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A Discrete Stress-Strength Interference Model
With Stress Dependent Strength

Hong-Zhong Huang, Senior Member, IEEE, and Zong-Wen An

Abstract—In structural reliability engineering, one often en-
counters situations where the strength of a structure is influenced
by the stress, but the stress is irrelevant to the strength. This
phenomenon can be called a unilateral dependency of strength on
stress. To evaluate structural reliability in such cases, the stress
on a structure is proposed to be a discrete random variable, and
the stress dependent strength is represented by a discrete random
variable that has different conditional probability mass functions
under different stress amplitudes. Then a discrete stress-strength
interference model with stress dependent strength is presented
based on the universal generating function technique. Finally,
the effectiveness of this model is demonstrated by an illustrative
example.

Index Terms—Discrete model, stress dependent strength, stress-
strength interference, universal generating function.

ACRONYM1

SDS stress dependent strength

SSI stress-strength interference

UGF universal generating function

BEC bivariate exponential conditionals

pmf. probability mass function

NOTATION

probability of event

reliability of a structure

discrete r.v.
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1The singular and plural of an acronym are always spelled the same.

vector consisting of all possible values of ,

vector consisting of the probabilities
corresponding to all elements of ,

,
UGF of

discrete r.v. that is dependent on

vector consisting of possible values of under
the condition in which has the value of ,

,
vector consisting of probabilities corresponding to
all elements of , ,

vector consisting of all possible values of

vector consisting of probabilities corresponding
to all elements of
UGF representing the conditional pmf of

function of , and , in which is dependent
of
composition operator over UGF of unilaterally
dependent r.v.
UGF of function

discrete r.v. representing the stress on a structure

vector consisting of the all possible values of ,

vector consisting of the probabilities
corresponding to all elements of ,

,
discrete r.v. representing the SDS of a structure

vector consisting of possible values of under
the condition in which has the value of ,

,
vector consisting of probabilities corresponding
to all elements of , ,

vector consisting of all possible values of

vector consisting of probabilities corresponding
to all elements of
UGF representing the conditional pmf of

function of , and , in which is dependent
on
UGF of function

binary-valued function with domain on the
set of possible values of function ,
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I. INTRODUCTION

The stress-strength interference (SSI) model has been widely
used for reliability analysis of structures. In this model, the
structural reliability is defined as the probability that strength
is larger than stress, where stress implies all elements possibly
producing structural failures, and strength implies the ability to
resist structural failures. In further investigation concerning SSI
models, there have been many attempts to compute or estimate
reliability. Kotz et al. [1] gave a comprehensive survey of the
SSI models presented in the literature. It should be mentioned
that the majority of the models in [1] are based on an identical
assumption that stress and strength are -independent of each
other. In real situations, this assumption does not always hold.
For instance, a mechanical structure has different fatigue lives
under different stress levels. And the fatigue life of a structure
is essentially a kind of representation of the ability to resist
structural failures. So the SSI model with stress dependent
strength has attracted the attention of researchers lately.

Since the bivariate exponential conditionals (BEC) distribu-
tion was introduced by Arnold & Strauss [2], some applications
have been found in evaluating the reliability of structures
with stress dependent strength, and systems with dependent
components. SenGupta [3] chose the BEC distribution as a
probability model for accelerated life testing, and derived
a reliability expression for structures with stress dependent
strength. Nadarajah & Kotz [4] derived some explicit expres-
sions for structural reliability when the joint distribution of
stress and strength is bivariate exponential. Navarro et al. [5]
studied the reliability properties of systems with exchangeable
components, and exponential conditional distribution. Yu [6]
presented a simple, fast algorithm for simulating the random
variables from BEC distribution. Additionally, considering the
system with dependent components, Eryilmaz [7], and Urkkan
& Pham-Gia [8] established multivariate stress-strength models
for complex systems with dependent components.

Note that the dependency between stress and strength rep-
resented by the BEC distribution is a bilateral dependency, in
which both stress and strength are dependent upon each other.
However, from a practical point of view, the stress on a structure
is uniquely determined by the variation of external loads or envi-
ronment. Stress is irrelevant to the strength of a structure. This
means that only a unilateral dependency exists between stress
and strength, in which the strength is dependent on the stress,
but the stress is independent of strength.

Simultaneously, in some specific situations, the stress on a
structure can be treated as a discrete random variable. For ex-
ample, the stress pattern in a step-stress accelerated life test can
be treated as a discrete random variable of which the possible
values can be obtained from all stress levels, and the corre-
sponding probabilities can be obtained from the acting times of
each stress levels. Treating the stress on a structure as a discrete
random variable, this paper will build a structural reliability
model with unilateral dependency between stress and strength.

The rest of this paper is organized as follows. In Section II, a
brief description of the universal generating function of unilat-
erally dependent discrete variables is given, which is employed
to describe the characteristics of discrete stress and strength. In

Section III, a generalized problem is formulated, from which
the discrete SSI model with stress-dependent strength is estab-
lished. For demonstrating the validity of the model, an illustra-
tive example is provided in Section IV. Conclusions, and dis-
cussions are summarized in Section V.

II. UGF OF UNILATERAL DEPENDENT DISCRETE VARIABLES

The concept of UGF was introduced by Ushakov [9]. In a
series of research by Levitin & Lisnianski [10]–[12], the UGF
method has been applied to reliability analysis, and the opti-
mization of multi-state systems.

Based on the basic principles of the UGF method, the UGF
of a discrete r.v. is defined as a polynomial function of vari-
able , , that relates the possible values of to the cor-
responding probabilities.

(1)

where the variable has possible values.
Consider a function of discrete r.v. , and , in

which is dependent on . Suppose that, when has the
value of , the conditional pmf of
is characterized by the vectors , and . We can define the
set of all possible values of as

(2)

and redefine the conditional pmf of when takes the value
of as

(3)

where is the number of all possible values of , and

(4)

Thus, the conditional pmf of is defined by the vectors , and
. It can be represented in the form of the UGF with vector

coefficients

(5)

where is a vector, .
Because each combination of the possible values of and
, , corresponds to a possible value of the function

, and the probability of the combination is , the
UGF of the function can be obtained as

(6)



120 IEEE TRANSACTIONS ON RELIABILITY, VOL. 58, NO. 1, MARCH 2009

TABLE I
THE UNILATERAL DEPENDENCY BETWEEN STRESS, AND STRENGTH

where is a composition operator over UGF of unilaterally
dependent r.v.

III. DISCRETE SSI MODEL WITH SDS

In this section, we will first formulate a generalized problem.
Then the discrete SSI model with SDS will be constituted.

A. Formulation of the Problem

Suppose that the external loads with different amplitudes are
randomly applied on a structure during the operation time. Ac-
cordingly, the stress of the structure will also randomly vary in
magnitude, and occurrence. These random characteristics can
be represented by a discrete r.v. with a specific pmf. Without
loss of generality, we suppose that the pmf of stress is ex-
pressed by two vectors , and .

To describe the SDS denoted by , we assume that, when
stress takes the value of , the characteristics of strength can
be described by a discrete r.v. (note that, a
continuous r.v. is allowable, and it can be approximated by a dis-
crete r.v. as presented in Section IV). The conditional pmf of
can be characterized by the vectors , and .
Thus, we can obtain conditional pmf of SDS , which repre-
sent the unilateral dependency of the strength on the stress. We
can summarize this unilateral dependency in Table I.

From the above discussions, the problem now can be ex-
pressed as calculating the reliability of the structure when the
pmf of the stress, and conditional pmf of the SDS, are known.
To solve this problem, we can use the UGF technique introduced
in Section II.

B. Solution to the Problem

Suppose the stress on a structure, and the SDS of the structure
are characterized by two pairs of vectors , and ,

respectively. We can directly obtain the UGF of stress according
to (1) as

(7)

According to (5), the conditional pmf of can be represented
in the form of the UGF with vector coefficients

(8)

We construct a function of stress , and strength ,
in which the SDS is dependent on the stress .

(9)

Based on (6), the UGF of the function can be obtained
as

(10)

It is not difficult to understand that the final form of the UGF
of the function is also a polynomial function. Therefore,
(10) can be rewritten as

(11)

where , and are possible values of the
function , and corresponding probabilities respectively.

As mentioned in Section I, the structural reliability is defined
as the probability that strength is larger than stress. We can get
the mathematical description of structural reliability as

(12)

Transforming (12), and substituting (9), the structural reliability
can be further expressed as

(13)

To obtain the probability in (13), the coefficients of polyno-
mial represented by (11) can be summed for every term
with . For the sake of depiction, we define a binary-valued
function with domain on the set of possible values of function

as

(14)

Then, (13) can be rewritten as

(15)
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Fig. 1. The schematic illustration of stress, and strength.

For the comparison with the classical SSI model, (15) can be
called a discrete SSI model with SDS.

IV. AN ILLUSTRATIVE EXAMPLE

Consider an example in which a structure, during the service
time, is subjected to the variable stress that is characterized
by three kinds of stress amplitudes
MPa, and the corresponding occurrence probabilities

. When the three kinds of
stress act on the structure, the SDS can be represented by
three standard normal r.v., , , and that have dif-
ferent mean values, , ,
and , and the identical standard deviations

. The stress-strength relation of
the structure is depicted by Fig. 1.

According to (1), the UGF of stress can be obtained as

(16)

To evaluate the structural reliability by using the SSI model
suggested in Section III, we will translate the continuous r.v.
representing the conditional distribution of SDS into discrete
r.v. Firstly, we can determine an approximate range of SDS,
which can be denoted by an interval. Then, the interval is divided
into finite subintervals. The midpoint values of each subinterval
are treated as possible values of SDS, and the area values of each
subinterval are treated as the corresponding probabilities. In this
example, the interval of SDS is approximately determined as

, and it is divided into
six subintervals (as shown in Fig. 1.). Accordingly, the SDS
with a standard normal distribution can be translated into the
discrete r.v. with the following vectors of possible values, and
corresponding conditional probabilities.

(17)

TABLE II
THE CONDITIONAL DISTRIBUTIONS OF SDS

UNDER THREE STRESS AMPLITUDES

TABLE III
ALL POSSIBLE VALUES, AND CORRESPONDING CONDITIONAL PROBABILITIES

OF SDS

(18)

(19)

(20)

The conditional distributions of SDS under three stress ampli-
tudes can be also depicted by Table II.

According to (2), we can obtain the all possible values of SDS
as

(21)

According to (3), and (4), we can obtain the conditional prob-
abilities of SDS when stress amplitudes have the values of ,

, and :

(22)

(23)

(24)

All possible values of SDS, and corresponding conditional prob-
abilities, can also be represented by Table III.

According to (5), we can obtain the UGF of the SDS of the
structure, , in which each coefficient of the polynomial
has the form

(25)
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According to (6), the UGF of function can be ob-
tained as

(26)
It can be seen that the above polynomial consists of ten terms.

According to (15), the structural reliability can be obtained as

(27)
It should be mentioned that, in this example, the conditional

distributions of SDS are assumed to be normally distributed with
different means, and identical standard deviations. We can cal-
culate the structural reliability by employing the table of the
standard normal distribution, and the total probability formula.
The calculated result is equal to 0.9682. Thus, it can be seen that
the relative error resulting from the discrete SSI model with SDS
is equal to 0.021%.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we consider a unilateral dependency of strength
on stress existing in some real situations, and present a discrete
SSI model with SDS based on a UGF technique. In this model,
the SDS of a structure is treated as a discrete r.v. that has dif-
ferent conditional pmf under different stress amplitudes. Calcu-
lation of the structural reliability is based on the UGF technique.
An example illustrates that, by employing the discretization of a
continuous r.v., this model can be also applied to the situations
in which the SDS of a structure can be represented by a contin-
uous r.v. with an arbitrary distribution.

Note that, when the discrete SSI model with SDS is applied
to the case of continuous SDS, discretization of a continuous r.v
will result in calculatioqqn errors. There is no way to avoid these
errors completely, but we can control them. When a continuous
r.v. is translated into a discrete r.v., reducing the length of the

subinterval can improve the calculation accuracy. This topic has
been discussed in detail by authors of [13].

AnotherlimitationofthediscreteSSImodelwithSDSisthatthe
stressonastructure isassumedtobeadiscrete r.v.Whenthestress
on a structure is regarded as a continuous r.v., the effectiveness of
this model will be lost. Inour future work,wewill explore the uni-
lateral dependency between continuous stress and strength.
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