while C1, C2 and C3 are relatively
unimportant. The structure importance of C6 has the largest
value and C4 and C5 have the smallest values. For epis-

temic importance, C6 is the largest. These consequences
will be significant for improving design, fault diagnosis,
and providing guidance for preventive maintenance of the
oil subsystem of aero-engines.

7 Summary & Conclusions

FTA is a very popular and widely used method in relia-
bility analysis in early stages of product design. In most
cases, the precise probabilities are adopted to delineate the
probability of occurrence of the events. Due to the lack
of sufficient data as well as imprecise data in early stage
of product design, it is often difficult to accurately esti-
mate the failure rates of individual events or the probabil-
ities of events. Consequently, the imprecision and uncer-

Basic
event

Probability
importance

Structure
importance

Epistemic
importance

C1 0.04% 6.25% 1.69%

C2 0.04% 6.25% 1.51%

C3 0.04% 6.25% 1.54%

C4 0.037% 0.01% 1.46%

C5 0.037% 0.01% 1.46%

C6 27.96% 97.35% 63.76%

Table 11. The importance measures of basic events with
imprecise probabilities.
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tainty needs to be quantified. EN can deal with aleatory,
epistemic, and imprecise uncertainties in the reliability en-
gineering. Moreover, the EN can model the propagation
of uncertainty in reliability analysis of the system. In this
study, the EN has been employed to quantify and propagate
the uncertainty and imprecision of the FTA. The conversion
process from FT to EN has been developed. The detailed
conversion process for some logic gates to EN has been de-
duced. Each of the truth tables and the conditional belief
mass tables of these gates have been illustrated. The epis-
temic importance is proposed to describe the contribution
of epistemic state of basic event to top event. The FT of
the aero-engines damaged by oil filter plug was analyzed
and compared. The three importance measures of six basic
events are computed, respectively. The ranking of impor-
tance of these events is attained. The results illustrate that
the EN can quantify the imprecision and uncertainty and
propagate this imprecision from the basic events to the top
event. Moreover, the precise and imprecise probabilities are
considered and compared.
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