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Abstract 
 
The article aims to estimate the uncertainty of possible failure events of redundancy systems based on the cross-

entropy (CE) method. Failure events of subsystems and components always result in the incomplete or complete failure 
of engineering systems, yet optimal condition monitoring of a complex system is heavily dependent on the accuracy 
analysis of all the failure events of subsystems and components and their interaction effects. The CE method is a versa-
tile tool for estimating probabilities of rare events in complex systems with the least bias beyond conditional constraints. 
In this paper we introduce the CE method for analyzing the system reliability with the highest uncertainty among all 
possibilities satisfying supplied moment constraints, and developed numerical CE algorithms capable of estimating the 
uncertainty of failure modes in an M-dimensional redundancy system domain with moment constraints of order up to 
N. A general computational framework of event estimation and condition monitoring of redundancy systems is illus-
trated in which the Monte Carlo simulations and CE optimization algorithms are combined. Numerical results indicate 
potential improvements in the measure of the uncertainty of redundancy systems that would lead to the best-fit analysis 
of all the complete or incomplete failure events.  

 
Keywords: Reliability; Redundancy; Complex systems; Cross-Entropy 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

 
1. Introduction  

There are many uncertainties concerning the failure 
modes of complex systems which may consist of 
many components and/or different subsystems. 
Causes of uncertainties may be interrelated and intro-
duce dependencies, while ignoring these dependen-
cies may lead to large errors. The states of a system 
are represented by a system and by subsystems of 
random events in different relations and on various 
levels [1-2]. In practice, reliability prediction of an 
engineering complex system is often viewed as object 
analysis of many discrete interacting conditional fail-

ures of subsystems in different ways [3-7]. The goals 
of such analysis are to determine the whole cumulated 
effects and failure modes on the overall behavior of 
the system. Accuracy condition indicators for robust 
fault detection [8-10] and subset simulation for reli-
ability sensitivity analysis [3, 5, 11, 12] make the 
majority of the system states be observable. Neverthe-
less, the uncertainties of system failure modes may be 
considered at another level. In event-oriented system 
analysis a system is defined not only by its physical 
components, but also by its all or at least known or 
important states [2]. There are some states that can be 
in common with several system features that may be 
unobservable, undefined or unknown. One of the 
most basic, useful approaches to eliminate the uncer-
tainties of system failure possibilities is adopting re-
dundancy optimization. The redundancy optimization 
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problem has been addressed in a number of studies 
[13-16], and components or subsystems redundancy 
can be viewed in the majority of complex engineering 
systems in different ways. The redundancy problem 
of a system with different elements may be consid-
ered as a problem of multi-state series–parallel system 
structure optimization [15], and the method has been 
extended to systems with bridge topology (see for 
example Ref. [16]). 

Probability estimation of a system provides a quali-
tative or quantitative description of the likely occur-
rence of a particular event. The probability of an 
event has been defined as its long-run relative fre-
quency. A subjective probability describes an indi-
vidual’s personal judgment about how likely a par-
ticular event is to occur [17]. Probability is conven-
tionally expressed on a scale from 0 to 1, and a rare 
event has a probability close to 0. A person’s subjec-
tive probability of an event describes his/her degree of 
belief in the event. It is not based on any precise 
computation but is often thought as a personal degree 
of belief that a rare event in a complex system will 
occur [18]. For complex systems, researches and de-
cision makers pay more attention to the performance 
residual capacities, and it is unrealistic to take into 
account all the effects of varying subsystems non-
operational conditions. In some experiments of com-
plex systems, all outcomes are equally likely. The 
value of the system operational objective function and 
the uncertainties of system failure possibilities based 
on the probabilistic theory become difficult or im-
practical to evaluate. 

Another useful approach to estimate the uncertainty 
of system failure possibilities is using simulation 
technique, such as the crude Monte Carlo (CMC). 
Due to non-frequentative characteristics, a lack of 
available information, or subjective influences, the 
usefulness of such methods become evident in many 
cases within engineering practice [19]. For the com-
putation of extreme event statistics with respect to 
pollutant loads and environmental effects, the uncer-
tainty in model parameters of deterministic models 
and the inherent stochastic variability in input vari-
ables have to be taken into account [20]. There are 
two reasons why CMC is difficult to simulate the 
uncertainty of complex systems: first, condition in-
formation of component events generated tradition-
ally by previous experience, historical data and com-
mon sense, which does not compensate for interaction 
between varying failure modes [8, 21]; Second, for 

the mass noisy problem of complex systems, the com-
plexity of the problem increases exponentially with 
the number of links and CMC requires a very large 
simulation effort to estimate the reliability accurately 
[22]. In this regard it is worthwhile to point out that 
during the condition monitoring process of a complex 
system, accurate incorporation of the varying compo-
nents and subsystems operational condition may nec-
essarily incur a notable increase in the system overall 
reliability and robustness level. 

The information entropy principle acts as a versa-
tile tool on analyzing characters of system failure 
modes with the least bias beyond conditional con-
straints. The uncertainty of a single stochastic event A 
with a known probability ( ) 0P A ≠  plays a funda-
mental role in information theory. Most conditional 
moment-constrained information can be expressed in 
terms of Shannon's original expressions for the en-
tropy [2, 23]. In addition to the single stochastic 
complete failure events, more important are the in-
complete failure mode analysis and condition moni-
toring of complex systems. The maximum informa-
tion entropy can be used to assess the uncertainty of 
failure events of incomplete information. The Kull-
back-Leibler (K-L) entropy [24] was derived in statis-
tics as an average information measure in a random 
variable Y for the change of uncertainty in Y from its 
distribution 1p =  to distribution 0p = . It does not 
require the evaluation of the joint probability density 
function (pdf) or the conditional pdfs as needed for 
the mutual entropy [25-26]. The cross-entropy (CE) 
method [27], based on the concept of the K-L En-
tropy, is a unified approach to combinatorial optimi-
zation, Monte-Carlo simulation and machine learning. 
Events are considered as abstract concepts and the 
relations among events are characterized axiomati-
cally [28-32]. In many engineering applications, the 
system components link and reliabilities are close to 1. 
The appropriate quantity to measure the performance 
of a system is then the statistical moment [33]. In 
such cases the CE method can be used to assess the 
rare event probability, and we consider more system 
component operation of relative rankings rather than 
the exact values of reliabilities.   

The rest of the paper is organized as follows. In 
section 2, a rare event of a redundancy system is for-
mulated for a set of moment constraints in a domain 
of arbitrary dimension. In section 3, the basic idea of 
CE as a combinational optimization method is intro-
duced. Section 4 focuses on how the CE method can 
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be used to solve the rare event estimation problem 
and the combinational optimization problem. We 
illustrate the effectiveness of the CE method by a 
number of numerical experiments in section 5. Finally, 
in section 6, we present our conclusions. 

 
2. Description of a rare-event problem of 

redundancy system  

A quantitative analysis of complex system failure 
in terms of probability space, i.e., by the distribution 
of probabilities of events, is difficult. It is recognized 
[15] that obtaining the component lifetime distribu-
tion is the bottleneck. Quantitative and qualitative 
analysis are both necessary, for the systems and the 
subsystems of events can be presented by the notion 
of events and by the appropriate probabilities associ-
ated with each of the events [2]. 

Ambiguities in the condition monitoring of redun-
dancy systems can arise when subsystems’ and com-
ponents’ failure events combine and diffuse recipro-
cally of a redundancy system which has conditional 
moment-constrained complete or incomplete dynamic 
failure distributions. 

Consider a k out of n vote system which consists of 
n dynamic subsystems A B Mi j kL , 
(  = 1, 2, , ni, j,k L ). Assume any connection in series 
of out-of-order A B Mi j kL  has the same system 
function (Fig. 1). 

The relations among component characters are as 
that illustrated in Fig. 2. Then, the occurrences of 
random component events are interactive, and the 
subsystem system failure modes can be regarded as 
those from one component transfers to another com-
ponent event according to the alphabet order from 
Ai  to B j  and the last to MK , where , , (1, )i j k n∈ . 

 

 
 
Fig. 1. A series-parallel M×N dimensional redundancy 
system. 

 

 
 
Fig. 2. The interrelations among component characteristics. 

2.1 The algebraic structure of a redundancy system 

For the above redundancy system of m-
dimensional structure with component order up to n 
domain, we can define the algebraic structure of the 
events space: 

 
( =1, 2, , m;  =1, 2, , n) ijE i j≠ Φ L L  (1) 

1,       ( =1, 2, , -1)  ik i jE E i k+ ≠ Φ L  (2) 
     ( +1)ik ljE E l i= Φ ≠  (3) 

1

    ( =1, 2, , n)  
m

ij
i

E I j
=

=∑ L  (4) 

1 1

( ) 1      
m n

ij
i j

P E
= =

≤∑∑  (5) 

 
․The “Φ ” in Eq. (1) means an impossible event;  
․Eq. (2) means events ikE  and 1,i kE +  are not 

necessarily exclusive; 
․The fact that ikE  and ljE ( 1l i≠ + ) are inde-

pendent is expressed in Eq. (3); 
․In Eq. (4), the I  denotes a definite dynamic sub-

system failure event if any combination of the 
events ijE  in which i is from 1 to m occurs; 

․Eq. (5) denotes that the redundancy system is an 
incomplete system, for only some of the possible 
events can be found and taken into account. 

 
2.2 Uncertainty associated with events time series of 

system components  

First, a system operational mode analysis is per-
formed to identify all the modes and probabilities of 
system and subsystems failure events. We give a 2×2 
and 3×3 dimensional redundancy system as the 
foundations for further studying of failure event esti-
mation and reliability optimization of redundancy 
systems. 

 
2.2.1 The foundation on 2×2 dimensional redun-

dancy system 
In Fig. 3, the dynamic subsystems failure modes 
subE have 1 1

2 2( ) 4N C C= × =  outcomes. There are 
 

1 1 1( ) ( )subP E P A B= ,   

2 1 2( ) ( )subP E P A B= ,   

3 2 1( ) ( )subP E P A B=    
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Fig. 3. A two dimension redundancy system. 

 
and 
 

4 2 2( ) ( )subP E P A B= .   
 

By monitoring the component states, the possible 
failure time series of the redundancy system have 

1 1 1 1 1
2 2 4 2 2( ) 20tN C C C C C= × + × × =  outcomes. The 

candidate associated failure time series are as follows. 
 

1 1A B ; 1 2 1A A B ; 1 2 2A A B ; 1 2 2A B A ; 1 2 1A B B ; 

1 1B A ; 1 2 1B A A ; 1 2 2B A B ; 

1 2 1B B A ; 1 2 2B B A ; 2 2A B ; 2 1 1A A B ; 2 1 2A A B ; 

2 1 1A B A ; 2 1 2A B B ; 2 2B A ; 

2 1 2B A A ; 2 1 1B A B ; 2 1 1B B A ; 2 1 2B B A ; 
 
For the associated failure of components A1, A2 

and B2, we consider the possible trajectory of system 
failure event fE , that is,  

 
1A → 1 2A B → 1 2 2A B A  or 2A → 2 2A B → 2 2 1A B A   

 
Then the system failure associated probabil-

ity ( )fP E of components A1, A2 and B2 is 
 

1 2 2 2 2 1

1 2 2 1 2

2 2 2 1

( ) ( ) ( )

( ) ( ) ( | )

( ) ( | ) ( )

fP E P A A B P A B A

P A P A P B A A

P A P B A P A

= +

=

+

  

 
2.2.2 The foundation on 3×3 dimensional redun-

dancy system 
Now consider a three-dimensional redundancy sys-

tem as another example (Fig. 4). The number of pos-
sible components’ failure time series (e.g. 

1 2 2 3 3 1 3 2 1A B C B C C A A B  in Fig. 5 has 
9! 362880tN = =  outcomes, and the dynamic sub-

system failure modes have 1 1 1
3 3 3( ) 27SN C C C= × × =  

outcomes. For a determinate time series such as 
3 2 1 3 2 1 3 2 1A B C B C B C A A , we can have the following 

possible dynamic subsystem failure modes: 
 

1 3 3 1 2 3 1 2

1 1 2 2 2 3

( ) ( ) ( ) ( )

( ) ( )

fP E P A B C P B C P B C

P A B C P A B C

= + +

+ +
;  

 
 
Fig. 4. A three-dimensional redundancy system. 

 

 
 
Fig. 5. Time series of system complete failure events. 

 

2 3 2 2 3 1 2 3 1

1 3 1 1 3

( ) ( ) ( ) ( )

( ) ( )

fP E P A B C P B C P A B C

P B C P A B C

= + +

+ +
;  

…… 
3 2 1 1 2 1 1 2

2 3 3

( ) ( ) ( ) ( )

( )

f
nP E P A B C P B C P A B C

P A B C

= + +

+
;  

 
But what we are concerned about the stochastic event 
time series, such as 3 2 1 3 2 1 3 2 1A B C B C B C A A , is how to 
estimate the probability of the dynamic rare-event 
modes 1( )fP E , 2( )fP E , …, ( )f

nP E . The uncertainty 
analysis of component failure events and their rela-
tions can be applied in the pattern recognition of sys-
tem performance. The following cases in redundancy 
systems can be achieved by experiences of intuition: 
․Different kinds of failure modes may be grouped 

into the same system failure time series; 
․A system failure time series also can have differ-

ent kinds of system failure modes; 
․The component conditions and failure reasons of 

a redundancy system may be undiscovered; 
․The failure of a complex redundancy system may 

be no more than a rare-event problem. 
 

3. The CE method for Rare-Event simulation 

3.1 Kullback-Leibler cross-entropy 

Let g and h be two densities with respect to the 
measure μ on X. The cross-entropy [27] is defined as 

 
(X)(g, ) ln
(X)

(x)ln (x) ( ) (x)ln (x) ( )

g
gD h
h

g g dx g h dxµ µ

=

= −∫ ∫

E

 
 (6) 
 
(g, )D h  is also called the Kullback-Leibler (K-L) 

divergence, cross-entropy (CE) or relative-entropy. 
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Meanwhile, (g, )D h  is always nonnegative, and it is 
zero if and only if g and h are exactly the same. This 
follows from Jensen’s inequality (if φ  is a convex 
function, such as ln− , then ( ( )X) Xφ φ≥E E . 
Namely, 
 

(X) (X)(g, ) ln ln E ln1 0
(X) (X)

gg
h hD h
g g

≥
⎡ ⎤ ⎡ ⎤

= − − = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

E    

 (7) 
 
The mutual information (X,Y)M  of vector X 

and Y defined as Eq. (8) is related to the CE in the 
following way: 

 

X Y 
X Y

(X,Y)(X,Y) ( , ) ln
(X) (Y)f
fM D f f f

f f
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

E  (8) 

 
where f  is the joint pdf of (X, Y), Xf  and Yf  
are the marginal pdfs of X and Y, respectively. The 
mutual information can be viewed as the CE measure, 
i.e., the “distance” between the joint pdf f  of X and 
Y and the product of their marginal pdfs Xf  and 

Yf  under assumption that the vectors X and Y are 
independent. 

 
3.2 The Cross-Entropy method 

The cross-entropy method [27], which is based on 
an associated CE minimization, is a well known tech-
nique for estimating probabilities of rare events. In 
recent years the CE method has been successfully 
applied to a wide range of discrete optimization tasks 
[28, 29, 31]. In the field of rare-event simulation, the 
CE method is used in conjunction with importance 
sampling (IS) and it provides a simple and fast adap-
tive procedure for estimating the optimal reference 
parameters in the IS. The two steps of the CE algo-
rithm are: 
(1) Importance sampling generating. Describe the 

distributing function of independent variables of 
the objective function, which usually generates a 
random permutation. Establish convergence of the 
algorithm under much weaker conditions. 

(2) Adaptive parameter updating. Update the parame-
ters of this permutation to obtain better system re-
liabilities in the next iteration. A stopping rule 
should be set in advance when the desired value 
of results is researched at some iteration t. The 
aim of this step is to prove convergence for a fi-
nite sample with the emphasis on the complexity 

and the speed of convergence under the suggested 
stopping rules. 

 
In the field of combination optimization, the CE 

method can be readily applied by first translating the 
underlying optimization problem into an associated 
estimation problem (ASP) which typically involves 
rare event estimation. Suppose we wish to maximize 
some “performance” function ( )S x  over all ele-
ments (states) x in some set X. Let us denote the 
maximum by *γ , thus 

 

X
* max ( )

x
S xγ

∈
=  (9) 

 
To proceed with CE, we first randomize our determi-
nistic problem by defining a family of pdfs ( ; )f u⋅  
on the set X. Next, we associate with Eq. (10) the 
estimation of  
 

{ }(X)( ) ( (X) )u u Sl P S I γγ γ ≥= ≥ = E  (10) 
 

A viable method to estimate l  in Eq. (10) is to use 
crude Monte Carlo (CMC) simulation, draw a ran-
dom sample 1X , ,XNL  from the distribution of X 
via the Eq. (11) as the unbiased estimation of l . 
 

{ }(X)
1

1 N

S
i

l I
N γ≥

=

= ∑$  (11) 

 
However, for large γ  the probability of l  is very 
small; CMC requires a very large N to obtain a small 
relative error. The CE method can be used in such 
situations efficiently. The main idea [32] of the CE 
method for rare event simulation and optimization 
can be stated as follows. Eq. (9) is called an associ-
ated stochastic problem (ASP). Here, X  is a ran-
dom vector with pdf ( ; )f u⋅ , for some Vu∈  and 
γ  is a known or unknown parameter. Note that there 
are in fact two possible estimation problems associ-
ated with Eq. (10). For a given γ  we can estimate 
l , or alternatively for a given l  we can estimate γ  
which is the root of Eq. (10). The CE method solves 
the problem efficiently by making adaptive changes 
to the probability density function according to the K-
L cross-entropy, thus creating a sequence ( ; )f u⋅  
and ( ; )f v⋅  of pdfs that are “steered” in the direction 
of the theoretically optimal density *( ; )f v⋅  corre-
sponding to the degenerate density at an optimal point. 
In fact, the CE method generates an adaptive updating 
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of tγ  and tv  sequence -{ tγ , tv }, which converges 
quickly to a small neighborhood of the optimal 
{ *γ , *v }. For the main applications of the CE 
method, updating of parameter vector γ  and v  
can be formulated as the following two algorithms. 

 
3.3 A Rare-Event simulation example 

The CE has its origins in an adaptive algorithm for 
rare event simulation, which transforms the original 
deterministic events into an associated stochastic 
process analysis [34, 35]. For the event time series 
described in section 2.2, we estimate the short path to 
simulate the rare event as an example and illustrate 
the basic steps of the CE method. 

Employ an auxiliary weighted graph of Fig. 6, with 
random weights 1 nX , ,XL . Suppose the weights are 
independent and exponentially distributed random 
variables with means 1, , nu uL  respectively.  
Denote the pdf of X by ( ; )f u⋅ . Let (X)S  be the 
total length of the shortest path from node A to node 
B, then 
 

1 1

1(x;u) exp
nn

j

j jj j

x
f

u u
= =

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∑ ∏  (12) 

 
To estimate S(X) from simulation *l , we have 
 

}{ ( )( ( ) ) Sl P S I γγ Χ ≥= Χ ≥ = E  (13) 

 
For some large fixed γ  and a small relative error 
(RE), a better way to perform the simulation is to use 
importance sampling as 
 

}{ }{( ) ( )
(x) (x)(x)dx

g(x) g(x)gS S
f fl I g Iγ γΧ ≥ Χ ≥= =∫ E  (14) 

 
The likelihood ratio W(x) is  
 

i

i

(x )W(X )
g(x )i
f

=  (15) 

 
To restrict g such that 1 nX , ,XL  are independent 
and exponentially distributed with means 1v , ,vnL , 
we have 
 

 
 
Fig. 6. Shortest path from A to B. 

1 1

(x;u)(x;u,v)
(x,v)

1 1exp
nn

j
j

j j jj j

fW
f

v
x

u v u
= =

=

⎛ ⎞⎛ ⎞
⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∏

 (16) 

 
Using the above stochastic counterpart method by 
minimizing the Kullback-Leibler distance of ( ; )f u⋅  
and ( ; )f v⋅ , we have the following updating formula 
[34] 
 

}{

}{

i t-1 ij( )1
,

i t-1( )1

W(X ;u,v )X

W(X ;u,v )

t

t

N

Si
t j N

Si

I
v

I

γ

γ

Χ ≥=

Χ ≥=

=
∑
∑

 (17) 

 
For some fixed γ  and a small relative error, the 
problem is how to select a v  to give estimate of l  
under some fixed relative error (RE) which is  
 

*
Var( )

RE
l

l
=  (18) 

 
Therefore, to solve the above event simulation 

problem, first we need to generate some viable sto-
chastic samples. Then the CE algorithm can update 
the parameters at each of iterations. For convenience, 
we define an auxiliary function ( , )T x ξ  where ξ  is 
presented in another way as 1( , , )

imξ ξ ξ= L  and im  
is the number of random variables. Then, we calculate 
the following function which is the minimum length 
of (X)S : 

 
[ ]1 : ( , )U x T x ξ→ E  (19) 

 
The CE algorithm for obtaining ,t jv  and the prob-

ability of l  can be developed as follows. 
Algorithm 1: CE algorithm for Rare-Event simula-

tion 
Step 1. Define 0v u=$ , 0T = . Set 1t =  (itera-

tion counter). 
Step 2. Generate random samples 1X , ,XNL  from 

step 2.1 to step 2.6.  
Step 2.1. Set ( ) 0u x = , 1i = . 
Step 2.2. Generate 1( , , )nξ ξ ξ= L  from the distri-

bution function 1ˆ( ;v )tf −⋅ . 
Step 2.3. Calculate 1U  according to Eq. (19), that 

is ( ) ( ) ( , )u x u x T x ξ← + . 
Step 2.4. ( ) ( )iS u x= . 
Step 2.5. Set ( ) 0u x = , 1i i= + . 
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Step 2.6. Repeat from step 2.2 to step 2.5 N times. 
Step 3. Calculate the performance (X )iS  for all i, 

and order them from smallest to biggest, 
(1) ( )... NS S≤ ≤ . Let ˆtγ  be the sample (1 )ρ−  -

quantile of performances: (1 )t NS ργ −⎡ ⎤⎢ ⎥
= , provided 

this is less than γ . Otherwise, put t̂γ γ= . 
Step 4. For 1, ,j n= L , use the same sample to cal-

culate 
 

}{

}{

-1( )1
,

-1( )1

W(X ;u,v )X

W(X ;u,v )

t

t

N
i t ijSi

t j N
i tSi

I
v

I

γ

γ

Χ ≥=

Χ ≥=

=
∑
∑

  

 
Step 5. If t̂γ γ=  then proceed to step 5; otherwise 

set 1t t= +  and reiterate from step 2. 
Step 6. Let T  be the final iteration. Generate a 

sample 
11X , ,XNL  according to the pdf ˆ( ;v )Tf ⋅ , 

and estimate l  via the important sampling estimator 
 

}{

1

1 1 ( )

1 ˆW(X ;u,v )
t

N

i T
i S

l I
N

γ= Χ ≥

= ∑$   

 
4. The uncertainty estimation of redundancy 

system 

Starting from the rare-event problem defined in 
Section 2.2 and if Ci can transfer to Aj ( , 1,2,3i j = ), 
the problem can be regarded as a multi-extremal trav-
eling salesman problem. Fig. 7 illustrates such a prob-
lem. Consider a weighted graph G with m×n nodes, 
labeled 1 2 n(A ,A , ,A )L ; 1 2 n(B ,B , ,B )L ; L ; 

1 2 n(M ,M , ,M )L . The nodes represent cities, and the 
edges represent the roads connecting the cities. Each 
edge from i to j has weight or cost Cij, representing 
the length of the road. Given the starting city and the 
terminating city, one has to estimate a possible short-
est tour that visits all the cities exactly once (such as 
from A3 to C3). 

 

 
 
Fig. 7. Shortest path from A3 to C3. 

The possible shortest path is a moment-constrained 
combination optimization problem, while the waiting 
time should be calculated. Consider a binary vector 

1 2 27y (y , y , , y )= L . Suppose that we do not know 
which components of y are 0 and which are 1. Input 

1 2 27x (x ,x , , x )= L  to reconstruct y by maximizing 
the function S(x) and minimizing the Euclidean dis-
tance of Var(Pt).  

 

max
27

1

  (x) 27 j j
j

S x y
=

= − −∑  (20) 

 
s.t. 
 

min * * 2
t t t,Var(P ) P P (P P )i= − = −  (21) 

 
Here we design stochastic samples generated as fol-
lows. Let y  represent a random path which is  
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y
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where ijy  are independent Bernoulli random vari-
ables. We calculate the function which is the mini-
mum of the performance (X)S  
 

[ ]2 : ( | X)U y E S y→  (22) 
 

Then a stochastic simulation sample can be developed. 
We then evaluate the performances of these probabil-
ity vectors for the CE algorithm 2, constrained condi-
tion of Eq. (21), with the best performance as our 
final solution to the problem. The CE algorithm for 
the uncertainty estimation of redundancy systems is 
outlined below, which is similar to the rare-event 
simulation algorithm described in section 3.3.  

Algorithm 2: CE algorithm for uncertainty estima-
tion of redundancy systems 

Step 1. Set 1t =  (iteration counter). Start with 
some 0p̂  such as  

 

0

0.5 0.5
ˆ

0.5 0.5
p

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

  

 
Step 2. Draw a sample 1X , ,XNL  from step 2.1 to 

step 2.6.  
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Step 2.1. Set 2 ( ) 0U y = , 1i = . 

Step 2.2. Generate 
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⎛ ⎞
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⎜ ⎟
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 from the 

Bernoulli vectors with success probability vector 
1ˆ tp − . 

Step 2.3. 2 2( ) ( ) ( | X)U y U y S y← + . 
Step 2.4. ( ) 2 ( )iS U y= . 
Step 2.5. Set 2 ( ) 0U y = , 1i i= + . 
Step 2.6. Repeat from step 2.2 to Step 2.5 N times. 
Step 3. Calculate the performance (X )iS  for all i, 

and order them from smallest to biggest, 
(1) ( )NS S≤ ≤L . Let ˆtγ  be the sample (1 )ρ−  -

quantile of performances: (1 )t NS ργ −⎡ ⎤⎢ ⎥
= , provided 

this is less than γ . Otherwise, put t̂γ γ= . 
Step 4. Use CE method to generate an adaptive up-

dating of P̂t , via the following formula [27] 
 

}{ { }

}{

( ) 11
,

( )1

ˆ i t ij

i t

N

S Xi
t j N

Si

I I
p

I

γ

γ

Χ ≥ ==

Χ ≥=

=
∑
∑

  

 
where 1, ,j n= L , ,1 ,

ˆ ˆ ˆP ( , , )t t t np p= L  and 
1X ( , , )i i inX X= L  

Step 5. Reiterate from step 2 until the stopping cri-
terion of min Var(Pt) is met. 

In the situation described in Section 2.2.2, only one 
optimal time series exists but where many time series 
can be the possible dynamic subsystem failure modes, 
whose reliabilities of component links are very close 
to 1. The probability vector of the CE algorithm 2 for 
the uncertainty estimation could oscillate, and this 
would increase the computational effort. In such cases, 
consider an auxiliary parameter β  and a certain 
threshold δ  in Fig. 7, say 0.05β = , 3δ = , and 
then in Fig. 7 the solid lines probabilities are 1 and the 
candidates broken lines’ probabilities lie in the ranges 
[1 ,1]β− . Algorithm 2 may terminate once the num-
ber of probabilities that lie between [1 ,1]β−  falls 
below the threshold δ . We then can generate all the 
candidate probability vectors according to probability 
vectors of the time series.  

 
5. Numerical results 

The two algorithms developed above are hybrid al-
gorithms in which the Monte Carlo simulations and 
CE optimization algorithms are combined. A general 

computational framework of event estimation and 
condition monitoring of redundancy systems can be 
developed from the two algorithms. In this section we 
give an example of the framework for the event esti-
mation problem. It mainly includes how to generate 
stochastic shortest path by the shifted exponential 
distribution. For simplification, the following illus-
trates the procedure of a shortest path estimation 
problem. 

The shortest path in a stochastic network can be de-
fined as  

 

1, ,
(X) min

j

ij
i

S X
=

∈

= ∑L M
M

 (23) 

 
․ M  is the number of complete paths from a 

source to a sink; 
․ jM  is the j-th number of complete paths; 
․ 1X ( , , )nX X= L  is the reference vectors of com-

ponents; 
․ iX , 1, ,i n= L , represent the weights of the links; 
․ (X)S is the total length of the shortest path from a 

source node to a sink node.  
Assume 1Exp( )X u−∼  and the shortest path ex-

ceeds some fixed γ , then we have 
 

}{
11 1

( )
xu

u Sl I u e dx e uγγ
γ

−∞
− − − −

Χ ≥= = =∫E  (24) 

 
and the optimal importance sampling density of X  
becomes 

 
1 1

1
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=
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Eq. (25) suggests that *( )g x  is the shifted expo-

nential distribution of X . Thus, we can use a virtual 
path to implement the shifted processing from 
pdf (x;u)f  to the importance sampling density 

(x;v)f . That is from  
 

1 1

1(x;u) exp
nn

j

j jj j

x
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to 
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1(x;v) exp
nn

j
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Fig. 8. Shortest path simulation from A1 to A2. 

 

 
 
Fig. 9. The probability density updating in the virtual path 
from A1 to A2. 

 
The CE method has the high efficiency for simulat-

ing a rare-event problem and it can be used in simu-
lating various combinational optimization problems. 
In practice, most combinational optimization prob-
lems can be transferred as a rare-event model and can 
be solved by the above shortest path computational 
framework. For example, to estimate the distribution 
of paths from a node to another, say i to j, in a travel-
ing salesman problem model with a performance less 
than or equal to some γ , we can count the number of 
paths going from i to j which has a performance less 
than or equal to γ , and divide the number by the 
total number of paths passing through node i whose 
performance is less than or equal to γ . Then, it can 
be simulated as a rare-event problem by the CE algo-
rithm. The principal outcome of the CE approach is 
the construction of a random sequence of solutions 
which converges probabilistically to the optimal or 
near-optimal solution of combinational optimization 
problems. 

As a numerical example of Algorithm 1, we give 
the statistical moments of a system whose links are 
relative ranking failure events. Fig. 8 assumes that the 
system failure mode is A1A 2 , while its failure time 
series include A1B2A 2  and A1B1C2B2A 2 . Sup-
pose we need to estimate the probability that the mini-
mum path from A1 to A2 is greater than γ =2. 

Given the initial parameter u= (0.25, 0.35, 0.1, 0.2, 
0.4), with n=5, N= 1000, 0.1ρ = , and that the final 
iteration of constrained condition in Eq. (17) has rela-
tive error RE=0.03. Fig. 9 illustrates the probability  

Table 1. Evolution of the sequence { }( , )t tvγ . 
 

 
 

density shifted processing from u= (0.25, 0.35, 0.1, 
0.2, 0.4) to the reference parameter v= (1.2715, 
1.2832, 0.1791, 0.9736, 1.1325) corresponding to the 
virtual path with the source node A1 to the sink node 
A2.  

Table 1 gives the detailed evolution of the CE algo-
rithm with the adaptive updating sequence { }( , )t tvγ  
of the reference parameter tv  and the level parame-
ter tγ . 

Using the estimated optimal parameter vector 5v = 
(1.2715, 1.2832, 0.1791, 0.9736, 1.1325), the final 
step with N1=105, we get an estimate of 

51.18 10l −≈ ⋅$  with an estimated RE of 0.03. This 
result was computed in less than half a second on an 
AMD processor with 512 M RAM.  

 
6. Conclusions 

The idea underlined in the paper is to relate the un-
certainties of failure modes of subsystem events and 
the uncertainty of the entire system. By adequate 
partitioning of the event space, the exclusive or inclu-
sive relation analysis of component events, which are 
conditional moment-constrained information, can 
provide a better insight into the system reliability. 
This paper discusses the uncertainty estimation prob-
lem of reliability redundancy because redundancies 
are inherent in the majority of complex engineering 
systems. The CE method, which is a well known 
stochastic simulation approach, is introduced to solve 
the reliability optimization problems of redundancy 
systems. For eliminating the uncertainties of system 
failure possibilities, the CE method algorithm em-
ploys a stochastic counterpart method, which trans-
forms the original deterministic events into an associ-
ated stochastic one, and handles the relative rankings 
of events for solving the complex constrained combi-
national optimization problem. 

A general computational framework of redundancy 
system failure diagnosis and condition monitoring can 
be developed based on the CE method. The tradi-
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tional probabilistic engineering system analysis is 
difficult to solve the uncertainty problem of the ran-
dom and deterministic events. However, the CE 
method, which is a convex method based on probabil-
istic and non-probabilistic set-theory, considers 
events as abstract concepts and the relations among 
events are characterized axiomatically. By using the 
shifted probability distribution function, it is obvious 
that the CE method can deal successfully with both 
the rare-event simulation and the uncertainty estima-
tion of redundancy systems. For highly redundant and 
robust systems, in which most components link reli-
abilities are close to 1, relative rankings analysis has 
become more important than the exact values of vari-
able reliabilities. The concept of the virtual path cor-
responding to relative ranking probabilities and the 
shifted probability density function illustrates a sim-
ple framework and an efficient strategy for develop-
ing the mechanism of generating random data sam-
ples. It will dramatically expand the applications of 
the CE method on reliability optimization of redun-
dancy systems. 
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Nomenclature----------------------------------------------------------- 

φ   : Convex function in general  
Φ   : Impossible event 
ξ   : Random sample parameter 
µ   : Base measure 
A   : Failure event of component A 

k
nC  : Number of combination (n; k) 

D   : Kullback-Leibler cross-entropy 
E   : Random event in general 

ijE  : Failure event of system component 
subE  : Subsystems failure events 
fE  : System failure event 

E   : Expectation 

uE  : Expectation taken with respect to u  
f   : Probability density function 
ln   : Natural logarithm 
I   : Definite failure event of system 

AI   : Indicator function of event A 
l   : Length parameter of event 
( )l γ  : Performance evaluation of event 

M  : Mutual information 
im   : Number of random variables 

M  : Number of complete paths 
jM  :  j-th complete path 

N   : Number of samples for a normal step 
1N   : Number of samples for the final step 
SN  : Number of system failure modes 
tN  : Number of failure time series 
( )ijP E  : Probability of ijE  

uP  : Probability taken with respect to u  
S  : Performance function of length 

( )iS  : i-th order statistic 
T   : Auxiliary function of S  
u   : Nominal reference parameter (vector) 

:U x  : Sample function 
v   : Reference parameter (vector)  
W   : Likelihood ratio 
x, y  : Vectors 
X,Y  : Random vectors/matrices 
l$ , p̂  : Estimated reference parameters 
ρ  : Rarity parameter 
γ   : Level parameter of event 

*γ  : CE optimal level parameter of event 
β  : Auxiliary parameter  
δ   : Threshold 
Exp  : Exponential distribution 
RE  : Relative error 
Var  : Variation error 
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