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HYBRYDOWY ALGORYTM WZAJEMNEJ ENTROPII DO OCENY NIEZAWODNOŚCI 
SYSTEMÓW TYPU KONFIGURACJA-REDUNDANCJA

A HYBRID CROSS-ENTROPY ALGORITHM FOR RELIABILITY ASSESSMENT OF 
CONFIGURATION-REDUNDANCY SYSTEMS

Stosowane w praktyce inżynieryjnej różnorakie redundancje zwiększają dostępność danego systemu zarazem powiększa-
jąc jego złożoność, co czyni niepewnymi ocenę niezawodności i wykrywanie uszkodzeń komponentów systemu. Wobec 
powyższego, poddano badaniom system typu konfi guracja-redundancja oraz sformułowano jego funkcję niezawodności. 
Kiedy niedostępna jest wiedza na temat poprzednich uszkodzeń komponentów systemu, problem uszkodzeń systemu 
ma charakter problemu stochastycznego. Tymczasem, aby wyeliminować niepewność systemu, konieczne jest wykry-
cie uszkodzeń w serii komponentów. Zaproponowano model przewidywanej najkrótszej ścieżki oraz model wykrywania 
uszkodzeń mające służyć optymalizacji niezawodności. Metodę wzajemnej entropii wykorzystano jako algorytm heury-
styczny do oceny niezawodności systemu i wykrywania uszkodzeń komponentów. Zastosowane stochastyczne podejście 
do generowania próbek  umożliwia otrzymanie ważnych próbek. W celu poprawienia wydajności obliczeniowej, stwo-
rzono hybrydowy algorytm wzajemnej entropii, który łączy w sobie stochastyczne podejście do generowania próbek i 
metodę wzajemnej entropii. Wyniki numeryczne wskazują na potencjalną poprawę alokacji niezawodności złożonych 
systemów, która prowadziłaby do jak najlepszego działania wszystkich komponentów systemu.

Słowa kluczowe: ocena niezawodności, konfi guracja-redundancja, optymalizacja systemu, metoda 
wzajemnej entropi, generowanie próbek stochastycznych.

Engineering practices with various redundancies increase the availability of a system as well as complexity which bring the 
uncertainty of reliability estimation and failure detection of system components. Under such conditions, a confi guration-
redundancy system is studied and the reliability function of the system is formulated. When no prior failure of system 
components is available, failure problem of system is a stochastic shortest path problem. Meanwhile to eliminate the uncer-
tainty of system, it is necessary to detect failures series of components. The expected shortest path model and failure detecting 
model are proposed for system reliability optimization. The Cross-Entropy (CE) method is applied as a heuristic algorithm 
to estimate the system reliability and detect the failure of components. A stochastic sample generating approach is designed 
to obtain some valid samples. In order to improve the effi ciency of computing, a hybrid CE algorithm which combines the 
stochastic sample generating approach and the CE method is developed. Numerical results indicate potential improvements 
in reliability allocation of complex systems that would lead to the best performances of all system components.

Keywords: reliability assessment, confi guration-redundancy, system optimization, cross-entropy 
method; stochastic samples generating.

1. Introduction

Physical and functional redundancies are the two basic 
redundancy allocations for reliability optimization. Physical 
redundancy allocation means the use of multiple independent 
hardware channels, such as adding redundancy components 
or using redundancy in the form of standby components and 
subsystems [2-3, 13, 17, 42, 43]. Functional redundancy has 
its initial meaning of use of mathematical relations to obtain 
the redundant measurements or functional compensation [1, 4, 

10, 39] for control systems. In most cases the performances of 
a failure-dependent system are related to its configuration. An 
initial disturbance may cause some components to fail by ex-
ceeding their loading limit, and failures of these components 
always incur the failure of another component. It is recognized 
[37] that it is difficult to obtain the reliability of a complex 
system at the optimal level only based on single redundancy 
method. System configuration is the arrangement of elements 
or subsystems. Inspired by the idea of redundant measurement 
by the method of functional redundancy, system reliability can 
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be changed by adding the redundancy functions to its con-
figuration which is defined as configuration-redundancy [11]. 
Instead of directly adding redundancy elements to improve 
system reliability, the configuration-redundancy improves per-
formance of a system by providing multiple functions of system 
elements essentially. The redundancy functions of components 
can correlate with each other and together form system redun-
dancy of output functions. Therefore for maximizing the reli-
ability of a system, the configuration-redundancy technology 
is concerned as a novel technology in modern engineering sys-
tem design. Some complex systems consist of large numbers of 
components that can also have various redundancy functions, 
and these components functioning together form system con-
figuration redundancies. Nevertheless for the reason that redun-
dancy is essentially different from reliability, the redundancy is 
not completely capable of compensating for the interacting and 
varying failure modes of a complex system. One of the main 
obstacles facing current applications of redundancy allocation 
is the dataset dimensionality, which brings the possible inac-
curate estimation of reliability indices.

Effective models and algorithms of reliability allocation 
make the applications of redundancy in practical engineering 
systems become possible. Diversified redundancy models have 
been developed for several decade years. It is obvious that to 
determine an optimum reliability redundancy allocation for 
a complex system, accurate models of the process which can 
completely describe the process mechanisms should be consid-
ered in advance [14]. For realizing the relationship of redun-
dancy and reliability, active survivability methods [35, 38] are 
always associated with logic analyses to evaluate the uncertainty 
problems of redundancy. Among all different redundancy mod-
els, reliability of components or subsystems can be classified 
as binary-state or multi-state performances. The binary-state 
means that a system or its components can only take two pos-
sible states, working or failed. A multi-state system can perform 
its intended function at multi-state processes, from perfectly 
working to completely failed. Meanwhile, traditional reliability 
models are always based on the assumption that a system and its 
elements have the characteristic of independent failures. Inde-
pendent failures imply that the failure of one component has no 
affect on the remaining components. In reality, the assumption 
is not necessarily true. Often in a multi-state system, the failure 
of a component affects in some way one or more of the remain-
ing components of the system such as acting as a shock [24-27], 
or forcing the remaining components to be progressively more 
loaded as the failure proceeds [9]. These affections may cause 
performance delay or failure of other components which in turn 
would result in the system dynamic cascading failures. 

Many everyday tasks in reliability research involve solving 
complicated combinational optimization problems. Throughout 
the researches made up to date, different parametric optimiza-
tion algorithms have been considered and very complex math-
ematical formulas for reliability indices are formulated [2, 23, 
40]. Yet in practices it is possible that these models still produce 
incorrect outputs for some ordinary inputs. It is suggested [2] 
that the traditional techniques of parametric optimization are 
insufficient to calculate all logical faults of a multidimensional 
redundancy model in the extreme case. It is well known that 
such a problem of system optimization is NP hard [5]. An in-
creasingly popular approach is to tackle the problem via sto-
chastic algorithms [22, 28, 36, 41], especially via some hybrid 

algorithms of simulation methods and certain heuristic algo-
rithms [7, 12, 19]. The majority of recent works in the reliability 
research areas have been devoted to develop various heuristic 
algorithms solving complex system reliability problems. Kuo 
[20] provided a particular survey of the literature classification 
of Meta-heuristic methods, including Genetic algorithm (GA), 
Simulated Annealing algorithm (SA), Ant Colony Optimization 
(ACO) and Great Deluge Algorithm (GDA), etc, which have 
been successfully applied in optimal reliability design because 
of their robustness and efficiency.

Another adaptive heuristic algorithm called the Cross-En-
tropy (CE) method [8] has been proposed in recent years. The 
entropy concept plays a fundamental role in modern informa-
tion fields which provides new tools for reliability optimization 
[15, 30]. The CE method derives its name from the cross-entro-
py distance, and was renowned by an adaptive algorithm for es-
timating probabilities of rare-events involves CE minimization 
[16, 32-33]. The power and generality of this new method was 
soon realized when used for solving the uncertainty problems 
of discrete events. One advantage of the CE method is over 
routing algorithms that to detect possible shortest routings of 
a system to failure, which can effectively simulate the excess 
capacity of a system when conditions are not uniform [34]. One 
important uncertainty inherent to the reliability of a system 
concerns the different conditional failure rates of system com-
ponents whose failure distributions may be changed. In such 
cases the completion time of system performance can be con-
sidered as a random variable, and simulation for the reliability 
objective function is “corrupted” with an additive mass “noise”. 
It is inspiring that the CE method can deal successfully with 
both deterministic and “noisy” problems which typically occur 
in the reliability optimization problems. The CE method deals 
these noisy problems with some adaptive algorithms which can 
be found in Refs.[6, 18, 29]. 

The rest of the paper is structured as follows. In section 
2, a configuration-redundancy system model is illustrated and 
the structure function and reliability function of the system 
are formulated. In section 3, two problems about reliability 
evaluation and failure detection of the system are proposed. In 
section 4, the basic principles of the CE method are introduced 
and a stochastic samples generating approach is developed. 
Then, hybrid CE method which is used to solve reliability op-
timization problems of Configuration-Redundancy systems 
is designed. We illustrate the effectiveness of the hybrid CE 
algorithms via a number of numerical experiments in section 
5. Finally, in section 6, we present our conclusions and future 
research.

2. Model Description and Reliability Function 

2.1. Reliability Model of Configuration-Redundancy System

Modern reliability models always assume that a complex 
system be a multistate system. Active redundancy defines every 
element of a system is operating and the system can continue 
to operate despite the loss of one or more redundancy elements 
Levitin et al. [21] developed a joint active redundancy model 
which is generally used for optimizing the reliabilities of multi-
state systems. In this kind of models, a system that consists of 
n components connected in series is considered, and each sub-
system can contain no more than Bmax elements of various types 
connected in parallel. In view of the deterministic element ar-
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rangement of subsystems, we can regard the system as “static” 
redundancies.

This paper studies another kind of redundancy model, 
which is defined as configuration redundancy [11]. Similar 
to the definition of joint redundancy of multistate systems de-
scribed above, a configuration redundancy model is illustrated 
in Fig.1. Consider an active redundancy system which consists 
of n components, A1,...,An, connected in series and each compo-
nent contains no more than Bmax different functions connected 
in parallel. Let 
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     (1 ≤ mi ≤ Bmax) 

be the set of functions of components of the system, where 
functions of the same first subscript with different second 
subscripts, such as a11,...,a1n, are of the same characteristic 
corresponding to the system function demands. Assume any one 
out-of-order combination of n different functions aij (1 ≤ i ≤ mi, 
1 ≤ j ≤ n) connected in series has the same output function. The 
reliabilities of functions of a component can differ according to 
their characteristics. Then, each component has N-1 dimension 
functional redundancy. Taking into the consideration of adap-
tive function arrangement of components, we define the system 
as “dynamic” redundancy.

It can be seen that the structure of a configuration-redun-
dancy system is essentially different from the traditional redun-
dancy models. The system only contains N components and 
each component has different redundancy functions rather than 
physical redundancies. The configuration-redundancy system 
model shows how all components form a system, and reflects 
the dynamic interrelationships of all the system functions. In-
stead of directly improving reliability of the system’s elements, 
the redundancy model improves reliability of the system by 
providing multiple subsystem configurations. In such a redun-
dancy allocation model, system can be considered to have dif-
ferent redundancy structure of permutation and combination, 
which is formed by parallelizing function of multiple configu-
rations.

2.2. Reliability Function of Configuration-Redundancy System

2.2.1. Structure Function

The structure function of a system expresses the state of 
the system in term of the states of all components. Let A = (ai, 
i = 1,...,n) be the set of all components of a system. Use 
xi to represent the state of component i and define variables 

x = (x1,...,xn) represent the states of all components of the 
system. Assume the state of each component Ai is a binary vari-
able: xi =1 if the component works and 0 otherwise. Then the 
state of the system, s say, is a binary variable as well, s = 1 if 
the system works and 0 otherwise. We assume that there exists 
a function  such that 

 s=ϕ(x) (1)

This function is defined as the structure function. A series 
system is defined as a system which only functions when all 
components are operational. Its structure function is given by 

  (2)

A system that functions if and only if at least one com-
ponent is operational is called a parallel system. Its structure 
function is 

 (3)

The structure function of a configuration-redundancy system 
can be developed by analyzing its series-parallel configuration. 
The output function of a configuration-redundancy system can be 
comprised by a corresponding list of sub functions in the design 
stage. For each component of the system, different components 
can be designed into containing all or part of the list of sub 
functions. Let Ω = (Ai, i=1,...,n) be the set of all components 
of the system. Different functions of Ai  may drop into different 
states in a different order, which makes the system drop into 
different states, denoted by S = (si, i=1,2,...,k). States in which the 
system can perform the expected output function are valid, and 
states can not perform the expected output functions are invalid. 
Define binary variables 

p p
, which represents the 

states of component Ai : xi = 1 if the i-th component works, and 0 
otherwise. Meanwhile, let vectors 1( ,..., )

iij i imx x x=  represents 
the function states of component i : xij= 1 if the j-th function of 
the i-th component is valid for the expected output functions of 
system and 0 otherwise. Then the vectors X={xij}, (1 ≤ i ≤ mi, 
1 ≤ j ≤ n) define the entire system structure. Let Φ = (ϕ1,...,ϕq) be 
the set of all structure functions of all series configurations of 
the system, where a series configuration ϕi contains n functions 
from each component and all functions are linked in series. Note 
that the system states are determined by all the construction 
functions, ϕ1,...,ϕq, of the system. For any valid state si, there 
is in Φ at least a structure function ϕi which can perform the 
expected output function of system independently. Then, the 
relationship of the number k and q is

 1 2 q
q q qC C C 2 1qk = + + + = −"

The method of paths and cuts can be used to establish the 
relationship of structure function and components states. Here, 
we assume that the structure function is monotone by defining 

  for all vectors x and y, where x < y means 
that xi ≤ yi for all i and xi<yi for at least one i. A minimal path 
vector is a vector x such that ϕ(x)=1 and ϕ(y) = 0 for all y < x. 
A minimal cut vector is a vector x such that ϕ(x) = 0 and ϕ(y) = 1 
for all y > x. The minimal path set corresponding to the minimal 
path vector x is the set of indices i for which x1= 1. The minimal 
cut set suggest that the minimal cut vector x is the set of indices 
i for which xi= 0. 

Fig.1. Structure of a configuration-redundancy system
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The structure function can be determined by the minimal 
path and cut sets. Namely, let P1,…, Pp

 
be the minimal path sets 

and K1,…,Kk
 
be the minimal cut sets of the system with struc-

ture function Φ, then, 

  (4)
and 

  (5)

The equation (4) suggests that the system works if and only 
if there is at least one minimal paths set with all components 
working. Similarly, the equation (5) means that for each of the 
cut sets the system works if and only if at least one component 
is working.

2.2.2. Reliability Function Formulation

The reliability of a component is defined as the probabil-
ity that the component will perform a required function under 
stated conditions for a stated period of time. The reliability of 
the configuration-redundancy system is 

 P[system works]=P[Φ(x)]=E[Φ(x)] 
where X is the component vector (X1,...,Xn). The function p

  is the reliability function of the system. 
We use a vector p = (p1,...,pn) to gather the reliabilities of the 
components, where pi contains mi functions of component i. 
Then, the function matrix of components of the system is

 

and the reliabilities of the functions. Assuming the 
component states are independent, the system reliabi-
lity can be expressed in terms of the vector p=(p1,...,pn). 
When the random variables Xi are independent, the re-
liability function of series and parallel systems can be 
expressed by the following formulations:
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respectively. Based on the system structure function 
Φ(X), the reliability function of configuration-redun-
dancy systems is given by

  (8)

The formulation above can be used as a general method 
to evaluate the reliability of configuration-redundancy systems. 
Note that the system structure function ϕ(x) involves the valid 
combination analysis of component functions and the random 
variables of Xi are not necessarily independent, i.e., the accurate 

value of   is difficult to obtain. When a configuration-redun-
dancy system contains a large number of components, the ex-
act value of the system reliability is not feasible to be obtained 
directly from the formulation. To optimize a configuration-
redundancy system, it is reasonable to expect that the reliability 
of each component is the same. According to the maximum 
entropy principle when all subsystem failure events have the 
same failure probability in a series system, the system reliabil-
ity amounts to the maximum and the entropy of system reli-
ability equals to log m. 

3. Reliability Evaluation of Configuration-Redundancy System

Due to the complexity, we design two stochastic simulation 
models to evaluate and detect uncertain reliability problems of 
configuration-redundancy system. The first model is to search 
for the expected shortest path which can provide the information 
for further system reliability optimization. The second model 
deals with the failures time series of components and functions 
to eliminate the uncertainties of system failures.

3.1. Expected shortest path model

For a complex system there are many ways in which 
component failures interact, which result in that random vari-
ables Xi of component states are usually not subject to the inde-
pendent failures. The uncertainty of failure interactions would 
result in the system dynamic cascading failures. In such situa-
tions the decision-makers expect to find the path with the mini-
mum expected time of system performance, which help them 
make decisions for reliability optimization of system. Use wij 
to denote the length of xij, and use T(x,w) to represent the total 
length of a random failure path of system. Thus, the reliability 
evaluation problem of the configuration-redundancy system is 
transferred to be a stochastic path problem. That is

 
1

 (x , ) ,  (1 )    
im

i ij ij i
j

min T w w x i m
=

⎧ ⎫
= ≤ ≤⎨ ⎬

⎩ ⎭
∑  (9)

In order to depict the stochastic shortest path problem, 
a directed weighted graph [ , ]ℑ = ` A  is considered as an 
auxiliary tool. The graph ℑ  consists of a finite set of nodes 

{1,2,... }im=`  and a set of routes A, in which the lengths of the 
routes are assumed to be stochastic. Each route is denoted by 
an ordered pair (i, j), where ( , )i j ∈A . It is assumed that there 
is only one route A from i to j. Moreover, the nodes in a acyclic 
directed graph [ , ]ℑ = ` A  can be renumbered so that i<j for all 
( , )i j ∈A. Use  to represent the journey for 
i to j, where xij=1 means that the vector (i,j) is in the route, xij= 0 
means that the vector (i,j) is not in the route.

It has been proved that  is a route from 
nodes 1 to n in a directed acyclic graph if and only if 
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  (10)

where xij=1 or 0 for any ( , )i j ∈A. 
For a given expected time of system performance to failure, 

say γ, we expect the length of the shortest path of system will 
exceed γ. Then the stochastic shortest path problem of the 
configuration-redundancy system is to estimate
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   (11)

3.2. Failures Detection Model 

Detecting the failure series of a system is necessary to elim-
inate the uncertainty of system failures. Suppose that we do not 
know the real failure time series X of a configuration redundancy 
system, we may introduce auxiliary vectors Y={yij},(1 ≤ i ≤ n, 
1 ≤ j ≤ mi) to reconstruct the failure vector X, where i = (1,...,n) 
and j = (1,...,mi) corresponds to the component failures and 
function failures, respectively. To identify the failure time series 
of system, we use random simulation, S(y | X), to represent the 
number of failure matches between the vectors of y and X. Use 
an algorithm to solve the maximum problem of S(y | X), which 
can confirm the failure series of the system components and 
functions. The problem is to solve 

  (12)

4. A Hybrid Algorithm 

The minimization and the maximization problems of 
Eq.11 and Eq.12 formulate a typical stochastic path problem 
and a combinatorial optimization problem, respectively. For 
a multi-dimensional system, an exhaustive examination of all 
possible solutions is unrealistic. A heuristic searching algorithm 
is needed to solve the problem. We now focus on the recently 
developed heuristic family of the CE method. It has been proved 
[31] that the CE method has the theoretical global convergence 
property for most practical stochastic problems.

4.1. Stochastic Samples Generating Approach

To solve the problems above, we need to generate a start 
random sample. Using the start sample path we can construct 
prearrange samples for heuristic algorithm updating the pa-

rameters at each of iterations. Firstly, we develop a stochas-
tic samples generating algorithm for simulating the expected 
shortest path model. For convenience, ξ is presented in another 
way  as , where mi is the number of the random 
variables of functions of component Ai. Then, we calculate the 
following function:

  

Here we design a stochastic generating as follows:

Step 1. Set U1(x) = 0.

Step 2. Generate ξ = (ξ1,...,ξn) from the distribution functions.

Step 3. U1(x) ← U1(x) + T(x,ξ).

Step 4. Repeat the second and the third steps N times.

Step 5. U1(x)  = U1(x)/N.

Secondly for the failures detecting problem, let y represent 
a random paths which is 

 

where yij are independent Bernoulli random variables. We cal-
culate the value 

  U2 : y → E [S ( y | X )]

Then a stochastic simulation sample can be developed as 
follows:
Step 1. Set U2 (y) = 0, t = 1.

Step 2. Generate 
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 from the Bernoulli 

vectors with success probability vectors pt-1.

Step 3. U2 (y) ← U2 (y) + S (y).  

Step 4. Repeat the second and the third steps N times.

Step 5. U2 (y) = U2 (y) / N.  

4.2. The CE Method

A tutorial on the Cross-Entropy method is presented in 
Ref.[8]. The usual CE procedure is to construct a sequence of 
reference vectors and converges to the degenerate probability 
that corresponds to the optimal vector. In the field of combina-
tion optimization problems, the CE method can be readily ap-
plied by first translating the underlying optimization problem 
into an associated estimation problem which typically involves 
Rare-Event estimation. The processes of the CE method for 
Rare-Event estimation referred to Rubinstein’s book [31], is as 
follows:
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Suppose we wish to search for a general minimization 

problem, such as 
1

 ( )
n

i i
i

min S x c x
=

= ∑ , over all states x in some 

set X. Let us denote the minimum of S(X) by γ*, that is 

  (13)

where x* is the optimal vector. To proceed, we first randomize 
x by defining a family of   on the set X. 

Next, we associate with the estimation of 

  (14)

A viable method to estimate l of Eq. (14) is to use a stochastic 
simulation method. Draw a random sample X1,...,XN from the 
distribution of X, and use

  (15)

as the unbiased estimation of l. However, for large γ the prob-
ability of l is very small, a crude stochastic simulation method 
require a very large N to obtain a small relative error. The CE 
method uses an adaptive likelihood ratio to solve the problem. 
It can be seen that there are in fact two possible estimation prob-
lems associated with Eq. (14). For a given γ we can estimate l, 
or for a given l we can estimate γ alternatively. For some large 
fixed γ and a small relative error (RE), a better way to perform 
the simulation is to use importance sampling as

  (16)

where the subscript g means that the expectation is taken with 
respect to g. We define 

  (17)

as the likelihood ratio.
The CE method solves the problem efficiently by making 

adaptive changes to the probability density function f(X) and 
g(X). The changes are aimed to the minimum of their cross-
entropy for obtaining the maximum likelihood ratio

  (18)

by defining any reference parameter v. Thus the optimal solu-
tion of (16) can be rewritten as

  (19)

However the accurate value of v* always can not be ob-
tained directly, we may estimated v* by solving the following 
stochastic counterpart, that is

 (20)

where X1, … , XN is a random sample form f ( • ; w). When the 
function D in (18) is convex and differentiable with respect to v, 
v* can be solved by the following iterations of simulated cross-
entropy program,

 (21)

Thus the program creates a sequence f (• ; v) of pdfs that are 
“steered” in the direction of the theoretically optimal density 
f (• ; v*), which corresponds the degenerate density at an opti-
mal point. In the adaptive process, the CE method simultane-
ity generates an adaptive updating of γt and vt sequence, {γt,vt}. 
The sequence converges quickly to a small neighborhood of the 
optimal { γ*,v*}.

4.3. Hybrid CE Algorithms

A start random sample is necessary for the CE method cre-
ating the iterative sequences. We integrate stochastic sample 
generating approaches and the CE method to design hybrid 
simulated algorithms. The kind of hybrid algorithms contain 
two stages described as follows:

Stage 1: Generate the stochastic paths according to pdfs of 
the random variables for the problems. Rearrange the sequence 
of reference vectors for adaptive updating of the process 2.

Stage 2: Using the CE method to search for the optimal 
parameter vector.

4.3.1. Failure Series Detection Algorithm

Use a Markov chain to represent random path y. The Mark-
ov chain transfers from node 1 to the end node after 

y
  

steps. Let 
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denotes the one-step transition matrix of the Markov chain. 
Once the P is converged to the optimal parameter vector, say 
p*, the real failure time series vector X is determined. The main 
algorithm for updating pi is as follows. 

Algorithm 1

Step 1. Start with some p0. Set t =1 (iteration counter).

Step 2. Use the stochastic samples generating approach to 
generate random samples with success probability vector pt-1. 
Calculate the performance S(yi) for all i, and order them from 
smallest to biggest, (1) ( )NS S≤ ≤" . Let γt be the sample (1-ρ) 
-quantile of performances, γt=S[(1-ρ)N], provided this is less than 
γ*. Otherwise, put γt=γ*.

Step 3. Use the same sample to calculate pt = (pt,1,...,pt,n), for 
j = 1, …, n, via

  

 
where yi= (yi1,...,yin).

Step 4. If the stopping criterion is met, then stop. Otherwise set 
t = t + 1 and reiterate from step 2.
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4.3.2. Computing of the Shortest Path 

By checking the system state if a configuration system is 
functioning at time t =1, we can change the distributions of 
random variables for the shortest path estimating problem. 
The aim is to translate an estimating problem of independent 
Bernoulli random variables into an estimating problem 
involving dependent exponential random variables. Ref.[31] 

gave a detail on how to translate the distributions of random 
variables. In other words, if the distributions of functions of 
a component xi belong to a natural exponential family, the 
probability density of xi is

  1 1

1(x , ) exp
ii mm

ij
i

j ji j i j

x
f u

u u= =

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∏

and the likelihood of Eq. (18) is changed into 

1 1

(x; ) 1 1W(x; , ) exp
(x; )

mm
j

j
j jj j j

vf uu v x
f v u v u= =

⎛ ⎞⎛ ⎞
= = − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∏  (22)

Then, the updating program of Eq. (21) always become the 
following form,

  (23)

However, the CE method is difficult to compute such 
problems [34] if the probability of the shortest path is too 
small, say smaller than 10-5. It is important to note that the CE 
method is efficient when the probability of the shortest path is 
not too small. A two-level algorithm can be used to overcome 
the difficulty. In the first level of iteration in the algorithm, 
γt is updated, and in the second level vt is updated. When the 
distributions of f (x ; v) belong to a natural exponential family 
that is parameterized by the mean, the general algorithm for 
computing the shortest path is as follows.

Algorithm 2 

Step 1. Define v0= u. Set t =1.

Step 2. Use the stochastic samples generating approach to 
generate a random sample according to the pdf f(•;vt-1). Cal-
culate the performance S(Xi) for all i, and order them from the 
smallest to the biggest, (1) ( )NS S≤ ≤" . Let γt be the sample 
(1-ρ) -quantile of performances, γt=S[(1-ρ)N], provided this is less 
than γ*. Otherwise , put γt=γ*.

Step 3. Use the same sample to calculate, for j = 1, …, n

 

 Step 4. If γt= γ*, then proceed to step 5; Otherwise set t = t +1 
and reiterate from step 2.

Step 5. Let T be the final iteration. Generate a sample X1,...,XN1 
according to the pdf f (• ; vt) and estimate l via the important 
sampling estimator

 

5. Numerical Results

5.1. Example 1

As a example, assume the case where 

 

Using the initial parameter vector

  

0

0.5 0.5 0.5 /
/ 0.5 / 0.5

p
0.5 0.5 0.5 /
0.5 / / 0.5

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

and taking N = 100, ρ = 0.1, the algorithm 1 quickly yields the 
result given in Table 1. We notice that pt and γt converge very 
quickly to the optimal parameter vector p* = y and optimal 
performance γ* = 10 respectively. The table was computed in 
less than half 1 second.

Tab. 1. The evolution of the sequence {γ
t
=p

t
}.

t      γ
t

p
t

0

1

2

3

4 

7

9

10

10

0.50

0.60

0.80

1.00

1.00

0.50

0.4

0.80

1.00

1.00

0.50

0.00

0.00

0.00

0.00

0.50

1.00

1.00

1.00

1.00

0.50

0.00

0.00

0.00

0.00

0.50

0.20

0.00

0.00

0.00

0.50

0.00

0.00

0.00

0.00

0.50

0.40

0.80

1.00

1.00

0.50

0.40

0.40

0.00

0.00

0.50

0.80

1.00

1.00

1.00

5.2. Example 2

To illustrate the effectiveness of the hybrid CE algorithm 
for the shortest path estimating problem, a 6-node graph of Fig. 
2 with random “weights” X1,...,X12 is considered. 

Fig. 2. Shortest path from A to F
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Let S(X) be the total length of the shortest path from 
node A to node F. Suppose the weights are independent and 
exponentially distributed random variables with means u1,...,u12. 
The nominal parameter vector u is given in Table 2. Using the 
means of weights, we can calculate the unreliability qi of each 
link. 

Tab. 2. “Weight” and unreliability of each link

X(i) u
i

q
i

X(i) u
i

q
i

X(i) u
i

q
i

X1

X2

X3

X4

1.0

0.1

0.8

0.1

2.72e0

4.54e-5

2.87e-1

4.54e-5

X5

X6

X7

X8

0.2

0.3

0.4

0.6

6.74e-3

3.57e-2

8.21e-2

1.89e-1

X9

X10

X11

X12

0.5

0.3

0.7

0.9

1.35e-1

3.57e-2

2.40e-1

3.29e-1

Define the relative error as the index of estimating error, 
which is 

  

where l* is the actual value and l is the estimate value of the 
shortest path. For convenience, we select the mean value as 
the actual value. Assume the minimum path is greater than 
γ = 3. Table 3 displays the estimated optimal parameter of the 
hybrid CE algorithm, using N = 1000 and ρ = 0.1. This table was 
computed in less than 1 second. Using the estimated optimal 
parameter vector of v5 described in Table 3 and with N1= 105, 
the final step of the hybrid CE algorithm gave an estimate of 
5.95e-4 with a relative error of 3%. The simulation time was 
less than 2 seconds. 

In order to express the efficiency of this hybrid CE algorithm, 
we compute example 2 with different ρ, N and N1. It follows 
from Table 4 that the relative error does not exceed 4%.When 

we select 0.01≤ρ≤0.1, 5×102≤N≤5×103 and 105≤N1≤5×105, all 
of the simulation time are less than 10 seconds. The results 
suggest that the hybrid CE algorithm is robust to the parameters 
selecting and effective to find the shortest path of the system.

6. Conclusion and Future Research

In this paper, a configuration-redundancy system is studied 
and reliability function of system is formulated. To obtain the 
desired demands, redundancy technologies have been widely 
employed in traditional engineering practices. Redundancy im-
proves system performances by compensating its possible com-
ponent and subsystem failures. However, systems with various 
physical redundancies have brought the high cost of system and 
the complexities to system structure. Studying on reliability 
evaluation of configuration-redundancy systems will provide 
novel views for system design. For the reason that the failure of 
a component affects one or more of the remaining components 
in a system, reliability estimation of a complex configuration-
redundancy system is heavily dependent on the accurate analy-
sis of the mutual effects among possible function failure events 
of system components. 

One important uncertainty inherent to the model of config-
uration-redundancy used in the system optimization problems 
concerns the stochastic states of system component failures. 
Likelihood ratio estimators obey the laws of probability theory 
when no more prior probability is available. Conventionally 
this requires repeated evaluations of the failure probability for 
different values of the stochastic parameters, which is a direct 
but computationally expensive task. Reliability-based design 
sensitivity analysis involves studying the dependence of the 
failure probability on design parameters. The basic principle of 
the CE method are formulated and used as a versatile tool to 
detecting the possible failure time series. The implementation 
and performance of the CE method for solving the stochastic 

system failure prob-
lem are discussed. The 
results obtained are 
promising and show 
that the algorithm is 
less sensitive to the 
variations of technique 
parameters and offers 
an effective alternative 
for solving the system 
robust design with 
uncertainty.

Several issues must be resolved in future research to 
enhance the capacity of system reliability. First, based on 
the reliability research of configuration-redundancy systems 
it is feasible to evaluate integrated disposition of physical 
redundancy and function redundancy in a system. Second, 
the simulation algorithm used in this paper deals with only 
the relative rankings of system reliability. An improvement 
of the performance of the CE algorithm could be achieved by 
examining the failures of practical complex systems. Finally we 
will concern the non-convex optimization problem of complex 
systems, and the efficiency of our model and algorithm will 
be given much attention to solve such complex reliability 
allocation problems.

Tab. 3. The evolution of the sequence {γ
t
,v

t
}.

t  γ
t
  v

t

0

1 

2 

3 

4 

5 

1.2604

1.8835

2.4575

2.8746

3.0000

0.1000

1.6754

2.2494

2.8894

3.0282

3.2373

0.1000

0.1201

0.1025

0.1369

0.1146

0.0932

0.8000

1.2416

1.5802

2.0033

2.1026

2.2060

0.1000

0.0872

0.0959

0.0878

0.0959

0.0695

0.2000

0.2099

0.2033

0.2049

0.2801

0.2140

0.3000

0.2994

0.3113

0.2958

0.1945

0.2265

0.4000

0.5457

0.6759

0.6737

0.5490

0.5319

0.6000

0.5857

0.8147

0.6341

0.5023

0.5393

0.5000

0.5779

0.8009

0.7397

0.6593

0.7264

0.3000

0.3153

0.2540

0.3258

0.2053

0.2507

0.7000

0.9670

1.2388

1.3578

1.6474

1.6919

0.9000

1.4889

2.0165

2.5364

3.0674

3.1274

Tab. 4. Comparison solutions of the shortest path.

 ρ N N
1

Simulation 

time

Path 

lengths

Relative 

Error

1   

2 

 3

4

5 

6

7 

8

9

10 

0.01

0.01

0.05

0.05

0.10

0.10

0.10

0.10

0.10

0.10

1000

1000 

1000 

1000 

1000 

1000 

1000 

1000

500

5000

100000

100000

100000 

100000 

100000

200000

200000

500000

500000

200000

1.3750

1.4070

1.3750

1.4380

1.3910

2.7350

2.7970

6.9840

7.0310

3.2030

0.00059344

0.00061493

0.00062222

0.00060167

0.000604

0.00058653

0.00057352

0.00060106

0.00057756

0.00061284

0.030877

0.031567

0.036199

0.025946

0.037932

0.019577

0.034571

0.012799

0.019987

0.017413
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