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Abstract

Continuous stress–strength interference (SSI) model regards stress and strength as continuous random variables with known

probability density function. This, to some extent, results in a limitation of its application. In this paper, stress and strength are treated as

discrete random variables, and a discrete SSI model is presented by using the universal generating function (UGF) method. Finally, case

studies demonstrate the validity of the discrete model in a variety of circumstances, in which stress and strength can be represented by

continuous random variables, discrete random variables, or two groups of experimental data.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The stress–strength interference (SSI) model has
been widely used for reliability design of mechanical
component. In this model, if stress on a component and
strength of a component are denoted by S1 and S2,
respectively, the component reliability denoted by R is then
defined as

R ¼ PrðS24S1Þ. (1)

Eq. (1) is the most basic expression of the SSI model,
which means that the component reliability is taken
as the probability that the strength is larger than
the stress. Furthermore, if both stress and strength are
treated as continuous random variables (r.v.) and their
probability density functions (p.d.f.), denoted by f1(S1)
and f2(S2) respectively, Eq. (1) can be rewritten as the
atter r 2007 Elsevier Ltd. All rights reserved.
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following formulas:

R ¼

Z 1
�1

f 1ðS1Þ

Z 1
S1

f 2ðS2ÞdS2

� �
dS1 (2a)

or

R ¼

Z 1
�1

f 2ðS2Þ

Z S2

�1

f 1ðS1ÞdS1

� �
dS2. (2b)

For the sake of clarity, Eq. (2) can be called the continuous
SSI model.
Theoretically, we can calculate the reliability or unrelia-

bility of a component analytically or numerically on the
basis of Eq. (2) when the p.d.f. of stress and strength are
available. However, in engineering practice, it is often
difficult to know the exact distribution of stress and
strength. In most cases, what we can obtain is the finite
experimental data regarding stress and strength only.
Consequently, it is necessary to study the approximate
methods when calculating component reliability, and in this
regard, some efforts have been made by many researchers.
Kapur [1] devised an approach for determining the

bounds on exact unreliability, and this approach required
only information regarding the subinterval probabilities
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within an interference region. To improve the accuracy of
calculation, Park and Clark [2] modified Kapur’s formula-
tion on the quadratic programming problem and presented
a solution to this problem. Shen [3] proposed another
empirical approach to computing the unreliability bounds
based upon the subinterval probabilities of the stress and
strength in the interference region. Wang and Liu [4]
presented a multiple-line-segment method of implementing
the SSI model when only discrete interval probabilities of
stress and strength inside an interference region are
available. Guo and Li [5] presented an algorithm for
computing the unreliability bounds based on an improved
Monte Carlo method. Wang and Liu [6] presented an
approach to calculate fuzzy unreliability of a component/
system. In this approach the p.d.f. of stress and strength
were approximated by piecewise fuzzy line-segments that
were expressed by linear fuzzy polynomials, and the
discrete interval probabilities were treated as fuzzy
numbers. Additionally, summarizing the research results
from diverse disciplines, Kotz et al. [7] generalized the
stress–strength model and provided the computation
methods on the basis of maximum likelihood estimation.

In this paper, unlike those in the continuous SSI model,
stress and strength are treated as discrete r.v. and their
probability mass functions (p.m.f.) are represented by
universal generating functions (UGF). According to the
basic definition of component reliability expressed by
Eq. (1), a discrete SSI model is established. This model
can be utilized for calculating component reliability under
the following circumstances:
(1)
 stress and strength are discrete r.v.,

(2)
 stress and strength are continuous r.v.,

(3)
 the distributions of stress and strength are unavailable

but their frequency distributions are known based on
experiment data.
This paper begins with a description of the UGF method
that is the modeling tool of discrete SSI system and
proceeds with a building model of SSI system by employing
UGF method. Finally, two cases are studied to demonstrate
the effectiveness and advantage of the discrete SSI model.

2. Brief description of UGF method

In this section, emphasis is put on the basic process but
not the fundamental mathematics of UGF method. The
concept of UGF was first introduced by Ushakov [8]. Then
in a series of research work by Lisnianski and Levitin, the
UGF method has been applied to reliability analysis and
optimization of multi-state system [9,10].

2.1. UGF of discrete random variable

Suppose that a discrete r.v. X has a p.m.f. characterized
by the vector x consisting of the possible values of X and
the vector p consisting of the corresponding probabilities,
which can be formulated by the following expressions:

x ¼ ðx1; x2; . . . ; xkÞ,

p ¼ ðp1; p2; . . . ; pkÞ,

pi ¼ PrðX ¼ xiÞ; i ¼ 1; 2; . . . ; k.

Based on the basic principle of UGF method, the p.m.f.
of discrete r.v. X can be represented by a polynomial
function of variable z, uX(z), that relates the possible values
of X to the corresponding probabilities as

uX ðzÞ ¼ p1z
x1 þ p2zx2 þ � � � þ pkzxk

¼
Xk

i¼1

piz
xi . ð3Þ

It should be mentioned that, for an arbitrary discrete
r.v., its UGF is uniquely determined by its p.m.f. This
means that a one-to-one correspondence exists between the
p.m.f. and UGF of a discrete r.v.

2.2. UGF of function of discrete random variables

Consider n independent discrete r.v. X1, X2, y, Xn. Let
the UGF of each r.v. be uX 1

ðzÞ; uX 2
ðzÞ; . . . ; uX n

ðzÞ,
respectively, and f(X1, X2, y, Xn), an arbitrary function
of variables X1, X2, y, Xn. Then, by employing composi-
tion operator �, the UGF of function f(X1, X2, y, Xn),
uf(z), can be obtained as follows:

uf ðzÞ ¼ �ðuX 1
ðzÞ; uX 2

ðzÞ; . . . ; uX n
ðzÞÞ. (4)

2.3. Definition and properties of composition operator �

Without loss of generality, we still consider n independent
discrete r.v. X1, X2, y, Xn and an arbitrary function f(X1,
X2, y, Xn). Suppose that the number of possible values of
each r.v. are k1, k2,y, kn, respectively. According to Eq. (3),
the UGF of individual r.v. can be obtained as follows:

uX 1
ðzÞ ¼

Xk1

j1¼1

p1j1
zx1j1 ,

uX 2
ðzÞ ¼

Xk2

j2¼1

p2j2
zx2j2 ,

. . .

uX n
ðzÞ ¼

Xkn

jn¼1

pnjn
zxnjn .

To obtain the UGF of function f(X1, X2, y, Xn),
composition operator � is defined as

�
Xk1

j1¼1

p1j1
zx1j1 ;

Xk2

j2¼1

p2j2
zx2j2 ; . . . ;

Xkn

jn¼1

pnjn
zxnjn

 !

¼
Xk1

j1¼1

Xk2

j2¼1

. . .
Xkn

jn¼1

Yn

i¼1

piji
zf ðx1j1

;x2j2
;...;xnjn Þ

 !
. ð5Þ
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Indeed, composition operator � represents an operation
rule, which strictly depends on the expression of function
f(X1, X2, y, Xn). Based on this rule, the UGF of random
function f(X1, X2, y, Xn) can be obtained, which also has a
form of polynomial function and corresponds to the p.m.f.
of function f(X1, X2, y, Xn).

It should be noted that UGFs are not regular
polynomials in spite of resembling the polynomials.
However, UGFs inherit the essential properties of regular
polynomials. For example, in the operation of UGF,
like terms can be collected, and commutative law and
associative law are applicable:

uf ðzÞ ¼ � ðuX 1
ðzÞ; . . . ; uX i

ðzÞ; uX iþ1
ðzÞ; . . . ; uX n

ðzÞÞ

¼ � ðuX 1
ðzÞ; . . . ; uX iþ1

ðzÞ; uX i
ðzÞ; . . . ; uX n

ðzÞÞ,

uf ðzÞ ¼ � ðuX 1
ðzÞ; . . . ; uX i

ðzÞ; uX iþ1
ðzÞ; . . . ; uX n

ðzÞÞ

¼ � ð�ðuX 1
ðzÞ; . . . ; uX i

ðzÞÞ;�ðuX iþ1
ðzÞ; . . . ; uX n

ðzÞÞÞ.

Once the UGF of random function f(X1, X2, y, Xn) is
obtained, we can regard it as a new r.v. and analyze its
statistic characteristics.
3. Discrete SSI model

Assume that stresses on a component and strength of a
component are two independent discrete r.v. that are
denoted by S1 and S2, respectively. If the p.m.f. of stress
and strength are known as follows:

S1 ¼ ðS11;S12; . . . ;S1k1
Þ; p1 ¼ ðp11; p12; . . . ; p1k1

Þ,

S2 ¼ ðS21;S22; . . . ;S2k2
Þ; p2 ¼ ðp21; p22; . . . ; p2k2

Þ,

where k1 and k2 are numbers of possible values that S1 and
S2 can take on, respectively, then, according to Eq. (3), the
UGF of stress and strength can be obtained as follows:

uS1
ðzÞ ¼

Xk1

j1¼1

p1j1
zS1j1 ,

uS2
ðzÞ ¼

Xk2

j2¼1

p2j2
zS2j2 .

We construct a function, f(S1, S2), of the r.v. of stress
and strength

f ðS1;S2Þ ¼ S2 � S1. (6)

Based on the UGF method introduced in Section 2, the
UGF of discrete function f(S1, S2) can be obtained as
follows:

uf ðzÞ ¼ � ðuS1
ðzÞ; uS2

ðzÞÞ

¼ �
Xk1

j1¼1

p1j1
zS1j1 ;

Xk2

j2¼1

p2j2
zS2j2

 !
¼
Xk1

j1¼1

Xk2

j2¼1

Y2
i¼1

piji
zf ðS1j1

;S2j2
Þ

 !

¼
Xk1

j1¼1

Xk2

j2¼1

Y2
i¼1

piji
zðS2j2

�S1j1
Þ

 !
. ð7Þ

As a determinate case, the operator � in Eq. (7) is
defined as subtraction of corresponding powers in the
multiplying polynomials. It is not difficult to understand
that the final form of UGF of function f(S1, S2) is a
polynomial function containing Kpk1� k2 terms (the total
number of terms can be less than k1� k2 after collecting the
like terms). Therefore, Eq. (7) can be rewritten as

uf ðzÞ ¼
XK

j¼1

Pjz
f j ; (8)

where fj and Pj (j ¼ 1,2,y,K) are possible values of
function f(S1, S2) and corresponding probabilities, respec-
tively.
As expressed by Eq. (1), the component reliability is

defined as the probability that strength is larger than stress.
Transforming Eq. (1), we can obtain

R ¼ PrðS2 � S140Þ. (9)

Substituting Eq. (6) into Eq. (9) yields

R ¼ Prðf ðS1;S2Þ40Þ, (10)

where f(S1, S2), essentially, is a new discrete r.v. and its
distribution properties can be denoted by its UGF.
To calculate the probability expressed by Eq. (10) on the

basis of UGF of function f(S1, S2), we can define a binary-
valued function with domain on the set of possible values
of function f(S1, S2) as

aðf jÞ ¼
1; f j40;

0; f jp0:

(

Then, based on Eq. (10), the component reliability can
be calculated as

R ¼ Prðf ðS1;S2Þ40Þ

¼
XK

j¼1

Pjaðf jÞ. ð11Þ

For the sake of comparison, Eq. (11) can be called the
discrete SSI model.

4. Case studies

As mentioned in Section 1, the discrete SSI model
presented in Section 3 can be used to evaluate the reliability
of a component under several cases. It is obvious that,
when stress and strength are discrete r.v., the component
reliability can be directly obtained according to Eqs. (7),
(8), and (11). In this section, two cases are taken into
account. Case 1 denotes that stress and strength are
continuous r.v. with known p.d.f., and Case 2 denotes that
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only the frequency distribution of stress and strength are
available based on data statistical analysis.

Case 1. Consider the example from [6]: stress on a
component, S1, is exponentially distributed with mean
m1 ¼ 50MPa, and strength of the component, S2, is
s-normally distributed with mean m2 ¼ 100MPa and
standard deviation s2 ¼ 10MPa. The exact value of
reliability of this component is equal to 0.86194.

In this case, the basic idea of calculating component
reliability is to translate approximately continuous r.v. with
known p.d.f. into discrete r.v. with known p.m.f. Firstly,
based on the operating environment of the component, we
can determine an approximate range of possible values of
stress and strength, which can be denoted by intervals
/S1min, S1maxS and /S2min, S2maxS, respectively. Then,
the intervals /S1min, S1maxS and /S2min, S2maxS are
S1 ¼ ð12:5; 37:5; 62:5; 87:5; 112:5; 137:5; 162:5; 187:5; 212:5; 237:5; 262:5; 287:5Þ,

p1 ¼ ð0:3953; 0:2387; 0:1447; 0:0878; 0:0533; 0:0323; 0:0196; 0:0119; 0:0072; 0:0044; 0:0027; 0:0016Þ.
divided into m and n subintervals, respectively (m ¼ n is
allowable). The midpoint values of each subinterval are
treated as possible values of r.v. and the area values of each
subinterval are treated as the corresponding probabilities.
Thus, we can obtain two discrete r.v. of stress and strength
with known p.m.f. Finally, the discrete r.v. of stress and
strength are represented by their UGF, while the compo-
nent reliability can be calculated using the discrete SSI
model presented in Section 3.

Let the range of stress and strength be /0, 6m1S ¼
/0, 300SMPa and /m2�3s2, m2+3s2S ¼ /70, 130SMPa,
respectively, and divide the two intervals into six
subintervals each. The result of interval partition is
depicted by Fig. 1. In this case, the area values of
subintervals are calculated by using MATLAB 7.0.1. Based
on the midpoint values and area values of all subintervals,
we can obtain the discrete r.v. of stress and strength as
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Fig. 1. P.d.f. curves and interval partition.
follows, respectively:

S1 ¼ ð25; 75; 125 175; 225; 275Þ,

p1 ¼ ð0:6321; 0:2325; 0:0855; 0:0315; 0:0116; 0:0043Þ,

S2 ¼ ð75; 85; 95; 105; 115; 125Þ,

p2 ¼ ð0:0214; 0:1359; 0:3413; 0:3413; 0:1359; 0:0214Þ.

According to the procedure presented in Section 3, the
reliability of this component is obtained as R ¼ 0.86250.
The relative error is 0.065% compared with the exact value
of reliability.
In order to illustrate the influence of interval partition on

calculation accuracy, one can divide the stress interval into
12 subintervals while keeping the number of strength
subinterval unchanged. Thus, we can obtain another
description of stress:
Similarly, the reliability of this component can be
calculated as R ¼ 0.86163, and the relative error is equal
to 0.036%. This result indicates that reducing the length of
subinterval can improve the computational accuracy when
the range of stress and strength is fixed.

Case 2. Suppose that two groups of data, about stress on a
component and strength of a component, are obtained from
corresponding experiments. If the continuous SSI model is
employed to calculate the component reliability, stress and
strength are supposed to be continuous r.v. and their p.d.f.
are approximately obtained by using methods of distribution
fitting and parameter estimation. However, when using the
discrete SSI model in this case, attention cannot be directed
to the actual distribution of stress and strength, and the
methods of distribution fitting and parameter estimation are
not wanted. We can employ two discrete r.v. to represent
the statistic information of stress and strength, and then
calculate the component reliability directly.
Assume that the number of data contained in each group

is equal to100, and the data can be described by histograms
after a simple processing. As given by Figs. 2 and 3, the
class intervals of data and their corresponding relative
frequencies are obtained. Similarly, the midpoint values of
each class interval are treated as possible values of the r.v.
of stress and strength, and relative frequencies of each class
interval are treated as corresponding probabilities. Thus,
two new r.v. of stress and strength with known p.m.f. are
obtained as follows:

S1 ¼ ð725; 755; 785; 815; 845; 875; 905Þ,

p1 ¼ ð0:01; 0:04; 0:24; 0:38; 0:25; 0:06; 0:02Þ,

S2 ¼ ð850; 900; 950; 1000; 1050; 1100; 1150Þ,

p2 ¼ ð0:02; 0:06; 0:25; 0:39; 0:22; 0:05; 0:01Þ.
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By employing the discrete SSI model presented in
Section 3, the reliability of this component is obtained as
R ¼ 0.9972.

As mentioned in Section 1, the method provided by [7]
can be used to solve this problem when the probability
distribution type of stress and strength are known. Suppose
both stress and strength in this case are independent
normal r.v. with unknown parameters. The two groups of
data can be regarded as the observations of the stress and
strength. Using the method of maximum likelihood
estimation, the reliability of this component can be
calculated as R ¼ 0.9962. If this result is regarded as the
exact value of reliability, the relative error resulting from
the discrete SSI model is equal to 0.1%.

5. Conclusions

In this paper, the stress on a component and strength of
a component are regarded as discrete r.v. with known
p.m.f., and a discrete SSI model is established based on the
UGF method. This model can be used to calculate the
component reliability under different conditions, within
which stress and strength can be represented by discrete
r.v., continuous r.v., or two groups of data.
Study of case 1 demonstrates the validity of the discrete

SSI model when stress and strength are continuous r.v.
Furthermore, two numerical examples indicate that redu-
cing the length of subinterval can improve the computa-
tional accuracy when the range of stress and strength is
fixed.
Study of case 2 illustrates the usability of the discrete SSI

model when only two groups of data on stress and strength
are available. The calculated result of a numerical example
indicates that a small error does exist when using the
discrete SSI model. But, it should be mentioned that, when
using the discrete SSI model, we need not know the actual
distribution of stress and strength. And this is the essential
advantage of the approach proposed here.
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