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Apreliminary analysis of the posbist reliability of typical system structures
was provided by Cai et al. [Fuzzy Sets and Systems 42: 145–172 (1991) and
Microelectronics and Reliability 35(1): 49–56 (1995)]. In this paper, we
provide a detailed analysis of the posbist reliability of k-out-of-n:G system
structures. Expressions of the posbist reliability of k-out-of-n:G system is
developed. It is presented that all methods for generating membership
functions can be used in principle for constructing relevant possibility dis-
tributions. Several methods for constructing the possibility distributions
are discussed in details and a method for generating theL − R type pos-
sibility distributions is provided for posbist reliability analysis of fatigue
lifetime data of mechanical parts. Two numerical examples are given to
illustrate some of these methods.

Keywords: Posbist reliability, Gaussian fuzzy variable, system lifetime, fuzzy
reliability, possibility distributions, membership functions.

1 INTRODUCTION

The conventional reliability theory is built on the probability and the binary-
state assumptions [1]. It has been successfully used for solving various
reliability problems. However, it is not suitable when the failure probabili-
ties concerned are very small or when there is a lack of sufficient data. Among
other researchers, we mention the works by Tanakaet al. [2], Singer [3],
Onisawa [4], Cappelle and Kerre [5], Cremona and Gao [6], Utkin and
Gurov [7], Cai et al [1, 8, 9], Huang [10–12], and Huang et al [13–16]. All
these researchers have attempted to define reliability in terms other than the
probabilistic definition. The fuzzy set concept represents a new paradigm of
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accounting for uncertainty. Two new assumptions in these definitions include
the fuzzy-state assumption and the possibility assumption. The fuzzy state
assumption indicates that the state of a piece of equipment can be represented
by a fuzzy variable. The possibility assumption indicates that the reliabil-
ity of a piece of equipment has to be measured subjectively. The posbist
reliability theory is based on the possibility assumption and the binary-state
assumption.

In this paper, we provide an analysis of the posbist reliability theory and
illustrate its applications in system reliability analysis. The lifetime of the sys-
tem is treated as a fuzzy variable defined on the possibility space(U, �, Poss)

and the universe of discourse is expanded to(−∞, +∞). As suggested by
Dubios and Prade [17], we approximate the possibility distribution function
(i.e., the membership function)µX(x) by two functionsL(x) andR(x) with
a point of intersection at maxµX(x) = 1, i.e., theL − R type possibility
distribution function is adopted. The lifetime of the system is assumed to be a
Gaussian fuzzy variable, which is a specialL − R type fuzzy variable. Under
these conditions, the posbist reliability analysis of k-out-of-n:G systems is
provided in details.

Because the concept of membership function is closely related to the con-
cept of possibility distributions [18], we believe that in principle, all methods
developed for generating membership functions can be used to construct rel-
evant possibility distributions. We will further discuss the properties of the
methods for constructing possibility distributions. A method used to generate
theL−R type possibility distribution is applied to the posbist reliability analy-
sis of fatigue of mechanical parts. Finally, two examples are given to illustrate
the application of this method to generating the possibility distribution of the
fatigue lifetime of crankshaft in diesel engine.

2 THE POSBIST RELIABILITY THEORY

The assumptions of the posbist reliability theory include (1) the system failure
behavior is fully characterized in the context of the possibility theory and (2) at
any instant of time the system is in one of two crisp states: perfectly functioning
or completely failed [8].

2.1 Basic concept in the possibility context
The concept of the posbist reliability theory was introduced in details in [8].
For ease of reference, we list several basic definitions related to this theory.

Definition 1 [8]. A fuzzy variableX is a real valued function defined on a
possibility space(U, �, Poss)

X : U → R = (−∞, +∞) .
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Its membership functionµX is a mapping fromR to the unit interval[0, 1]
with

µX(x) = Poss (X = x) , x ∈ R.

Thus, a fuzzy setX is defined as

X̃ = {x, µX(x)} .

Based onX, the distribution function ofX is given by

πX(x) = µX(x).

Definition 2 [8]. The possibility distribution function of a fuzzy variableX,
denoted byπX, is a mapping fromR to the unit interval[0, 1] such that

πX(x) = µX(x)

= Poss (X = x) , x ∈ R

Definition 3 [8]. Given a possibility space(U, �, Poss), the setsA1, A2, . . . ,

An ⊂ � are said to be mutually unrelated if for any permutation of the set
{1, 2, . . . , n}, denoted by{i1, i2, . . . , ik} (1 ≤ k ≤ n), the following equation
holds:

Poss
(
Ai1 ∩ Ai2 · · · ∩ Aik

) = min
(
Poss

(
Ai1

)
, Poss

(
Ai2

)
, · · · , Poss

(
Aik

))
.

Definition 4 [8]. Given a possibility space(U, �, Poss), the fuzzy variables
X1, X2, . . . , Xn are said to be mutually unrelated if for any permutation of
the set{1, 2, . . . , n}, denoted by{i1, i2, . . . , ik} (1 ≤ k ≤ n), the sets

{
Xi1 = x1

}
,
{
Xi2 = x2

}
, . . . ,

{
Xik = xk

}
,

where(x1, x2, . . . , xk ∈ R), are mutually unrelated.

2.2 Lifetime of the system
When the conventional binary-state assumption is adopted, the failure of a
system is defined precisely. However in practice, the instant of time when a
system failure occurs may be uncertain and we may be unable to determine it
accurately. In this case, it has to be characterized in the context of a possibility
measure. According to the existence theorem of the possibility space [19], we
can reasonably assume that there exists a single possibility space(U, �, Poss)

to characterize all the uncertainties of the times of failure of the system and its
components. Accordingly, the lifetimes of the system and its components are
treated as Nahmias’ fuzzy variables defined on the common possibility space.
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Definition 5 [8]. Given a possibility space(U, �, Poss), the lifetime of a
system is a non-negative real-valued fuzzy variable

X : U → R+ = (0, +∞)

with possibility distribution function

µX(x) = Poss (X = x) , x ∈ R+.

The posbist reliability of a system is then defined as the possibility that
the system performs its assigned functions satisfactorily during a predefined
exposure period under a given environment [8], that is,

R(t) = Poss (X > t) = sup
u>t

Poss (X = u) = sup
u>t

µX(u), t ∈ R+. (1)

To simplify calculations when dealing with real-life problems, we may
expand the universe of discourse of the lifetime of a system from(0, +∞) to
(−∞, +∞), i.e.,

X : U → R = (−∞, +∞) .

In the following sections, we will show that this expansion makes the proofs
originally given in [8, 9] much simplified and the complexity of calculation is
greatly reduced without affecting the nature of the problems to be solved.

3 POSBIST RELIABILITY ANALYSIS OF k-out-of-n:G SYSTEM

Suppose thatX is the lifetime of the system. Assume that the components of
the system under consideration are mutually unrelated. That is to say, the life-
times of the components, denoted byX1, X2, . . . , Xn, are mutually unrelated.
Furthermore, we assume thatXi is a Gaussian fuzzy variable. Its possibil-
ity distribution function is given by the following equation and illustrated in
Figure 1.

µXi
(x) =




exp
(
−
(

mi−x
bi

)2)
, x ≤ mi

exp
(
−
(

x−mi

bi

)2)
, x > mi

,

x ∈ R, mi, bi > 0, i = 1, 2, . . . , n (2)

An n-component system is called a k-out-of-n:G system if it meets the condi-
tion that it works (or in “good” state) if and only if at leastk of then components
work (or in “good” state). The system fails when the number of failed com-
ponents is more thann − k. The k-out-of-n:G system is a very popular type
of redundancy in fault-tolerant system and is widely applied in both industrial
and military systems. For example, a four-engine civil airplane works when
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FIGURE 1
Possibility distribution function ofXi .

less than three engines failed, and it is regarded as a 2-out-of-4:G system.
The lifetimeX of a k-out-of-n:G system is equal to the lifetimeXd of com-

ponentd whose lifetime is thekth longest lifetime among all then components
and can be expressed as

X = order
k

(X1, X2, X3, . . . , Xn) = Xd (3)

where orderk(·) denotes thekth variable after descending ordering operation
on a series of variables. Indeed, Eq.(3) is much more complicated than previ-
ous scenarios, and it involves many different combination of variable to meet
all the possible situations. We present a 2-out-of-3:G system as follows to
illustrate the general solution procedure.

Without loss of generality, let the system lifetime be represented byX.
The system consists of three mutually unrelated components with the life-
time denoted asX1, X2, X3, and assume that they are normally distributed,
strictly convex fuzzy variables with continuous possibility distribution func-
tion µX1(x), µX2(x) andµX3(x), respectively. Then, there exists a unique
triad (a1, a2, a3), a1, a2, a3 ∈ R+, a1 ≤ a2 ≤ a3, such that

µX(x) =




max
(
min

(
µX1(x), µX2(x)

)
,

min
(
µX2(x), µX3(x)

)
,

min
(
µX1(x), µX3(x)

) )
, 0 < x ≤ a1

max
(
µX2(x), µX3(x)

)
, a1 < x ≤ a2

max
(
µX1(x), µX2(x)

)
, a2 < x ≤ a3

max
(
min

(
µX1(x), µX2(x)

)
,

min
(
µX2(x), µX3(x)

)
,

min
(
µX1(x), µX3(x)

) )
, x > a3

(4)

Proof. AsX1, X2, X3 are mutually unrelated and normally distributed, strictly
convex fuzzy variables with continuous possibility distribution function
πXi

(x) = µXi
(x). According to Theorem 4.3 in Ref. [8], there exists a unique
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real number, sayai ∈ R, such that

sup
u≥x

µXi
(u) =

{
1, x ≤ ai

µXi
(x), x > ai

, (i = 1, 2, 3) (5)

Without loss of generality, we assume thata1 ≤ a2 ≤ a3, and proofs of Eq. (4)
is presented as follows.

µX(x) = Poss(X = x) = Poss

(
X = order

2
(X1, X2, X3) = t

)
, (6)

There exist six mutually exclusive situations, and we have

Poss(X = x)

= Poss{(X1 = x, X2 ≤ x, X3 > x) ∪ (X1 = x, X2 > x, X3 ≤ x)

∪ (X1 ≤ x, X2 = x, X3 > x) ∪ (X1 > x, X2 = x, X3 ≤ x)

∪ (X1 ≤ x, X2 > x, X3 = x) ∪ (X1 > x, X2 ≤ x, X3 = x)}
= max{min(X1 = x, X2 ≤ x, X3 > x), min(X1 = x, X2 > x, X3 ≤ x),

min(X1 ≤ x, X2 = x, X3 > x), min(X1 > x, X2 = x, X3 ≤ x),

min(X1 ≤ x, X2 > x, X3 = x), min(X1 > x, X2 ≤ x, X3 = x)} (7)

Further, we have

Poss(Xi > x) = sup
u>x

µXi
(u) =

{
1, x ≤ ai

µXi
(x), x > ai

, (i = 1, 2, 3), (8)

Poss(Xi ≤ x) = sup
u≤x

µXi
(u) =

{
µXi

(x), x ≤ ai

1, x > ai

, (i = 1, 2, 3), (9)

and

Poss(Xi = x) = µXi
(x), (i = 1, 2, 3) (10)

Thus, Eq. (7) becomes

Poss(X = x) = max

{
min

(
µX1(x), sup

u≤x
µX2(u), sup

u>x
µX3(u)

)
,

min

(
µX1(x), sup

u>x
µX2(u), sup

u≤x
µX3(u)

)
,

min

(
sup
u≤x

µX1(u), µX2(x), sup
u>x

µX3(u)

)
,

min

(
sup
u>x

µX1(u), µX2(x), sup
u≤x

µX3(u)

)
,

min

(
sup
u≤x

µX1(u), sup
u>x

µX2(u), µX3(x)

)
,

min

(
sup
u>x

µX1(u), sup
u≤x

µX2(u), µX3(x)

)}

(11)
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For x ≤ a1, a1 < x ≤ a2, a2 < x ≤ a3, x > a3, the corresponding posbist
reliability can be obtained by substitute Eq. (8) and Eq. (9) into Eq. (11), and
one will arrive at Eq. (4). For instance, considering the casex ≤ a1, then we
have

Poss(X = x) = max{min(µX1(x), µX2(x), 1), min(µX1(x), 1, µX3(u)),

min(µX1(u), µX2(x), 1), min(1, µX2(x), µX3(u)),

min(µX1(u), 1, µX3(x)), min(1, µX2(u), µX3(x))}
= max{min(µX1(x), µX2(x)), min(µX2(x), µX3(u)),

min(µX1(u), µX3(x))}
(12)

�

As a result, the posbist reliability of the 2-out-of-3:G system is given as

Rk−outof −n(t) = sup
u>t

µX(u)

=




1, t ≤ a2

max{µX1(t), µX2(t)}, a2 < t ≤ a3

max(min(µX1(t), µX2(t)), min(µX2(t), µX3(t)),

min(µX1(t), µX3(t))), t > a3

(13)

WhenX1, X2, X3 are Gaussion fuzzy variables, Eq. (13) becomes

Rk−outof −n(t)

=




1, t ≤ m2

max
(

exp
(

−
(

t−m1
b1

)2)
, exp

(
−
(

t−m2
b2

)2))
, m2 < t ≤ m3

max
(

min
(

exp
(

−
(

t−m1
b1

)2)
, exp

(
−
(

t−m2
b2

)2))
,

min
(

exp
(

−
(

t−m2
b2

)2)
, exp

(
−
(

t−m3
b3

)2))
,

min
(

exp
(

−
(

t−m1
b1

)2)
, exp

(
−
(

t−m3
b3

)2)))
, t > m3

(14)

Proof.

Rk−outof −n(t) = Poss(X > t) = Poss(X = order
2

(X1, X2, X3) > t) (15)

There exist four mutually exclusive situations, and we have

Poss(X > t) = Poss{(X1 ≤ t, X2, X3 > t) ∪ (X2 ≤ t, X1, X3 > t)

∪(X3 ≤ t, X1, X2 > t) ∪ (X1, X2, X3 > t)}
= max{Poss(X1 ≤ t, X2, X3 > t), Poss(X2 ≤ t, X1, X3 > t),

Poss(X3 ≤ t, X1, X2 > t), Poss(X1, X2, X3 > t)}
(16)
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BecauseX1, X2, X3 are mutually unrelated, and according toDefinition 3 it
follows that

Poss(X1 ≤ t, X2, X3 > t)

= min(Poss(X1 ≤ t), Poss(X2 > t), Poss(X3 > t))
(17)

Poss(X2 ≤ t, X1, X3 > t)

= min(Poss(X2 ≤ t), Poss(X1 > t), Poss(X3 > t))
(18)

Poss(X3 ≤ t, X1, X2 > t)

= min(Poss(X3 ≤ t), Poss(X1 > t), Poss(X2 > t))
(19)

Poss(X1, X2, X3 > t)

= min(Poss(X1 > t), Poss(X2 > t), Poss(X3 > t))
(20)

Further, substituting Eq. (8) and (9) into Eq. (17)–(20) , we have

Poss(X > t) = max
{

min
(

sup
u≤t

µX1(u), sup
u>t

µX2(u), sup
u>t

µX3(u)
)
,

min
(

sup
u≤t

µX2(u), sup
u>t

µX1(u), sup
u>t

µX3(u)
)
,

min
(

sup
u≤t

µX3(u), sup
u>t

µX1(u), sup
u>t

µX2(u)
)
,

min
(

sup
u>t

µX1(u), sup
u>t

µX2(u), sup
u>t

µX3(u)
)}

(21)

For t ≤ a1, a1 < t ≤ a2, a2 < t ≤ a3, t > a3, the corresponding posbist reli-
ability can be obtained by substituting Eq. (8) and Eq. (9) into Eq. (21), and
we then get Eq. (14). For the casea2 < t ≤ a3, we have

Poss(X > t)

= max{min(1, µX2(u), 1), min(1, µX1(u), 1),

min(µX3(u), µX1(u), µX2(u)), min(µX1(u), µX2(u), 1)}
= max{µX1(u), µX2(u)}

(22)

Thus, substituting Eq. (2) into Eq. (22), we have

Poss(X > t) = max

(
exp

(
−
(

t − m1

b1

)2)
, exp

(
−
(

t − m2

b2

)2))
,

for m2 < t ≤ m3 (23)

�

We now consider ann-component system withX1, X2, . . . , Xn represent-
ing the mutually unrelated, normally distributed, and strictly convex fuzzy
variables with the same continuous possibility distribution function for each
identical component. We then have

µX1(x) = µX2(x) = · · · = µXn(x)

Thus, the posbist reliability distribution when one requires more thank − 1
components in the working state (regarded as a k-out-of-n:G system) is
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given by

Rk−outof −n(t) = supu>t µX(u)

= supu>t µX1(u)

=
{

1, t ≤ a1

µX1(t), t > a1

(24)

WhenXi is a Gaussion fuzzy variable, we have

Rk−outof −n(t) =



1, t ≤ m1

exp

(
−
(

t−m1
b1

)2
)

, t > m1
(25)

and Eq. (25) is independent of the value ofk.
In summary, we can see that the posbist reliability of a k-out-of-n:G system

consisting of identically and independently distributed components has the
same membership function as each component.

4 THE METHODS FOR DEVELOPING POSSIBILITY
DISTRIBUTIONS

4.1 Possibility distributions based on membership functions
As Zadeh [18] pointed out, a possibility distribution can be viewed as a fuzzy
set which serves as an elastic constraint on the values that may be assigned
to a variable. Therefore, the possibility distribution numerically equals to the
corresponding membership function, i.e.,

πX(x) = µA(x), (26)

whereX is a fuzzy variable andA is the fuzzy set induced byX.
Note that although a possibility distribution and a fuzzy set have a common

mathematical expression, the underlying concepts are different. The fuzzy set
A is a fuzzy value that can be assigned to a certain variable. However, the
possibility constraintA is a fuzzy set of nonfuzzy values that can possibly be
assigned toX.

According to the above-mentioned viewpoint, we can use the methods for
constructing membership functions to generate the corresponding possibility
distributions. Using Eq. (26) if the membership function of a fuzzy set has been
obtained, the possibility distribution of the fuzzy variable of the fuzzy set is
obtained too. Fuzzy statistics [20], transformation of probability distributions
to membership function [21–23], heuristic methods [24], and expert opinions
[21] are a few commonly used methods for generating membership functions.

With heuristic methods, we first select a predefined shape of the member-
ship function to be developed. The specific parameters of the membership
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FIGURE 2
Piecewise linear membership functions.

function with the selected shape are determined from the data collected. In
most real-life problems, the universe of discourse of the membership functions
is the real number lineR. The commonly used membership function shapes
are the piecewise linear function and the piecewise monotonic function. Linear
and piecewise linear membership functions have the advantages of reasonably
smooth transitions and easy manipulation through fuzzy operations. However,
the shapes of many heuristic membership functions are not flexible enough to
model all kinds of data. Moreover, the parameters of the membership func-
tions must be provided by experts. In many applications, the parameters need
to be adjusted extensively to achieve a certain performance level.

A few commonly used piecewise linear functions are given below, and their
corresponding figures are depicted in Figure 2.

(1) µ(x) = 1 − x
a

or µ(x) = x
a
, wherex = [0, a];

(2) µ(x) =
{

1 − |a−x|
α

, α − a ≤ x ≤ α + a

0, otherwise
;

(3) µ(x) =




0, x ≤ a

w1
x−a
b−a

, a ≤ x ≤ b

1, b ≤ x ≤ c

w2
d−x
d−c

, c ≤ x ≤ d

0, x > d

;

(4) µ(x) =




0, x < a1
x

a2−a1
+ a1

a1−a2
, a1 ≤ x ≤ a2

1, x > a2

.
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FIGURE 3
Piecewise monotonic membership functions.

Some commonly used piecewise monotonic functions are as follows with
the figures shown in Figure 3.

(1) s(x; a, b, c) =




0, x ≤ a

2
(

x−a
c−a

)2
, a < x ≤ b

1 − 2
(

x−a
c−a

)2
, b < x ≤ c

1, x > c

, whereb = a+c
2 ;

(2) µ(x; a, b, c) =
{

s
(
x; c − b, c − b

2, c
)
, x ≤ c

1 − s
(
x; c, c + b

2, c + b
)
, x > c

, whereb = a+c
2 ;

(3) µ(x) = e−b(x−a)2
, −∞ < x < +∞;

(4) µ(x) = 1
2 − 1

2 sin
(

π
b−a

(
x − a+b

2

))
, x ∈ [a, b].

In practical applications, we often combine fuzzy statistics with heuristic
methods. First, the shape of the membership function is suggested by statistical
data. Then, the suggested shape is compared with the predefined shape and
the more appropriate ones are selected. Finally, the most suitable membership
function is determined through practical tests.

In addition to the methods mentioned above, trichotomy [20], multiphase
fuzzy statistics [20], and neural network based methods [24, 25] have been
used in construction of membership functions. It should be pointed out that
developing new methods for constructing membership functions is still a hot
research topic. The reported methods for constructing membership functions
are not as mature as those for constructing probability distribution functions.
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Constructing membership functions still depends on experience and feedback
from actual use and continuous revisions have to be made to achieve satis-
factory results. This situation results in the immaturity of the methods for
constructing possibility distributions.

4.2 Transformation of probability distributions to
possibility distributions

The methods for transforming probability distributions to possibility distri-
butions are based on the possibility/probability consistency principle. The
possibility/probability consistency principle states:

If a variableX can take the valueu1, . . . , un with respective possibilities
π = (π(u1), . . . , π(un)) and probabilitiesp = (p(u1), . . . , p(un)), then
the degree of consistency of the probability distributionp with possibility
distributionπ is expressed by

Cz(π, p) =
n∑

i=1

π(ui)p(ui). (27)

For more details on this principle, readers are referred to Ref. [18].
Directly transforming probability distribution into possibility distribution

or fuzzy sets, such as the bijective transformation method [26], and the
conservation of uncertainty method [27] are being argued [28].

4.3 Subjective manipulations of fatigue data
For products requiring high reliability, manufacturers often conduct laboratory
tests to obtain a certain quantity of lifetime data. Due to budget limitations, it
is usually difficult or impossible to obtain sufficient statistical data. Although
the number of data points available may be too small for us to perform a statis-
tical analysis, it may be sufficient for subjective estimation of the possibility
distribution. If we have constructed a model of the possibilistic reliability of
the device under study and derived the needed possibility distribution, we can
perform a quantitative analysis of the possibilistic reliability of the device.

Assume that we have obtained fatigue life data of a device denoted by
(n

j
i )1≤j≤N, 1 ≤ i ≤ M, whereM is the number of stress levels,N is the

number of data points at each stress level. Then the mean fatigue life at stress
level i can be expressed as

mni
= 1

N

N∑
j=1

n
j
i , 1 ≤ i ≤ M. (28)

The lifetime data at each stress level can be divided into two groups, that is,

G1 =
{
n

j
i , j = 1, 2, . . . , N |nj

i < mni

}
, (29)

G2 =
{
n

j
i , j = 1, 2, . . . , N |nj

i > mni

}
. (30)
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The mean valuemni
is assigned a possibility degree of 1 and the possibility

degree of 0.5 is assigned to the means of the lifetime data in the two groups
G1 andG2, that is,

mlni
= 1

#(G1)

∑
n

j
i ∈G1

n
j
i , πni

(mlni
) = 0.5, i = 1, 2, . . . , M (31)

mYni
= 1

#(G2)

∑
n

j
i ∈G2

n
j
i , πni

(mYni
) = 0.5, i = 1, 2, . . . , M (32)

where #(·) denotes the number of data points in a set.
By use of the above-mentioned analysis, we can express theL − R type

possibility distribution of fatigue lifetime as follows:

πni

(
n

j
i

)
=




L
(

mni
−n

j
i

αni

)
, n

j
i ≤ mni

R
(

n
j
i −mni

βni

)
, n

j
i > mni

, (33)

whereαni
= mni

−mlni

L−1(0.5)
andβni

= mrni
−mni

L−1(0.5)
.

Considering the various types ofL − R type possibility distributions men-
tioned earlier in this paper, we can use Eq. (33) to get specific possibility
distributions to represent fatigue lifetime data. For example, the following tri-
angular possibility distribution may be used to represent fatigue lifetime data:

πni

(
n

j
i

)
=




0, n
j
i ≤ mni

− αni

1 − mni
−n

j
i

αni
, mni

− αni
≤ n

j
i ≤ mni

1 − n
j
i −mni

βni
, mni

≤ n
j
i ≤ mni

+ βni

0, mni
+ βni

≤ n
j
i

, (34)

whereαni
= 2(mni

− mlni
) andβni

= 2(−mni
+ mrni

).
Similarly, we may use the following Gaussian possibility distribution to

represent fatigue lifetime data:

πni

(
n

j
i

)
=




exp
[

−
(

mni
−n

j
i

αni

)2]
, n

j
i ≤ mni

exp
[

−
(

n
j
i −mni

βni

)2]
, n

j
i > mni

, (35)

whereαni
= mni

−mlni√
ln 0.5

andβni
= mrni

−mni√
ln 0.5

.
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5 EXAMPLES

5.1 Example 1
To illustrate the methodology proposed in the previous section, we present an
example of calculating the posbist reliability of a power generating system
with its generator units connected in 2-out-of-3:G. We also assume that the
lifetime of each component is a Gaussian fuzzy variable as follows,

µX1(t) =




exp
(

−
(

5.0−t
2.0

)2)
, t ≤ 5.0

exp
(

−
(

t−5.0
2.0

)2)
, t > 5.0

µX2(t) =




exp
(

−
(

5.8−t
1.8

)2)
, t ≤ 5.8

exp
(

−
(

t−5.8
1.8

)2)
, t > 5.8

µX3(t) =




exp
(

−
(

6.5−t
1.5

)2)
, t ≤ 6.5

exp
(

−
(

t−6.5
1.5

)2)
, t > 6.5

and the metric of time unit is year.
Using Eq.(14), we can express the posbist reliability of the 2-out-of-3:G

system as

Rk−outof −n(t)

= sup
u>t

µX(u)

=




1, t ≤ 5.8

max
(

exp
(
−
(

t−5.0
2.0

)2)
, exp

(
−
(

t−5.8
1.8

)2))
, 5.8 < t ≤ 6.5

max
(

min
(

exp
(
−
(

t−5.0
2.0

)2)
, exp

(
−
(

t−5.8
1.8

)2))
,

min
(

exp
(
−
(

t−5.8
1.8

)2)
, exp

(
−
(

t−6.5
1.5

)2))
,

min
(

exp
(
−
(

t−5.0
2.0

)2)
, exp

(
−
(

t−6.5
1.5

)2)))
, t > 6.5

Whent = 6.0 years, we have:

Rk−outof −n(6.0) = exp

(
−
(

t − 5.8

1.8

)2
)

= 0.9877.

5.2 Example 2
We illustrate the method presented in Section 4.3 for constructing the possi-
bility distribution of the fatigue lifetime data. A fatigue test was conducted
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Loading torque levelsS (N · m)

Data points S1 = 3800 S2 = 4000 S3 = 4200

1 1.4321 0.4395 0.2932
2 1.5381 0.4572 0.3108
3 1.6362 0.4863 0.3159
4 1.6860 0.5021 0.3237
5 1.7205 0.5158 0.3412

TABLE 1
The fatigue lifetime data of crankshaft (in units of 106 loading cycles)

to investigate the reliability of crankshaft in a diesel engine. Three loading
torque levels were used. The collected data of fatigue lifetime are shown in
Table 1. Five data points at each torque level are given in Table 1 and they
are sufficient for subjective estimation of the possibility distribution of fatigue
lifetime.

First, we calculate the average fatigue lifetime at each torque levelmni
.

We will illustrate the procedure for constructing the possibility distribution
of the lifetime using the data collected at the second torque level. The same
procedure should be followed for analysis of data at other torque levels. Using
Eq. (28) and Table 1, we have

mn1 = 1

N

N∑
j=1

n
j

1 = 1

5

5∑
j=1

n
j

1

= 1

5
(0.4395+ 0.4572+ 0.4863+ 0.5021+ 0.5158)

= 0.4802,

πn1(mn1 = 0.4802) = 1.

The data points at the second torque level are divided into two groups
separated by the calculated mean valuemn1, i.e.,

G1 =
{
0.4395, 0.4572|nj

1 < mn1

}
,

G2 =
{
0.4863, 0.5021, 0.5158|nj

1 > mn1

}
.

Further, from Eqs. (70) and (71), we have

mln1
= 1

#(G1)

∑
n

j
1∈G1

n
j

1 = 1

2
(0.4395+ 0.4572) = 0.4484,

πn1(mln1
= 0.4484) = 0.5;
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mrn1
= 1

#(G2)

∑
n

j
1∈G2

n
j

1 = 1

3
(0.4863+ 0.5021+ 0.5158) = 0.5014,

πn1(mrn1
= 0.5014) = 0.5.

Finally, with these calculated results and Eq. (34), we can construct the
triangular possibility distribution of the fatigue lifetime of crankshaft under
the torque level of 4000N· m as follows:

αn1 = 2
(
mn1 − mln1

)
= 2(0.4802− 0.4484) = 0.0636,

βn1
= 2

(
mrn1

− mn1

)
= 2(0.5014− 0.4802) = 0.0212,

πn1

(
n

j

1

)
=




0, n
j

1 ≤ mn1 − αn1

1 − mn1−n
j
1

αn1
, mn1 − αn1 ≤ n

j

1 ≤ mn1

1 − n
j
1−mn1
βn1

, mn1 ≤ n
j

1 ≤ mn1 + βn1

0, mn1 + βn1 ≤ n
j

1

=




0, n
j

1 ≤ 0.4166

1 − 0.4802−n
j
1

0.0636 , 0.4166< n
j

1 ≤ 0.4802

1 − n
j
1−0.4802
0.0212 , 0.4802< n

j

1 ≤ 0.5014

0, 0.5014< n
j

1

The shape of this obtained possibility distribution is shown in Figure 4.
Note that the procedure for constructing the possibility distributions at other

torque levels is the same. If we are interested in constructing otherL−R types
of possibility distributions such as the Gaussian possibility distribution for the
fatigue lifetime data, a similar procedure can be followed.

jn1

1

j
n n1

1

0
0.50140.48020.4166

FIGURE 4
The possibility distribution of the fatigue lifetime at the second torque level.
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After obtaining the possibility distribution of fatigue lifetime of the
crankshaft, we can derive the possibilistic reliability of crankshaft at any
time according to posbist reliability theory [8], e.g., under the torque level
of 4000N· m, we can figure out the possibilistic reliability as follows:

R(t) = Poss(X > t) = sup
x>t

Poss(X = x) = sup
n

j
1>t

πn1(n
j

1)

=




1, t ≤ 0.4802

1 − t−0.4802
0.0212 , 0.4802< t ≤ 0.5014

0, t > 0.5014

.

6 CONCLUSIONS

Although the conventional reliability theory has been the dominant tool for
evaluating system safety and analyzing failure uncertainty, the uncertainty
within a system and its components cannot be always defined in the frame-
work of probability. To analyze highly complex systems and deal with the
vast variations of system characteristics, researchers have realized that the
probability theory is not a panacea. Based on the posbist reliability theory,
the lifetime of a system is considered to be a Gaussian fuzzy variable. The
posbist reliability of k-out-of-n:G systems is derived. The universe of dis-
course on system lifetime defined in Ref.[8, 9] is expanded from(0, +∞)

to (−∞, +∞). We have illustrated in Section 3 that this expansion does not
affect the nature of the problems to be solved. On the contrary, it makes the
proofs in [8, 9] much more straightforward and the complexity of calculation is
greatly reduced. In this paper, we addressed the critical problem in the posbist
reliability theory which is the construction of the possibility distribution and
pointed out that all methods for generating membership functions can be used
to construct the corresponding possibility distributions. We also presented a
new method for constructing the possibility distribution with the possibilis-
tic reliability analysis of fatigue lifetime of mechanical parts. The methods
for constructing possibility distributions are not as mature as those for con-
structing probability distributions. The present paper has provided a concise
overview of the methods for constructing the possibility distributions in pos-
bist reliability analysis. Further research is needed to develop a more general
method for constructing possibility distributions, and how to transform data
within Likert’s and Osgood’s scales into possibility context.
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