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Reliability-Redundancy Allocation for Multi-State
Series-Parallel Systems

Zhigang Tian, Ming J. Zuo, Senior Member, IEEE, and Hongzhong Huang

Abstract—Current studies of the optimal design of multi-state se-
ries-parallel systems often focus on the problem of determining the
optimal redundancy for each stage. However, this is only a partial
optimization. There are two options to improve the system utility
of a multi-state series-parallel system: 1) to provide redundancy
at each stage, and 2) to improve the component state distribution,
that is, make a component in states with respect to higher utili-
ties with higher probabilities. This paper presents an optimization
model for a multi-state series-parallel system to jointly determine
the optimal component state distribution, and optimal redundancy
for each stage. The relationship between component state distri-
bution, and component cost is discussed based on an assumption
on the treatment on the components. An example is used to illus-
trate the optimization model with its solution approach, and that
the proposed reliability-redundancy allocation model is superior
to the current redundancy allocation models.

Index Terms—Multi-state series-parallel system, optimization,
reliability-redundancy allocation, state distribution.

NOTATION

The maximum state level of the components, and
the system
Number of subsystems (stage)

Subsystem (stage) ,

Redundancy in

Probability of component in state

A vector representing the states of all components
in the multi-state system
State of the system,

System utility

System cost

The utility when system is in state

Defined term, ,

Cost function of component in

, Characteristic constants with respect to state in
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Aggregate objective function in physical
programming-based model
Class function of system utility

Class function of system cost

System utility constraint value

System cost constraint value

Boundary value of preference ranges for objective
.

Design variable vector

Component version for stage

ACRONYM1

DM Decision Maker

ASSUMPTIONS

1) The states of the components in a subsystem are i.i.d.
2) The components, and the system may be in

possible states, namely, .
3) The multi-state series parallel systems under

consideration are coherent systems.

I. INTRODUCTION

I N binary-state system design, there are basically two op-
tions to improve the reliability of the system: to increase

the component reliabilities, or to provide redundancy at various
stages [5]. The term “component” here refers to an entity, with
specified reliability, cost, etc., which can be connected in a cer-
tain configuration to form a subsystem, or a system. The reli-
ability-redundancy allocation problem was first introduced by
Misra & Ljubojevic [10]. They considered the problem of si-
multaneously determining optimal component reliabilities, and
optimal redundancy levels for a series-parallel system subject
to a cost constraint. The component cost was assumed to be
an exponential function of component reliability at each stage.
Tillman et al. [17] assumed a different cost-reliability relation-
ship, and besides the cost constraint, they included weight, and
volume constraints in their optimization model. Mathematically,
the reliability-redundancy allocation problem is a mixed integer
nonlinear programming problem. Misra & Ljubojevic [10], and
Tillman et al.[17] used heuristic approaches to solve it. Other so-
lution approaches include the branch-and-bound technique [4],
XKL method [18], surrogate constraints method [3], and evolu-
tionary algorithms [11].

1The singular and plural of an acronym are always spelled the same.
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Many practical technical systems can perform their intended
functions at more than two different levels, ranging from per-
fectly working to completely failed. These kinds of systems are
called multi-state systems [5]. A multi-state system reliability
model provides more flexibility for modeling equipment con-
ditions than a binary system reliability model. System utility
is a commonly used performance measure for multi-state sys-
tems [1]. In the case of a multi-state system, the concept corre-
sponding to the concept of reliability in a binary system is the
state distribution. The state distribution of a component refers to
the distribution of the component in different states. Similarly,
there can also be two options to improve the system utility of a
multi-state series-parallel system: 1) to provide redundancy at
each stage, and 2) to improve the component state distribution,
that is, make a component in states with respect to higher utili-
ties with higher probabilities.

Current studies on the optimal design of multi-state series-
parallel systems mainly focus on the problem of determining
the optimal redundancy for each stage. Levitin et al. [7] assumed
that there were different versions of components for the selec-
tion for each stage. And they proposed a redundancy optimiza-
tion model for multi-state series-parallel systems to determine
the optimal component versions, and redundancies for various
stages. The problem was later extended to including both redun-
dancy, and maintenance optimization [6]. Ramirez-Marquez &
Coit [12] proposed a heuristic approach for solving the redun-
dancy allocation problem formulated in Levitin et al. [7]. Liu
et al. [8] presented a neural network approximation approach
for redundancy optimization of continuous-state series-parallel
systems. Their model only had component redundancies as de-
sign variables. Tian & Zuo [15] applied the physical program-
ming approach to the redundancy allocation of multi-state se-
ries-parallel systems, and demonstrated that it is more effec-
tive in dealing with the multiple conflicting design objectives
involved in the problem.

The multi-state system structure optimizations reviewed
above for multi-state systems are only partial optimization
because only redundancies are regarded as design variables.
Component state distributions should also be considered to be
design variables. The option of selecting different versions of
components provides more flexibility than just using redun-
dancy. But this option totally depends on the products available
on the market, and the amounts of available versions are always
limited. By determining the optimal values of component state
distributions, we can have our design optimization built into
the manufacturing or scheduling process, so as to have more
flexibility, and get better optimization results.

This paper presents an optimization model for multi-state se-
ries-parallel systems to jointly determine the optimal compo-
nent state distribution, and optimal redundancy for each stage.
We present the reason why a component state distribution can
be used as a controllable design variable. The relationship be-
tween component state distribution and component cost is dis-
cussed based on an assumption on the treatments on the com-
ponent. The physical programming-based optimization model
is presented. An example is used to illustrate the optimization
model, and its solution approach. A short version of this paper
was presented in the 2005 European Safety & Reliability Con-

Fig. 1. The structure of a multi-state series-parallel system.

ference (ESREL05), and has been published in the conference
proceedings [16].

II. PROBLEM FORMULATION

The structure of a multi-state series-parallel system is given
in Fig. 1. A multi-state series-parallel system has subsystems
connected in series, and each subsystem has i.i.d. compo-
nents connected in parallel. The probability of component in
state is .

A. Design Variables

The design variables in the reliability-redundancy allocation
problem for multi-state series-parallel systems are component
state distributions ( , ), and
redundancies . It is apparent that redun-
dancy is controllable, so that it can be used as design variable.
We will justify in this part that component state distribution is
also a controllable design variable.

In the binary-state case, the reliability of a component is its
probability of working, and it has been used as a design vari-
able in reliability-redundancy allocation problems of binary-
state systems. In the case of multi-state systems, let us consider a
three-state system where the components and system have three
states {0, 1, 2}. We have the following two statements: 1) The
probability that a component is in state 1 or 2 can be regarded as
the reliability of this component if the word “working” means
that the component’s state is greater or equal to 1. 2) Similarly,
the probability of a component in state 2 can be regarded as the
reliability of this component if the word “working” means that
the component’s state is greater than or equal to 2. Therefore,
just like the binary case, the state distribution of each compo-
nent can be used as a design variable.

If we want to get a component with state distribution
, we can first ensure the component’s reliability is

under the reliability meaning of statement 2), and then en-
sure the component’s reliability is under the reliability
meaning of statement 1).

Let’s investigate an example of how the component state dis-
tribution is controlled. Suppose that there is a three-state com-
ponent, and two treatments can be used to influence the state
distribution of the component: Treatment 1 will increase the
probability of the component in state 1, but will not influence
the probability of the component in state 2; while Treatment 2
will increase the probability of the component in state 2. There-
fore, for this three-state component, using the two treatments on
the component, we can control the state distribution of the com-
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ponent. That is, the state distribution of this component can be
regarded as a controllable design variable.

B. System Utility Evaluation

System utility is one of the most popular performance mea-
sures for multi-state systems [1]. There is a utility value re-
lated to each possible system state, and system utility is the ex-
pected utility of the multi-state system. The probability that the
system state of a multi-state series-parallel system is in state

or above is

(1)

The system utility is

(2)

where is the system utility, and is the utility when the
system is in state .

C. Formulation of System Cost

In the binary-state reliability-redundancy allocation problem,
Misra & Ljubojevic [10] assumed that there is an exponential re-
lationship between component cost, and component reliability.
Tillman et al. [17] assumed another cost-reliability relationship,
which is smoother than the one proposed by Misra & Ljubojevic
[10].

The cost of subsystem with parallel components is given
by Tillman et al. [17] as

where

(3)
and is the cost-reliability relationship function for a com-
ponent in subsystem . is the cost of the components
in subsystem . The additional cost is due to
interconnecting the parallel components within the subsystem.
The component cost function is assumed to take the form
in (3), based on a general understanding that the cost will in-
crease exponentially with the increase of the reliability. Char-
acteristic constants and are to be determined based on the
collected cost, and reliability relationship data of the compo-
nent.

Now let’s investigate the possible cost formulation in the case
of a multi-state system, where the system and components may
be in states. The state distribution of a component in
subsystem is denoted by . The cost formu-
lation of the component is based on the following assumption:

Assumption: There are treatments that can influence the
component’s state distribution, and treatment will increase the
probability of the component in state , but will not influence the
probability of the component in the states above .

Let

(4)

Here, can be considered to be the binary-state reliability of
component under treatment . We define the cost of the com-
ponent as

(5)

where , and are characteristic constants with respect to
state , ,

, and is the mission time. This cost function shown in (5)
is inspired by the cost function for reliability-redundancy allo-
cation of binary series-parallel systems, as shown in (3). Equa-
tion (5) is used to determine the cost of a component, say com-
ponent , based on its state distribution .

The system cost is

(6)

For each subsystem, the additional cost
is included to repre-

sent the cost for interconnecting parallel components.

D. Characteristics of the Optimization Problem

Two objectives, system utility and system cost, are included
in our optimization model. Component state distributions
( , ), and redundancies

are to be determined so as to maximize system
utility, and minimize system cost. Note that .
This problem is formulated mathematically as a mixed integer
optimization problem in which the continuous variables repre-
sent the component state distributions, and the integer variables
represent the redundancies.

The reliability-redundancy allocation problem for multi-state
series-parallel systems may be formulated as a single-objective
optimization problem, with system cost as a design objective,
and system utility as a constraint; or with system utility as a de-
sign objective, and system cost as a constraint. If system cost is
used as a design objective, like the models given by Levitin et
al. [7], and that of Ramirez-Marquez & Coit [12], the optimiza-
tion model is formulated as follows:

are integers (7)

Where , and are the constraint values.
The reliability-redundancy allocation problem for multi-state

series-parallel systems can also be formulated as a multi-ob-
jective optimization problem, because there are two design ob-
jectives, system utility and system cost. In this work, we will
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present a multi-objective optimization model for the joint relia-
bility-redundancy allocation problem. Available multi-objective
optimization approaches include the surrogate worth trade-off
method [14], the fuzzy optimization method [13], and physical
programming [9], [15], among others. Compared to other multi-
objective optimization approaches, physical programming pro-
vides a better way to specify designers’ preferences on different
objectives, and it is easier to use in practical problems. Tian &
Zuo [15] applied the physical programming approach to the re-
dundancy allocation problem rather than the joint reliability-re-
dundancy optimization problem. In this paper, the physical pro-
gramming approach is used to model & solve this reliability-
redundancy optimization problem with two design objectives:
system utility, and system cost.

E. Physical Programming-Based Optimization Problem
Formulation

Physical Programming, proposed by Messac [9], is a multi-
objective optimization tool that explicitly incorporates the De-
cision Maker’s (DM’s) preferences on each design goal into the
optimization process. It eliminates the typical iterative process
involving the adjustment of the physically meaningless weights,
which is required by virtually all other multi-objective optimiza-
tion methods, and thus substantially reduces the computational
intensities. The DMs’ preferences are specified individually on
each goal through physically meaningful values, which makes
the physical programming method easy to use, and advanta-
geous in dealing with a large number of objectives.

Physical programming captures the designer’s preferences
using class functions. A class function is a function of a design
objective. The value of a class function represents the prefer-
ence of the designer on the objective function value; and the
smaller the class function value is, the better. Class functions
are classified into four classes: smaller is better (i.e., minimiza-
tion), larger is better (i.e., maximization), value is better, and
range is better. There are two so-called class functions, one soft
and one hard, with respect to each class. Soft class functions
will become constituent parts of a single objective function, the
so-called aggregate objective function, which is to be minimized
in the physical programming optimization model [9]. There are
four types of soft class functions, Class-1S to Class-4S, with re-
spect to the four classes of class functions. Class-1S is a monoto-
nously increasing function, and it is used to represent the objec-
tives to be minimized. Class-2S is a monotonously decreasing
function, and it is used to represent the objectives to be maxi-
mized. The Class-1S function is shown in Fig. 2. The value of
the design objective, , is on the horizontal axis; and the cor-
responding class function value, , is on the vertical axis. In
the reliability-redundancy allocation problem, the utility objec-
tive has a Class-2S class function, and the cost objective has a
Class-1S class function.

What the designer needs to do is to specify ranges of dif-
ferent degrees of desirability (highly desirable, desirable, tol-
erable, undesirable, highly undesirable, and unacceptable) for
the class function of each objective. For example, the DM can
specify ranges of degrees of desirability for the cost of a system,
which is to be minimized, as follows: 1) the cost is considered
to be unacceptable if it is over $200, 2) the cost is considered to

Fig. 2. Class-1S class function.

be highly undesirable if it is between $150 and $200, 3) the cost
is considered to be undesirable if it is between $100 and $150,
4) the cost is considered to be tolerable if it is between $80 and
$100, 5) the cost is considered to be desirable if it is between
$50 and $80, and 6) the cost is considered to be highly desirable
if it is below $50. Such ranges are specified by the DM based
on experience, and design purpose.

The physical programming approach solves a multi-objec-
tive optimization problem by transforming it into a single-ob-
jective optimization problem. The soft class functions of de-
sign objectives are combined into the aggregate objective func-
tion , which is to be minimized. The physical programming-
based optimization model for the multi-state reliability alloca-
tion problem is formulated as

are integers (8)

where , and are the class functions of system utility, and
system cost; and they are functions of system utility , and
system cost , which can be calculated using the formula pre-
sented in Sections II-B, and II-C. is a Class-2S class func-
tion, and is a Class-1S class function. , and are the con-
straint values, and they are equal to the boundaries of the accept-
able ranges of the corresponding objectives. Refer to Messac
for more detailed descriptions on the physical programming ap-
proach [9].

F. Genetic Algorithm as the Optimization Solution Method

The physical programming-based model presented in (8) is a
mixed integer single-objective optimization model. Algorithms
such as branch-and-bound, generalized Benders decomposition,
and outer approximation [2] have been used to solve this kind of
problem. However, the most effective algorithm to solve mixed
integer optimization problems, we believe, is the genetic algo-
rithm (GA). The encoding method of GA enables it to directly
represent continuous design variables, and discrete design vari-
ables as well, which makes the solution process much simpler.
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TABLE I
SYSTEM UTILITY WITH RESPECT TO EACH SYSTEM STATE

In addition, GA has a very good global optimization capability.
Therefore, GA is used to solve the physical programming-based
model in this paper.

Each solution is called a chromosome in GA, and the group
of chromosomes in each iteration of GA is called a population.
The procedure of GA is as follows [19]:

1) Initialization. Choose the encoding method. Set the size
of population, and the length of the chromosome. Specify
the GA operators including the selection operator, the
crossover operator, and the mutation operator. Also,
specify the GA parameters mainly including the crossover
rate, and the mutation rate. Set , and generate the
initial population .

2) Evaluation. Calculate the fitness value for each chromo-
some of the current population . Save the chromo-
some with the best fitness value.

3) Construction of the new population. Select chromosomes
from the current population based on their fitness values to
form a new population . Implement the crossover
operator, and the mutation operator to generate new chro-
mosomes in the new population . Use to
replace the first chromosome in so as to keep the
best chromosome in the previous iteration.

4) If the maximal iteration is reached, terminate the proce-
dure, and output the result. Otherwise, set , and
go to step 2).

III. AN EXAMPLE

A 3-stage multi-state series-parallel system is used to illus-
trate the basic ideas of the proposed reliability-redundancy allo-
cation approach. The three stages (or subsystems) are connected
in series, and each subsystem has i.i.d. components con-
nected in parallel. The system is a three-state system, where the
system and components can be in three states: 0, 1 and 2. The
system utility with respect to the corresponding system state

is shown in Table I.

A. The Joint Reliability-Redundancy Optimization Results

The cost of the component is assumed to follow the relation-
ship given in (5). The characteristic constants used in this ex-
ample are presented in Table II. The mission time is set to be

.
In the physical programming framework, the utility objec-

tive has a Class-2S class function (larger is better), while the
cost objective has a Class-1S class functions (smaller is better).
The class function settings for the three objectives are shown in
Table III, where to represent the boundaries of different
desirable ranges for the utility, and cost objectives [9]. The con-
straint values , and are equal to the boundary values

TABLE II
CHARACTERISTIC CONSTANTS FOR THE SYSTEM

TABLE III
PHYSICAL PROGRAMMING CLASS FUNCTIONS SETTING

of the corresponding objectives. There are 9 design variables in
this problem:

(9)

GA is used to solve the formulated single-objective nonlinear
optimization model shown in (8). In this problem, the population
size is chosen to be 100. The decimal encoding is used, and the
chromosome length is set to be 15. We use the roulette-wheel
selection scheme, one-point cross operator with crossover rate
of 0.25, and even mutation operator with mutation rate of 0.1.
When GA reaches the maximum epoch, which is set to 1000,
the algorithm will be terminated.

Because GA is a stochastic optimization approach, we run
the optimization procedure 30 times to get the overall perfor-
mance. The aggregate objective function , which is to be min-
imized, indicates the quality of the optimization result. Among
the 30 optimization results we obtained, the best result is

, the worst result is , and the average re-
sult is . The optimal design variables, and objec-
tive function values with respect to the best result are given in
Table IV. The optimal system utility value is 0.9728, which falls
into the highly desirable range. The optimal system cost value
is 88.4083, which falls into the desirable range. Such a result is
satisfactory regarding the DM’s preferences on these two objec-
tives.

B. The Redundancy Optimization Results

If there are only limited versions of components with specific
state distributions for each stage, the result we get will not be
optimal. Suppose that there are four different versions of com-
ponents available for each stage, as shown in Table V, where
denotes the component version for stage . We can select compo-
nents from the available versions for each stage, and determine
the optimal redundancy values. We use the same characteristic
constants setting, and the same approach to evaluate the system
cost, as those in the reliability-redundancy allocation problem
above. The physical programming class functions setting, and
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TABLE IV
OPTIMIZATION RESULTS FOR THE RELIABILITY-REDUNDANCY ALLOCATION PROBLEM

TABLE V
CHARACTERISTICS OF AVAILABLE COMPONENTS

the system utility with respect to each system state, are also set
to be the same.

The redundancy optimization problem is an integer program-
ming problem because the design variables, the component ver-
sions, and the number of components in each stage, can only
take integer values. This optimization problem is simpler than
the joint reliability-redundancy optimization problem, which is
a mixed integer programming problem. Here we also run the
GA optimization procedure 30 times to get the overall perfor-
mance. Due to the simplicity of this redundancy optimization
problem, the same optimization result is generated in each of
the 30 runs of GA. The optimization result is shown in Table VI,
and the optimal aggregate objective function value is 0.1533.
Compared to the results obtained by reliability-redundancy allo-
cation optimization in Table IV, we can find that the optimized
system utility, and system cost are both a little bit worse. The
aggregate objective function value is larger, which is caused by
the additional constraints. The state distributions of the selected
components will not happen to be the same as the optimal state
distribution obtained in the joint optimization of state distribu-
tions and redundancies presented above.

C. Sensitivity Analysis for System Cost, and System Utility

In this section, we will perform sensitivity analysis for system
cost, and system utility with respect to different design vari-
ables, and model parameters. First we investigate the sensitivity
of system cost. In the reliability-redundancy optimization of a
three-stage system considered in this example, there are 9 design
variables representing component state distributions and redun-
dancies, as shown in (9). Component characteristic constants,

, , , and , are important model param-
eters that affect the system cost. In the sensitivity analysis for
system cost, at the optimal design variable vector as shown in
Table IV, we investigate the partial derivative of system cost
with respect to a design variable or a model parameter while
keeping other design variables and model parameters constant.
For instance, when studying , the partial derivative of
system cost with respect to , we keep all the other design
variables, , , , , , , , and as constants,
as shown in Table IV; and all model parameters , and
( , ) as constants as shown in Table II; and
investigate the changes in with respect to the changes in .

The result of sensitivity analysis for system cost with respect
to the 6 component state distribution design variables is shown
in Fig. 3. The component state distribution value is on the hor-
izontal axis. On the vertical axis, we have the partial derivative
value. From Fig. 3, we can observe that in these cases, for any

, is always positive, which means system cost in-
creases with the increase in , while other design variables are
kept constant. Again for any , the sensitivity of system cost
decreases a bit with the increase of when it is relatively small
(less than 0.05); and after that, always increases with
the increase of . From Fig. 3, we can also observe that the
system cost is more sensitive to the state distribution variables
associated with stage 3, i.e. , and , because component
cost characteristic constants for stage 3 are larger than those for
stage 1 and 2.

The sensitivity of system cost with respect to model param-
eter , ( , ) is easy to derive ana-
lytically. Based on (5) & (6), we can get

(10)

shown (10) is a constant value when all the design
variables and other model parameters are kept as constant, ex-
cept for itself. is also always positive, meaning the
system cost increases with the increase of .

The sensitivity of system cost with respect to model param-
eter , can be obtained based on (5) & (6)
as well:

(11)
shown in (11) is also always positive, meaning the

system cost increases with the increase of . The system cost
becomes more sensitive to the with the increase of .
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TABLE VI
OPTIMIZATION RESULTS FOR THE REDUNDANCY ALLOCATION PROBLEM

Fig. 3. Sensitivity analysis for system cost with respect to component state
distributions.

Fig. 4. Sensitivity analysis for system utility with respect to component state
distributions.

Finally, we investigate the sensitivity of system utility, as
shown in (1) & (2), with respect to the 6 component state distri-
bution design variables, that is, ( , ).
The sensitivity analysis results are shown in Fig. 4. As we can
observe, for any , is always positive, meaning the

system utility increases with the increase of . However, un-
like the case of system cost, system utility becomes less sensi-
tive to with the increase of . Another thing we observe
is that system utility is more sensitive to state distribution vari-
ables associated with state 2, , , and ; than it is to state
distribution variables associated with state 1, , , and .

IV. CONCLUSIONS

There can be two options to improve the system utility of
a multi-state series-parallel system: 1) to provide redundancy
at each stage, and 2) to improve the component state distribu-
tions. This paper presents an optimization model for multi-state
series-parallel systems to jointly determine the optimal com-
ponent state distribution, and the optimal redundancy for each
stage. The reason why component state distribution can be used
as a controllable design variable is presented. The relationship
between component state distribution, and component cost is
discussed based on an assumption on the treatments on the com-
ponent. The physical programming-based optimization model
is presented. The example illustrates the optimization model,
its solution approach, and the advantages of the proposed re-
liability-redundancy allocation model over the existing redun-
dancy allocation methods. Sensitivity analysis shows the impact
of different design variables, and model parameters on system
cost, and system utility.
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