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Abstract

Lifetime data are important in reliability analysis. Classical reliability estimation is based on precise lifetime data. It is usually
assumed that observed lifetime data are precise real numbers. However, some collected lifetime data might be imprecise and
are represented in the form of fuzzy numbers. Thus, it is necessary to generalize classical statistical estimation methods for real
numbers to fuzzy numbers. Bayesian methods have proved to be very useful when the sample size is small. There is little study on
Bayesian reliability estimation based on fuzzy lifetime data. Most of the reported works in this area is limited to single parameter
lifetime distributions. In this paper, we propose a new method to determine the membership function of the estimates of the
parameters and the reliability function of multi-parameter lifetime distributions. An artificial neural network is used to approximate
the calculation process of parameter estimation and reliability prediction. The genetic algorithm is used to find the boundary values
of the membership function of the estimate of interest at any cut level. This method can be used to determine the membership
functions of the Bayesian estimates of multi-parameter distributions. The effectiveness of the proposed method is illustrated with
normal and Weibull distributions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Estimation of the reliability of a product requires its lifetime data. Many reliability analysis methods are based
on the availability of a large amount of lifetime data. In these methods, the parameters of the lifetime distribution
are assumed to be constant but unknown and sample statistics are used as the estimators of these parameters. This
requires a relatively large amount of lifetime data. Such methods have been implemented in a variety of fields and
have solved many practical problems successfully. However, with the progress of modern industrial technologies, prod-
uct development cycle has become shorter and shorter while the lifetime of products has become longer and longer.
As a result, it is time consuming, expensive, and sometimes impossible to obtain many observations [24,30,37]. In
many engineering applications, there may be very few available data points, sometimes only one or two observa-
tions. In these cases it is impossible to estimate lifetime distribution parameters with conventional reliability analysis
methods. The Bayesian approach has been developed to handle such difficulties. In this approach, the parameters
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of the lifetime distributions are considered to be random variables themselves. This enables an engineer to system-
atically combine subjective judgment based on intuition, experience, or indirect information with observed data to
obtain a balanced estimate and to update the estimate as more information and data become available. This method
takes advantage of all available prior information (combining experience, subjective judgment, and available lifetime
data). Thus, it can be used even when there are only a few lifetime data points. Many research results on the classic
Bayesian reliability analysis have been reported and many practical problems have been solved successfully with this
method [1,28].

In engineering applications, randomness is not the only aspect of uncertainty. In many fields of application, owing to
the fuzziness of environment and the negligence of observers, it is sometimes impossible to obtain exact observations
of lifetime. The obtained lifetime data may be “polluted” and imprecise most of the time. In addition, restricted by
human and other resources in experiment, especially for new equipments, exceptionally long-life equipments, and
non-mass-production products, for which there is no comparative reliability information available, more often than
not, the lifetime is based upon subjective evaluation or rough estimate. That leads to the fuzziness of lifetime data.
Moreover, lifetime of a system may be difficult to measure due to the complexity of the system. This is frequently
the case for a complex computer system with many components such as a pipelined computer, an array computer,
and a multi-processor computer, in which not all of the components are required to support the system for all the
time. This implies that different components in the system experience different lifetimes. Since each component in
a system makes contribution to the system reliability, one may argue how to determine the system lifetime and then
view it as a fuzzy one due to the complexity of the system [23,5]. For example, “The lifetime of a bearing is around
8.17 × 106 revolutions” and “The lifetime of some shaft be between 1500 and 2000 h, but near to 2000 h” etc. are
fuzzy concepts relating to lifetime. Thus, one has to represent lifetime data with fuzzy measures in reliability analysis.
Among others, we mention Tanaka et al. [37], Singer [34], Onisawa [29], Cappelle and Kerre [9], Cremona and Gao
[13], Utkin and Gurov [39], and Cai et al. [4,6–8], who have all attempted to define reliability in terms of fuzzy set
theory. Applications of fuzzy set theory in reliability include fault tree analysis, failure modes and effects analysis,
optimization of probist reliability, life testing, structural reliability, software reliability, human reliability, as well as
profust, posbist, and posfust reliability theories [4]. Many papers on generalization of classical statistical methods to
analysis of fuzzy data have been published [16,17,19,22,26,36,42]. The problem of hypothesis testing with fuzzy data
was investigated by Grzegorzewski and Hryniewicz [20]. Early studies of Bayesian decision analysis for imprecise
data were done by Casals et al. [10,11], and Gil [18]. In many of these papers the authors used the notion of fuzzy data
by Zadeh [43] and Tanaka et al. [38] to describe imprecise observations.

Viertl [40], Viertl and Gurker [41], Hryniewicz [21], and Chou and Yuan [12] also used fuzzy set theory in Bayesian
reliability analysis. However, their research results are mainly on single parameter distributions such as the exponential,
binomial, and Poisson distributions. To our best knowledge, there are no reports on estimating the parameters and the
reliability function of multi-parameter distributions using the fuzzy Bayesian approach. The main reason is that the
explicit membership functions of the parameters and the reliability function of a multi-parameter distribution are difficult
to determine. In this paper, we propose a numerical method to determine the membership functions of the parameters
and the reliability function of multi-parameter distributions using the fuzzy Bayesian approach. The proposed method
determines the membership functions using neural networks and the genetic algorithm. The normal distribution and
the Weibull distribution are used to illustrate the proposed method for estimating the parameters and the reliability
function of these two distributions.

2. The Bayesian approach

For a continuous random variable X, X ∼ f (·|�), � ∈ �, with continuous parameter space �, a priori density �(·)
of the parameter �, and observation space Mx of X, the Bayes’ theorem for exact data observations, x1, x2, . . . , xn, is

�(�|x1, x2, . . . , xn) = l(�; x1, x2, . . . , xn)�(�)∫
� l(�; x1, x2, . . . , xn)�(�) d�

, ∀� ∈ �, (1)
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where l(�; x1, x2, . . . , xn) is the likelihood function of the observations with given parameter �. When the lifetime data
set is complete with exact observations, the likelihood function is given by

l(�; x1, x2, . . . , xn) =
n∏

i=1

f (xi |�), ∀� ∈ �. (2)

Mainly because of its use of subjective prior beliefs, the approach to statistical inference based on the Bayes’ theorem
has been controversial within the field of statistics for many years. It is important to note that the prior distribution
cannot be specified arbitrarily and it should be based on prior information. Several effective methods have been reported
to determine priori-distributions, such as non-informative priors, conjugate priors, Jeffreys priors, empirical Bayesian
priors, maximum entropy priors, bootstrap priors, and random weight priors [3,25,32,35,44].

3. Bayesian parameter estimation for multi-parameter lifetime distributions

In this section, we summarize the research results reported in the literature on Bayesian parameter estimation and
Bayesian reliability prediction using exact lifetime data. In Section 5, we will report our proposed method for Bayesian
parameter estimation and Bayesian reliability prediction using fuzzy lifetime data.

Given the lifetime probability density function (PDF) f (x|�), the sample data D = (x1, x2, . . . , xn), the parameter
space �, and the priori-distribution �(�), we can determine the posteriori-distribution of parameter �. According to the
Bayes’ theorem,

�(�|D) = �(�|x1, x2, . . . , xn) ∝ �(�)l(�; x1, x2, . . . , xn). (3)

After the posteriori-distribution of the parameter, �(�|D), is determined, many reliability indices can be estimated.
There are two important indices in Bayesian reliability analysis. One is the mathematical expectation of the parameter
of the lifetime distribution:

�̂ =
∫ +∞

0
�(�|D)� d�. (4)

The other is the updated reliability function

R(t |D) =
∫ ∞

t

∫
�

f (x|�)�(�|D) d� dx. (5)

In the following subsections, we summarize the detailed equations for updating �̂ and R(t |D) for two specific
multi-parameter distributions, namely, the normal and the Weibull distributions.

3.1. The normal distribution

The PDF of the normal distribution is

f (x) = 1√
2��

exp

(
− (x − �)2

2�2

)
. (6)

According to Jeffrey’s method [3,25], the joint priori-distribution of the two parameters of the normal distribution is

�(�, �) ∝ 1

�2
. (7)

The likelihood function of the observed lifetimes following the normal distribution is

l(x1, x2, . . . , xn; �, �) =
(

1√
2��

)n

exp

(
− 1

2�2

n∑
i=1

(xi − �)2

)
(8)
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With Eq. (3), the joint posterior distribution of the parameters of the normal distribution is

�(�, �|D) = 1/�n+2 exp(−1/2�2∑n
i=1(xi − �)2)∫ +∞

0

∫ +∞
−∞ 1/�n+2 exp(−1/2�2

∑n
i=1(xi − �)2) d� d�

. (9)

The marginal posteriori-distributions of the parameters �, � are, respectively,

�(�|D) =
∫ +∞

0
�(�, �|D) d� =

∫ +∞
0 1/�n+2 exp(−1/2�2∑n

i=1(xi − �)2) d�∫ +∞
0

∫ +∞
−∞ 1/�n+2 exp(−1/2�2

∑n
i=1(xi − �)2) d� d�

, (10)

�(�|D) =
∫ +∞

0
�(�, �|D) d� =

∫ +∞
−∞ 1/�n+2 exp(−1/2�2∑n

i=1(xi − �)2) d�∫ +∞
0

∫ +∞
−∞ 1/�n+2 exp(−1/2�2

∑n
i=1(xi − �)2) d� d�

. (11)

The expected values of the updated parameters � and � are, respectively,

�̂ =
∫ +∞

−∞
�(�|D)� d� =

∫ +∞
−∞ �

∫ +∞
0 1/�n+2 exp(−1/2�2∑n

i=1(xi − �)2) d� d�∫ +∞
0

∫ +∞
−∞ 1/�n+2 exp(−1/2�2

∑n
i=1(xi − �)2) d� d�

, (12)

�̂ =
∫ +∞

0
�(�|D)� d� =

∫ +∞
0 �

∫ +∞
−∞ 1/�n+2 exp(−1/2�2∑n

i=1(xi − �)2) d� d�∫ +∞
0

∫ +∞
−∞ 1/�n+2 exp(−1/2�2

∑n
i=1(xi − �)2) d� d�

. (13)

The updated reliability function of the normal distribution becomes

R(t |D) =
∫ +∞

t

∫ +∞
0

∫ +∞
−∞ 1/

√
2�� exp(−(x − �)2/2�2)1/�n+2 exp(−1/2�2∑n

i=1(xi − �)2) d� d� dx∫ +∞
0

∫ +∞
−∞ 1/�n+2 exp(−1/2�2

∑n
i=1(xi − �)2) d� d�

. (14)

3.2. The Weibull distribution

The PDF of the Weibull distribution with two parameters m and � is

f (x|m, �) = m

�

(
x

�

)m−1

exp

(
−
(

x

�

)m)
, 0 < m, � < +∞. (15)

According to the non-informative method [13], the priori-distribution of the parameters of the Weibull distribution is

�(m, �) ∝ 1

m�
. (16)

The likelihood function of the observations from a Weibull distribution is

l(m, �; x1, x2, . . . , xn) =
(

1

�

)mn

mn
n∏

i=1

xm−1
i exp

(
−
(

1

�

)m

xm
i

)
. (17)

The joint posteriori-distribution of the parameters of the Weibull distribution is

�(m, �|x1, x2, . . . , xn) = (1/�)mn+1mn−1∏n
i=1 xm−1

i exp(−(1/�)mxm
i )∫ +∞

0

∫ +∞
0 (1/�)mn+1mn−1

∏n
i=1 xm−1

i exp(−(1/�)mxm
i ) dm d�

. (18)

The marginal posteriori-distributions of the parameters m and � are, respectively,

�(m|D) =
∫ +∞

0
�(m, �) d� =

∫ +∞
0 (1/�)mn+1mn−1∏n

i=1 xm−1
i exp(−(1/�)mxm

i ) d�∫ +∞
0

∫ +∞
0 (1/�)mn+1mn−1

∏n
i=1 xm−1

i exp(−(1/�)mxm
i ) dm d�

, (19)

�(�|D) =
∫ +∞

0
�(m, �) dm =

∫ +∞
0 (1/�)mn+1mn−1∏n

i=1 xm−1
i exp(−(1/�)mxm

i ) dm∫ +∞
0

∫ +∞
0 (1/�)mn+1mn−1

∏n
i=1 xm−1

i exp(−(1/�)mxm
i ) dm d�

. (20)
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The expected values of the parameters m and � are, respectively,

m̂ =
∫ +∞

0
�(m|D)m dm =

∫ +∞
0 m

∫ +∞
0 (1/�)mn+1mn−1∏n

i=1 xm−1
i exp(−(1/�)mxm

i ) d� dm∫ +∞
0

∫ +∞
0 (1/�)mn+1mn−1

∏n
i=1 xm−1

i exp(−(1/�)mxm
i ) dm d�

, (21)

�̂ =
∫ +∞

0
�(�|D)� d� =

∫ +∞
0 �

∫ +∞
0 (1/�)mn+1mn−1∏n

i=1 xm−1
i exp(−(1/�)mxm

i ) dm d�∫ +∞
0

∫ +∞
0 (1/�)mn+1mn−1

∏n
i=1 xm−1

i exp(−(1/�)mxm
i ) dm d�

. (22)

The updated reliability function of the Weibull distribution then becomes

R(t |D) =
∫ +∞

t

∫ +∞
0

∫ +∞
0 xm−1(1/�)mn+m+1mn

∏n
i=1 xm−1

i exp(−(1/�)m(xm
i + xm)) d� dm dx∫ +∞

0

∫ +∞
0 (1/�)mn+1mn−1

∏n
i=1 xm−1

i exp(−(1/�)mxm
i ) d� dm

. (23)

As illustrated in this section, though the lifetime data are non-fuzzy, the equations for obtaining updated estimates of
the parameters and the reliability function of multi-parameter distributions are quite complicated. They involve multiple
integrals. Numerical methods may have to be used in evaluating these equations.

4. Fuzzy lifetime data

In order to model fuzzy observed lifetimes, a generalization of real numbers is necessary. A lifetime observation will
be represented by a fuzzy number x̃. A fuzzy number is a subset, denoted by x̃, of the set of real numbers (denoted
by �) and is characterized by the so called membership function �x̃ (·). Fuzzy numbers satisfy the following
constraints [15]:

(1) �x̃ : � → [1, 0] is Borel-measurable;
(2) ∃x0 ∈ � : �x̃ (x0) = 1;
(3) The so-called �-cuts (0 < ��1), defined as B�(x̃) = {x ∈ � : �x̃ (x)��}, are all closed intervals, i.e., B�(x̃) =

[a�, b�], ∀� ∈ (0, 1]. This means that the membership function has to be a unimodal function with a maximum.
For example, a strictly concave function is a unimodal function with a maximum.

With the definition of a fuzzy number given above, an exact (non-fuzzy) number can be treated as a special case of
a fuzzy number. For a non-fuzzy real observation x0 ∈ �, its corresponding membership function is �x0

(x0) = 1. For
a non-fuzzy interval observation [c, d], the corresponding membership function is �[c,d](x) = 1 for c�x�d. For a
fuzzy lifetime observation, the L-R type membership functions (the triangular and trapezoidal membership functions
are special cases of the L-R type membership functions) are commonly used.

Given fuzzy lifetimes x̃1, x̃2, . . . , x̃n, we have their corresponding membership functions �x̃1
(·), �x̃2

(·), . . . , �x̃n
(·).

We call x̃ = (x̃1, x̃2, . . . , x̃n) a fuzzy sample or a fuzzy vector where each x̃i for i = 1, 2, . . . , n can be considered to
be a realization of the fuzzy number x̃. If the definition domain of x̃ is M , then the definition domain of x̃ is Mn.

To the best of our knowledge, there are no reported studies for estimation of the parameters and the reliability function
of multi-parameter distributions when the lifetime data are fuzzy. In the following section, we propose a new approach
for this purpose.

5. Bayesian parameter estimation for multi-parameter distributions using fuzzy data

Given fuzzy lifetime data points, x̃1, x̃2, . . . , x̃n, with their corresponding membership functions, �x̃1
(·), �x̃2

(·), . . . ,
�x̃n

(·), the Bayesian point estimates of the parameters and the reliability function are fuzzy numbers whose fuzziness
depends on the fuzziness of the n observed lifetime data points.

Consider a general fuzzy function f̃ (x̃1, x̃2, . . . , x̃n) wherein the membership functions of the n fuzzy arguments
are known. We need to find the membership function of f̃ (x̃1, x̃2, . . . , x̃n). When the explicit membership function
of f̃ (x̃1, x̃2, . . . , x̃n) is difficult to determine with the extension principle of fuzzy set theory directly, we propose the
following approach to generate the membership function numerically and guarantee that the membership function of
f̃ (x̃1, x̃2, . . . , x̃n) is unimodal with a maximum.
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Step 1: Let � change from 0 to 1 with an increment size satisfying the precision requirement.
Step 2: For each fixed value of � selected in Step 1, find the maximum value of the function f (x1, x2, . . . , xn) such

that �x̃i
(x)�� for all i = 1, 2, . . . , n. Denote this maximum value by fR(�).

Step 3: For the same fixed value � used in Step 1, find the minimum value of the function f (x1, x2, . . . , xn) such
that �x̃i

(x)�� for all i = 1, 2, . . . , n. Denote this minimum value by fL(�).
Because of the unimodality requirement of a membership function, we will have

�
f̃
(f )�� for fL(�)�f �fR(�),

where fL(�) and fR(�) are, respectively, the lower and upper boundary values of the function f̃ at cut level �.
Through the iterative procedure given above, we are able to obtain the membership function of the function

f̃ (x̃1, x̃2, . . . , x̃n) numerically. Reducing the step size of � increases the accuracy of the membership function of
f̃ at the expense of increased computation time.

From the equations given in Section 3, we can see that Bayesian parameter estimation and reliability prediction
for non-fuzzy lifetime data following multi-parameter distributions require multiple integrals. Evaluation of such
multiple integrals is time consuming. Now, we have to evaluate the membership functions of the parameters and the
reliability function of such multi-parameter distributions using fuzzy lifetime data. It is obvious that determination of
the membership functions of the estimated parameters and the reliability function requires repeated evaluations of such
integrals. A more efficient method to evaluate these integrals is needed.

Artificial neural networks have been successfully used in many areas of science and engineering [27,31,33]. Cybenko
[14] and Aourid and Do [2] show that a finite linear combination of sigmoidal functions used in neural networks can
approximate any continuous function of n variables with support in the unit hypercube to any degree of accuracy. As
a result, we propose to use a neural network to approximate f (x1, x2, . . . , xn). A feedforward neural network with a
single hidden layer is used. The backpropagation learning scheme is adopted.

To approximate the functions for point estimates of parameters, we need to approximate Eqs. (12), (13), (21), and
(22). From these equations, we can see that input data for first and second neural network are (x1, x2, . . . , xn) and the
output data for first neural network are � and � or second neural network are m and �. Because the parameters may
take real values, the transfer function of the output layer is chosen to be a linear function.

To find the Bayesian reliability function, we need to approximate Eqs. (14), and (23). We can see that input data of
third neural network is t (x1, x2, . . . , xn). The single output is the value of reliability R. Since the reliability value is
between 0 and 1, we choose the transfer function of the output layer to be the log-sigmoidal function

log sig(n) = 1

1 + exp(−n)
.

The transfer function used in the hidden layer is the tan-sigmoidal function

tansig(n) = 1 − exp(1 − 2n)

1 + exp(1 − 2n)
.

Once the function f̃ has been approximated by a neural network, we still need to follow the proposed procedure
to find the maximum and minimum values of f̃ subject to constraints for each selected � value. This is a constrained
optimization problem. Because the objective function is simulated by neural network, we cannot use the gradient
projection method or the feasible-direction method to search for the optimal solution. In addition, it is difficult to
find the global optimal solution by using direct search methods. As a result, we use genetic algorithms to solve the
optimization problem in the process of determining the membership function of the function f̃ .

To find the upper boundary value of the fuzzy reliability at cut level �, we need to solve the following optimization
problem:

Maximize R(t |x1, x2, . . . , xn)

Subject to: �x̃i
(x)��, i = 1, 2, . . . , n,

0���1,

(24)
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where �x̃i
(x) is the membership function of lifetime data point x̃i . The obtained maximum value of the reliability is

denoted by Rmax. To find the lower boundary value of the fuzzy reliability at cut level �, we need to solve the following
optimization problem:

Minimize R(t |x1, x2, . . . , xn)

Subject to: �x̃i
(x)��, i = 1, 2, · · · , n,

0���1.

(25)

The obtained minimum reliability value is denoted by Rmin. The membership function values of R̃(t |D̃) at Rmin and
Rmax are both �, that is,

�
R̃(t |D̃)

(Rmax) = �
R̃(t |D̃)

(Rmin) = �. (26)

To find the upper boundary value of the fuzzy estimate of the parameter � at cut level �, we need to solve the following
optimization problem:

Maximize �̂(x1, x2, . . . , xn)

Subject to: �x̃i
(x)��, i = 1, 2, . . . , n,

0���1.

(27)

The obtained maximum value of � is denoted by �max. To find the lower boundary value of the fuzzy estimate of the
parameter � at cut level �, we need to solve the following optimization problem:

Minimize �̂(x1, x2, . . . , xn)

Subject to: �x̃i
(x)��, i = 1, 2, . . . , n,

0���1.

(28)

The obtained minimum value of � is denoted by �min. The membership function values of �̃ at �min and �max are both
�, that is,

� ˜̂�(�max) = � ˜̂�(�min) = �. (29)

For the normal distribution, � denotes � or �; for the Weibull distribution, � denotes m or �.
Using of the genetic algorithms involves the following:

(1) Representation: A binary vector is used as a chromosome to represent the specific realizations of the n fuzzy
lifetimes and the time instant. The length of a chromosome depends on the domain of the variables and the required
precision. An initial population of solutions is created.

(2) Fitness function: The fitness function is used to measure the solutions in terms of their fitness. The objective function
(for maximization problems) or the reciprocal of the objective function (for minimization problems) is taken as the
fitness function.

(3) Crossover: The probability of crossover is selected based on the fitness of chromosomes. If the fitness is bigger,
the chance of being selected is bigger. One-point crossover is used in our study.

(4) Mutation: The probability of mutation is initialized at the beginning. Mutation alters one or more genes with the
probability equal to the probability of mutation. The method used for mutation is random point mutation. Mutation
of a binary string is the process of changing one of the genes between 0 and 1.

(5) Selection: The expanded population is composed of chromosomes generated through crossover and mutation in
addition to the original population chromosomes. The chromosomes with the higher fitness values are selected as
the parent generation in the next iteration of the algorithm.

(6) Stopping criterion: The maximum number of iterations and the change in population fitness value are used in
combination to determine when to stop the optimization process.
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6. Case studies

In this section, we illustrate the proposed approach for Bayesian reliability analysis for fuzzy lifetime data using two
multi-parameter distributions, namely, the normal and the Weibull distributions.

6.1. The normal distribution

The lifetime of a gear has often been modeled as a random variable following the normal distribution with PDF given
in Eq. (6). Assume that we have five observed fuzzy lifetime data x̃1, x̃2, . . . , x̃5, with membership functions given,
respectively, by

�x̃1
(x) =

{
(x − 80)/5, 80�x�85,

(90 − x)/5, 85 < x�90,
�x̃2

(x) =
{

(x − 90)/3, 90�x�93,

(97 − x)/4, 93 < x�97,

�x̃3
(x) =

{
(x − 92)/4, 92�x�96,

(100 − x)/4, 96 < x�100,
�x̃4

(x) =
{

(x − 95)/4, 95�x�99,

(104 − x)/5, 99 < x�104,

�x̃5
(x) =

{
(x − 100)/5, 100�x�105,

(110 − x)/5, 105 < x�110.

To find the membership function of the point estimate of the parameter � of the normal distribution, we first chose
the transfer function of the output layer of second neural network to be a linear function. With Eq. (13), we obtained
66 training data points. Other parameter values that we used to train the neural network are:

Hidden nodes: 15;
Learning rate: 0.01;
Performance goal: 0.001;
Training epochs: 10 000.

Through training we obtained the interconnection weights and the bias weights of the neural networks.
The genetic algorithm was used to determine the membership function of the point estimate of the parameter, ˜̂�. We

used the following parameter values of the genetic algorithm:

Length of chromosome: 35;
Size of population: 15;
Fitness function: the parameter value when it is to be maximized and the reciprocal of the parameter value when it is
to be minimized.
Probability of crossover: 0.4;
Probability of mutation: 0.01;
Iteration epochs: 200.

With the genetic algorithm, we calculated the parameter value at any cut level. The membership function of the fuzzy
parameter estimation ˜̂� was obtained by connecting these estimation values at different membership grades, as shown
in Fig. 1.

The fuzzy estimate of � is calculated similarly. The obtained membership function of parameter � is shown in Fig. 2.
According to Eq. (14), the reliability can be calculated given arbitrarily selected time t and sample data x1, x2, . . . , xn.

Thus, data can be obtained for third neural network for approximation of the reliability function. Here we used the
following parameter values in training the neural network:

Samples size: 32;
Number of hidden nodes: 10;
Learning rate: 0.01;
Performance goal: 0.001;
Training epochs: 50 000.

Through training we obtained the interconnection weights and bias weights.
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Fig. 1. Membership function of the parameter ˜̂�.
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Fig. 2. Membership function of the parameter ˜̂�.

The genetic algorithm is then used to determine the membership function of the fuzzy reliability function. We used
the following parameters of the genetic algorithm:

Length of chromosome: 35;
Size of population: 20;
Fitness function: the reliability function when it is to be maximized and the reciprocal of the reliability function when
it is to be minimized.
Probability of crossover: 0.4;
Probability of mutation: 0.01;
Iteration epochs: 200.

With the genetic algorithm, the reliability at given time point t with a specified cut level can be calculated. The
membership function of the fuzzy Bayesian reliability at time point t can be obtained by connecting these reliability
values with different membership function values. This has been illustrated in Fig. 3.

6.2. The Weibull distribution

Bearings’ lifetime has often been modeled with a 2-parameter Weibull distribution. The PDF of the Weibull dis-
tribution is given in Eq. (15). Suppose that we have obtained five fuzzy lifetime data points, x̃1, x̃2, . . . , x̃5, whose
membership functions are, respectively:

�x̃1
(x) =

{
(x − 2.7)/0.24, 2.7 < x�2.94,

(3.2 − x)/0.26, 2.94 < x < 3.2,
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Fig. 3. Reliability values at the same time point with different degree of membership.

�x̃2
(x) =

{
(x − 3.0)/0.278, 3.0 < x�3.278,

(3.5 − x)/0.222, 3.278 < x < 3.5,

�x̃3
(x) =

{
(x − 3.1)/0.267, 3.1 < x�3.367,

(3.5 − x)/0.133, 3.367 < x < 3.5,

�x̃4
(x) =

{
(x − 3.5)/0.305, 3.5 < x�3.805,

(4.0 − x)/0.195, 3.805 < x < 4.0,

�x̃5
(x) =

{
(x − 4.0)/0.224, 4.0 < x�4.224,

(4.5 − x)/0.276, 4.224 < x < 4.5.

To estimate the parameter m, the transfer function of the output layer of first neural network was selected to be a
linear function. With Eq. (21), we obtained 52 training data points. Other parameter values of the neural network used
were:

Hidden nodes: 10;
Learning rate: 0.01;
Performance goal: 0.00001;
Training epochs: 10 000.

Through training we obtain the interconnection weights and the bias weights.
Then genetic algorithm was used to determine the membership function of fuzzy parameter estimation ˜̂m. We use

the following parameter values of the genetic algorithm:

Length of chromosome: 30;
Size of population: 15;
Fitness function: the parameter value when it is to be maximized and the reciprocal of the parameter value when it is
to be minimized.
Probability of crossover: 0.4;
Probability of mutation: 0.01;
Iteration epochs: 100.

With the genetic algorithm, the parameter estimation at any cut level can be calculated. The membership function
of fuzzy parameter Bayesian estimation ˜̂m can be obtained by connecting these estimates with different membership
function values, as shown in Fig. 4.

The output layer transfer function of second neural network model was selected to be a linear function for estimation
of the parameter �. With Eq. (22), we obtained 29 data points for training the neural network. Other parameter values
for training the neural networks were:

Hidden nodes: 8;
Learning rate: 0.01;
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Fig. 5. Membership function of the parameter ˜̂�.

Performance goal: 0.00001;
Training epochs: 10 000.

Through training we obtained all the interconnection weights and the bias weights.
The genetic algorithm was then used to determine the membership function of the fuzzy parameter estimation ˜̂�. We

used the following parameter values of the genetic algorithm:

Length of chromosome: 30;
Size of population: 20;
Fitness function: the parameter value when it is to be maximized and the reciprocal of the parameter value when it is
to be minimized.
Probability of crossover: 0.4;
Probability of mutation: 0.01;
Iteration epochs: 100.

With the genetic algorithm, the parameter estimate at any cut level can be calculated. The membership function of
the fuzzy parameter Bayesian estimation ˜̂� can be obtained by connecting these estimates with different degrees of
membership, as illustrated in Fig. 5.

With Eq. (23), we can calculate the reliability function at time t using precise data x1, x2, . . . , xn. This way, we can
obtain a training data set for the neural network. The parameter values used in our training of third neural network are:

Samples size: 40;
Hidden nodes: 12;
Learning rate: 0.02;
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Fig. 6. Reliability values at different degrees of membership.

Performance goal: 0.0001;
Training epochs: 20 000.

Through training, we obtained the interconnection weights and the bias weights of the neural network.
The genetic algorithm was used to determine the membership function of fuzzy reliability R̃(t |D̃). The following

parameter values of the genetic algorithm were used:

Length of chromosome: 30;
Size of population: 20;
Fitness function: the reliability function when it is to be maximized and the reciprocal of the reliability function when
it is to be minimized.
Probability of crossover: 0.4;
Probability of mutation: 0.01;
Iteration epochs: 100.

With the genetic algorithm, we can also calculate the reliability values at time point t with different cut level values. The
membership function of fuzzy Bayesian reliability estimation can be obtained by connecting these reliability values
with different membership function values at the same time point t , as illustrated in Fig. 6.

7. Conclusion

This paper reports a method for determining the membership function of the fuzzy estimates of the parameters and the
reliability functions of multi-parameter distributions. An artificial neural network is used to approximate the calculation
process of fuzzy parameter estimation and reliability prediction. The genetic algorithm is used to find the boundary
values of the membership functions at any cut level. The method provides a way to determine the membership functions
of the parameter estimates and the reliability functions of multi-parameter distributions which are very difficult to obtain
with the conventional methods. Though not illustrated in this paper, the proposed method can also be used to determine
reliability indices other than parameter values and reliability functions, such as interval estimation of the parameters
and highest a posteriori density (HPD) regions.
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