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Abstract: The conventional stress-strength interference (SSI) model is a basic model for reliability analysis of mechanical components.
In this model, the component reliability is defined as the probability of the strength being larger than the stress, where the component
stress is generally represented by a single random variable (RV). But for a component under multi-operating conditions, its reliability
can not be calculated directly by using the SSI model. The problem arises from that the stress on a component under multi-operating
conditions can not be described by a single RV properly. Current research concerning the SSI model mainly focuses on the calculation
of the static or dynamic reliability of the component under single operation condition. To evaluate the component reliability under
multi-operating conditions, this paper uses multiple discrete RVs based on the actual stress range of the component firstly. These
discrete RVs have identical possible values and different corresponding probability value, which are used to represent the
multi-operating conditions of the component. Then the component reliability under each operating condition is calculated, respectively,
by employing the discrete SSI model and the universal generating function technique, and from this the discrete SSI model under
multi-operating conditions is proposed. Finally the proposed model is applied to evaluate the reliability of a transmission component of
the decelerator installed in an aeroengine. The reliability of this component during taking-off, cruising and landing phases of an aircraft
are calculated, respectively. With this model, a basic method for reliability analysis of the component under complex load condition is
provided, and the application range of the conventional SSI model is extended.
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approach requires only information regarding the
subinterval probabilities within an interference region. To
improve its accuracy of calculation, PARK, et alt?!
modified KAPUR’s formulation on the quadratic
programming problem and presented a solution to this
problem. SHEN™! proposed another empirical approach to
calculate the wunreliability bounds based wupon the
subinterval probabilities of both stress and strength in the
interference WANG, et a1[4], presented a
multiple-line-segment method of implementing the SSI

1 Introduction

The stress-strength interference (SSI) model has been
widely used for reliability analysis of mechanical
components. In this model, the component reliability
denoted by R can be defined as

R=Pr(C>YS), (1) region.

where S and C represent the stress on a component and the
strength of the component, respectively.

In further investigations concerning the SSI model, it has
become an important research topic to calculate component
reliability based on the probability distributions of both
stress and strength. Therefore, efforts have been made by
many researchers. KAPUR!"! devised an approach for
determining the bounds on the exact unreliability, and this
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model when only discrete interval probabilities of both
stress and strength inside an interference region are
available. GUO, et al®, presented an algorithm for
computing the unreliability bounds based on an improved
Monte Carlo method. WANG, et al®, presented an
approach to calculate fuzzy wunreliability of a
component/system, and in this approach, the probability
density functions of both stress and strength are
approximated by piecewise fuzzy line-segments that were
expressed by linear fuzzy polynomials, and the discrete
interval probabilities were treated as fuzzy numbers. KOTZ,
et al’ gave a comprehensive survey of the SSI models
presented in the literature before 2002, and some associated
recent results. Recently, on the basis of universal generating
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function (UGF), AN, et al®®!, presented a discrete SSI model,
which can be used to determine the component reliability
when both stress and strength are discrete random variables
(RVs).

In the models or methods discussed earlier, the stress
acted on a component is usually represented by a single RV.
But under multi-operating conditions, a single RV can not
reflect the actual stress state of a component. For instance,
during the taking-off, cruising and landing phrases of an
aircraft, the working stress of a part in the transmission
system has different statistical characteristics (for example,
mean values of stress). In this case, a more natural method
is to employ multiple different RVs to describe the stress
characteristics of the part under different working phases.
Therefore, in this paper, multiple discrete RVs are defined
based on the actual range of component stress firstly, which
are used to represent the multi-operating conditions of the
component. Then the component reliability under each
operating condition is calculated, respectively.

The rest of this paper is organized as follows. Section 2
gives a brief description of UGF method and the discrete
SSI model. Section 3 formulates a generalized problem and
builds the discrete SSI model under multi-operating
conditions. For demonstrating the validity of the model,
section 4 provides an illustrative example. The conclusions
are summarized in section 5.

2 UGF Method and Discrete SSI Model

2.1 UGF method

The concept of UGF was introduced by USHAKOV™.
In a series of research work by LISIANSKI and
LEVITIN!' " the UGF method has been applied to
reliability analysis and optimization of multi-state systems.

Suppose that a discrete RV X has a probability mass
function (PMF) characterized by two vectors x and p,
which consist of the possible values and corresponding
probabilities of X, respectively. We can rewrite them as
follows:

X = (X%, X, ),

P=(Pi>Dysms P
p,=Pr(X=x),i=12,---,k 2)

Based on the basic principle of UGF method, the PMF of
discrete RV X can be represented by a polynomial function
of variable z ,u . (z) , that relates the possible values of X to
the corresponding probabilities:

k
uy(z)=Y pz*. 3)

i=1

Consider n independent discrete RVs X, X,,---, X, and
an arbitrary function of these variables f(X,,X,,--,X,).
Suppose that the numbers of possible values of these RVs
are k,,k,, -+, k, , respectively. According to Eq. (3), the

UGFs of the individual RVs can be obtained as follows:

ki
X
ug (2)=2p,z",

Ji=l

sy
Xy,
uy (2)= pr, 2",
J=1

kl’
Ty
uy, ()= 2Py 2" @
|

Then, by employing the composition operator ® , the UGF
of function f(X,,X,,--,X,) can be obtained as

up(2) = uy, (2)uy, (2),uy (2)), ©)

where the composition operator ® is defined as

k sy k,
X1 X2j i | —
® 2Pz P D Py (=
Q=1 =1 Jn=1
ko k k, n s
(X1 5 %2 1y 0%y )
zzz I I pij z LA 727y in? (6)

q=tip=l  j=il=l

Indeed, the composition operator ® represents an
operation rule which strictly depends on the expression of
function f(X,,X,,---,X,) . In the procedure of operation,
the coefficients of each term of a polynomial are multiplied
and the exponents exactly correspond to the definition of
function f(X,,X,, -, X,) -

2.2 Discrete SSI model

The discrete SSI model was established based on UGF
method™. Its basic idea is to treat stress and strength as two
independent discrete RVs. Suppose that the PMF of stress S
and that of strength C are known as follows:

S = (SpSza”'aSkl )a
Ps = (pslapsza”'apsA1 ),
C= (CDCZ,”.,C,{Z )a

Pc :(pclapcza”'apq2 ), (7

where k and &, are numbers of possible values that S and C
can take on, respectively. According to Eq. (3), the UGF of
stress and that of strength can be obtained, respectively, as
follows:

< s,
uS(Z) = zp“'ilz " s

A=l

k,
. c,
u.(z)= Z:pq5 z ",
=1 )

(8)

)

Then, define a function f(S,C) of stress and strength as
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f(s,C)=C-S. (10)

The UGF of f(S,C) can be obtained according to Egs. (5)
and (6). Its final form is also a polynomial function

containing K < k, x k, terms (the total number of terms can

be less than k;x k; after collecting like terms):

uf(z)zflpjsz, (11)

where f; and P; (j=1,2,---,K) are possible values of
function f(S,C) and the corresponding probabilities,
respectively.
Using Eq. (10), the component reliability given in Eq. (1)
can be further expressed as
R=Pr(C>S8)=Pr(f(S,C)>0). (12)
To obtain the probability in Eq. (12), the coefficients of
polynomial u (z)expressed by Eq. (11) can be summed
for every term with f; > 0. For the sake of depiction, we can

define a binary-valued function a(f;) with domain on the set
of possible values of function f(S,C) as

- [Lr >0, 5
“)=\o 1 <o (13)
Then, Eq. (12) can be rewritten as
K
R=Y Pa(f). (14)
Jj=1

Eq. (14) is called the discrete SSI model.

3 Discrete SSI Model under Multi-operating
Conditions

In this section, a generalized problem is formulated, after
which the discrete SSI model under multi-operating
conditions is constituted.

3.1 Formulation of the problem

In practical engineering, components are designed to
perform their intended tasks in a given environment. In
some cases, because of the random variation in magnitude
and random occurrence of an external load, it is not
appropriate to describe stress of a component as a single
RV. But at least, we can estimate the range of stress.
Without loss of generality, suppose that the service stress of
a component vary from Sy, to Sy.x, Which depends on the
change of external loads. In this case, we can naturally
think that the component can perform its tasks under
various stress conditions, and that it has different
reliabilities under different stress conditions.

Generally speaking, the stress state of a component can
be categorized based on the characteristic of external loads.
For instance, the stress state of a mechanical component
can be simply classified as state 1, state 2 and state 3,
which correspond to low load, moderate load and heavy
load, respectively. More generally, according to the change
of external loads, the stress of a component can be
categorized into arbitrary finite state: state 1, state 2,---,
state m.

The actual stress on the component can be an arbitrary
value within the interval of [S,. S, ]. This interval can
be approximately treated as a finite set of stress
values, (Sl,Sz,u-,Skl) , which can be regarded as all
possible stress values of the component. A stress state of
the component can be represented by a correspondence
between all possible stress values and their occurrence
probabilities. Each stress state is characterized by a discrete
RV with specific PMF. We can assume that a number of
possible values of stress are identical for any stress state
and that different states differ by probabilistic distribution
of the possible values.

If a discrete RVs; (i=1,2,---,m)is used to denote the
ith stress state, the possible values of s; is a vector s, and
the corresponding probabilities is another vector p,. Then
the PMF of's; can be written as follows:

S; :(SnSza”'aSkl )a

P; = (Pis Pizs*s Pu)»

p; =Pr(s;=S,), i=12,--,m, j=12,- k. (15)
By doing so, we can obtain all PMFs of m discrete RVs that
represent m different stress states. If the strength of the
component is given, the final problem can be generalized to
determine the reliabilities of the component under m stress
states. To solve this problem, we can use the discrete SSI
model introduced in section 2.

3.2 Solution to the problem

For the sake of simplicity, we suppose that the strength
of the component is also a discrete RV with &, possible
values. (When the strength is a continuous RV, it can be
approximated by a discrete RV, see section 4.). When the
PMFs of stress state s; and strength C are known as follows:

S; :(SpSza”'aSkl )a
P = (P> Piass Py )s

C :(C19C25”'5Ck2)9
Pc :(pclapcza”'apq2 ), (16)

and the function f(s,,C) is defined as
f(si’C):C_Si’ (17)

the component reliability under the ith stress state denoted
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by R; can be obtained according to Eq. (14) as

R =Pr(C>s) :flpja(fj), (i=12,-,m), (I8)

=]

where f;and P; (j =1, 2,---, K) are possible values of
function f(s,,C) and the corresponding probabilities,
respectively.

Using this method, we can get m values of the
component reliability, which correspond to m operating
conditions of the component. Therefore, Eq. (18) can be
called the discrete SSI model under multi-operating
conditions.

4 Illustrative Example

Loading situations of a transmission component of the
decelerator installed in an aeroengine are very complex

during taking-off, cruising and landing phases of an aircraft.

Suppose that the random external loads cause stress on the
component in the range of 0—100 MPa and the strength of
the component is normally distributed with mean xc = 100
MPa and standard deviation o= 10 MPa.

To evaluate the component reliability using Eq. (18), we
will approximate the continuous RV of strength with a
discrete RV. Based on engineering experience, we can
determine an approximate range of strength, which can be
denoted by the interval of [C,. , C,..]. Then, this interval
can be divided into finite subintervals. The midpoint values
of each subinterval are treated as possible values of
strength and the area values of each subinterval are treated
as the corresponding probabilities. Thus, we can obtain a
discrete RV of strength with known PMF. In this example,
the interval of [C, ,C,.] 1is determined as
[ -30., - —30,.]1=[70,130] MPa and it is divided
into six subintervals. Accordingly, the strength of the
component can be expressed by a discrete RV with PMF

expressed by Eq. (19):

C = (75, 85, 95, 105, 115, 125),
p-=(0.0214,0.1359, 0.3413,0.3413,

0.1359,0.0214). (19)

Similarly, the range of stress, 0—100 MPa, can be divided
into five subintervals, and the midpoint values of the
subintervals are regarded as possible values of stress. Then,
we can define multiple stress states by assigning different
probability values to these possible values of stress. In this
example, we define three stress states: state 1, state 2 and
state 3, which represent the stress characteristic of the
component during taking-off, cruising and landing phases
of the aircraft, respectively. Thus, we can obtain PMFs of
three discrete RVs of stress state, 51, s> and s3, which can be
expressed as follows:

s. =(10,30,50,70,90), i =1,2,3,

p, =(0.01,0.04,0.10,0.25,0.60),

p, =(0.05,0.15,0.6,0.15,0.05),
p, =(0.60,0.25,0.10,0.04,0.01). (20)

Now, the working situation of the component is
approximately represented by three pairs of combinations
of stress and strength, (s;, C), (52, C) and (s3, C), which are
depicted in Fig.

Fig. Working situation of the component during (a) taking-off,
(b) cruising, and (c) landing phases of an aircraft, respectively
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In state 1, according to Eq. (2), we can obtain the UGFs
of s; and C as follows:

u, (2)=0.01z"" +0.04z"" +0.10z™ +0.25z™ +0.60z™,
u.(z)=0.0214z" +0.1359z" +0.3413z" +

0.34132'” +0.1359z'"° +0.0214z'7. 1)

According to Egs. (5) and (6), the UGF of function
f(s,,C) can be obtained as
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u,(z) =®u, (2),u-(z)) =
(0.01z"° +0.042°° +0.10z* +0.252" +0.60z")
(0.0214z" +0.1359z% +0.3413z" +
0.34132'% +0.13592'° +0.0214z') =
0.000 2z +0.001 4z'” +0.004 32” +
0.010 9z* +0.028 7z +0.048 0z* +
0.043 8z +0.034 9z +0.11172" +
0.16892z% +0.238 82" +0.210 12° +

0.0818z7 +0.012827". (22)

It can be seen that the UGF of function f(s,,C)
contains above fourteen terms after collecting like terms.

According to Eq. (18), the component reliability in state 1
can be calculated as

R, =Pr(f(s,,C) > 0) = il’ja(fj) =0.9017.

J=1

(23)

In the similar way, we can get the reliabilities of this
component in state 2 and state 3, respectively:

R, =0.9895,
R, =0.9958. (24)

The above results indicate that the reliability values of
this component are equal to 0.901 7, 0.9895 and 0.995 8
during taking-off, cruising and landing phases, respectively.

5 Conclusions

(1) According to the actual stress range, multiple discrete
RVs are constituted, which are used to represent the
multi-operating conditions of the component.

(2) The component reliabilities under different operating
conditions are calculated, one by one, by employing the
discrete SSI model and UGF technique.

(3) The discrete SSI model under multi-operating
conditions is presented and its effectiveness 1is
demonstrated by an illustrative example. With this model,
the application range of the conventional SSI model can be
extended.
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