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An Approach to Reliability Assessment Under
Degradation and Shock Process

Zhonglai Wang, Hong-Zhong Huang, Member, IEEE, Yanfeng Li, and Ning-Cong Xiao

Abstract—Product performance usually degrades with time.
When shocks exist, the degradation could be more rapid. This
research investigates the reliability analysis when typical degrada-
tion and shocks are involved. Three failure modes are considered:
catastrophic (binary state) failure, degradation (continuous pro-
cesses), and failure due to shocks (impulse processes). The overall
reliability equation with three failure modes is derived. The effects
of shocks on performance are classified into two types: a sudden
increase in the failure rate after a shock, and a direct random
change in the degradation after the occurrence of a shock. Two
shock scenarios are considered. In the first scenario, shocks occur
with a fixed time period; while in the second scenario, shocks
occur with varying time periods. An engineering example is given
to demonstrate the proposed methods.

Index Terms—A fixed time period, degradation process, relia-
bility analysis, shocks, varying time periods.

ACRONYM

MSS Multi-state System

ALT Accelerated Life Testing

LS Least Squares

MLE Maximum Likelihood Estimation

BM Bayesian Method

CDF Cumulative Distribution Function

HPP Homogeneous Poisson Process
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NOTATION

time

general degradation path

number of shocks

damage caused by shocks

shock magnitude
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moderate damage level

large damage level

rate of HPP

cumulative distribution function for damage

probability that the damage falls into the region

probability that the damage falls into the region

probability that the damage falls into the region

failure rate for the damage in the region

failure rate for the damage in the region

number of shocks in the region

time-dependent reliability

probability that the damage falls into the region

failure rate that the damage falls into the region

FM1 -independent static failure mode

FM2 failure due to degradation

FM3 failure due to shocks

reliability associated with FM1

event of FM1

event of FM2

event of FM3

threshold of the damage of shocks

threshold of degradation

failure rate affected by the th shock at time

fixed period

constant changing failure rate after a shock

random change in degradation caused by the
th shock

I. INTRODUCTION

P RODUCT performance may deteriorate due to wear,
fatigue, erosion, and other causes. Products may also sud-

denly fail due to excessive loading, shocks, and other stresses.
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For the two kinds of failure, there are three major types of
reliability analysis methods: binary-state methods, multi-state
methods, and continuous state methods.

A binary-state method accounts for only two states: either
perfect functioning, or complete failure. It is the earliest reli-
ability analysis method, and has been widely applied to engi-
neering problems. Because a number of intermediate states may
exist between the perfect functioning and the complete failure
states, the concept of a multi-state system (MSS) was introduced
in the mid-1970s [1]–[4]. Consequently, MSS reliability theo-
ries have also been developed to analyse, model, and predict
MSS performance.

The third type of reliability method, continuous state method,
is suitable for performance degradation problems. Degradation
is common in many components and systems, especially in
mechanical and structural systems. Degradation is usually
described by a continuous performance process in terms of
time.

Obtaining enough failure data is time-consuming, and may
be impossible for highly reliable systems. The accelerated life
testing (ALT) methodology is commonly used because it is not
only efficient to assess a product life, but also efficient to obtain
the degradation data for highly reliable systems. Using degrada-
tion information becomes important for reliability prediction.
Therefore, degradation data play an important role in evalu-
ating system reliability. Reference [5] demonstrates how to use
degradation data to estimate system reliability by using a degra-
dation process model. To better describe the relationship be-
tween degradation and the implied lifetime distribution, two
degradation models are investigated [6]. The first is the addi-
tive degradation model, where a degradation process is rep-
resented as the sum of a deterministic degradation path, and
a random variation around the deterministic degradation path.
The second is the multiplicative degradation model, where a
degradation process is the product of a deterministic degradation
path, and a random variation around the deterministic degrada-
tion path. In [7], statistical degradation data are analysed with
three methods: random processes with a general distribution
method, degradation path method, and linear regression method.
Furthermore, a mixed model is built to assess the system re-
liability with degradation, and sudden failure data. The least
squares (LS) method, maximum likelihood estimation (MLE),
and Bayesian method (BM) are usually used to estimate pa-
rameters in both the degradation path method, and random pro-
cesses with a general distribution method [8], [9]. In [10], the
binary-state reliability method is extended to a continuous re-
liability method. Both degradation and sudden failure (catas-
trophe) are considered. The relation between degradation and
catastrophe is studied by the state tree analysis, and the fault tree
analysis. Statistical tools and regression techniques are used to
build the mathematical model of degradation. However, the ef-
fect of shocking is not considered in [5]–[10].

Shocking is one of the major causes of system failures. Mallor
[11] classifies the shock models into two categories based on the
dependency of shocks. In the first method, the shock effect and
its arrival time are assumed -independent. In the second one,
the shock effect and its arrival time are considered -dependent.

Furthermore, a general model is developed to describe the cu-
mulative damage, extreme damage, and run damage. Under a
generalized framework proposed by Bai et al. [12], a cumula-
tive shock model, an extreme shock model, and a -shock model
are created.

In many engineering applications, degradation and shocks
occur at the same time. In Li and Pham’s work [13], a reliability
model with two degradation processes, and a random shock
process, is investigated. If any of these processes exceeds a
prefixed critical value, the system would break down. The two
degradation processes are discretized into multiple states, and
the MSS reliability theory is then applied. They also propose
a maintenance model for systems with multiple competitive
processes [14]. Li et al. [15] propose a reliability predic-
tion method for -independent and -dependent degradation
processes considering the effects of shocks. In [16], an ap-
proach to make an optimal replacement strategy for the system
subject to shock and random threshold failure is proposed.
Klutke and Yang [17] study the average availability of the
systems with shocks, and graceful degradation. Some other
competitive failure models by accounting for degradation and
shock processes have also been studied recently [18], [19].
In their work, failure is assumed not self-announcing; the
failure must be detected by inspection, and degradation is
assumed to be caused by a stochastic environment. However,
the relationship between a degradation process and a shocking
process is not considered in their models.

It is obvious that shocks may affect a degradation process.
Even though both the degradation process and shocks have been
studied in previous literatures, their relationship has been rarely
investigated. Shocks not only decrease the performance directly,
but also speed up the degradation. The effect on the degrada-
tion due to shocks, especially those with serious damages, may
not be neglected. Our objective in this paper is to conduct relia-
bility analysis under both a degradation process and shocks with
consideration of the effect of shocks on a degradation process.
From the different perspectives of the effect, two methods are
proposed. In the first method, the effect of shocks on degrada-
tion is considered as the sudden change in the failure rate; while
in the second method, the effect of shocks is considered as the
random change.

The organization of this paper is as follows. In Section II,
degradation analysis and shocking process analysis are briefly
reviewed. The three failure modes considered in this work are
provided in Section III. In Section IV, the first method, i.e.
reliability assessment with changing failure rate, is presented.
And the second method, i.e. reliability assessment with random
changes, is represented in Section V. An engineering example
is given in Section VI. Conclusions and future research are pro-
vided in Section VII.

II. DEGRADATION ANALYSIS AND SHOCKING PROCESS

ANALYSIS

A. Degradation Analysis

The performance of many products, such as structures and
machines, may deteriorate with time due to aging, fatigue, cor-
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rosion, and strength reduction. Degradation data about the per-
formance are important for reliability analysis. They are usually
collected from ALT, or operational systems.

The degradation path can be modeled by a stochastic
process, where the additive degradation model or the multi-
plicative degradation model could be applied depending on the
degradation characteristics [6]. Without loss of generality, we
use to denote a general degradation path.

B. Shocking Process Analysis

In this subsection, we review several common shock models.
Shocks may be produced internally within components or sys-
tems, or may come from the environment, or both. Most shocks
are harmful. There are four typical shock models [11], [12]:
the extreme shock model, the cumulative model, the run shock
model, and the -shock model.

In the extreme shock model, a system is considered to fail as
soon as the magnitude of any shock exceeds a threshold [20]. In
the cumulative model, no shock is vital, and the shock magni-
tudes are cumulative; if the cumulative magnitudes cross over a
critical level, the system will break down [21], [22]. The com-
bination of the first and second models, the mixed shock model,
has also been developed to account for both extreme shocks, and
shocks whose consequences are cumulative [23].

The third model is the run shock model, which assumes that
a system will be operational unless consecutive shocks with
critical magnitudes occur. This model is usually applicable
for mechanical and electronic systems [24]. Mallor proposes a
mixed model based on this model mixed with the cumulative
shock model (the second model) to accommodate consecutive
shocks whose consequences are also cumulative [25].

For the -shock model, a system will fail when the time lag
between two successive shocks falls into a predefined time lag
interval [26], [27].

In the extreme shock model and cumulative shock model,
damage is considered proportional to the random shock magni-
tudes. The damage can be expressed as a function of the random
shock magnitudes, namely , where is the damage,
and is the shock magnitude.

For easy quantification, damage is divided into several
levels. A damage level plays an important role in engineering
practices because it may be an indicator for determining when
maintenance should be made, and what kind of maintenance
should be implemented. Too many levels, however, may bring a
computational burden, or sometimes are not necessary. Hence,
damage is usually divided into three levels [28]: small damage,
moderate damage, and large damage. A small damage level is
treated as harmless. A moderate damage level is considered as a
harmful but not fatal impact. A large damage level is considered
fatal, because when the damage reaches this level, a system
will fail. Each damage level can be denoted by its respective
region , , or .

Shock damage models have been studied by Finkelstein and
Zarudnij [28]. In their work, a shock process is modeled by a
HPP with rate , and the shock damage is assumed to follow
-independent Gaussian distributions. If the cumulative distri-

bution function of damage is known, the probability that

the damage falls into regions , , and
can be computed respectively by

(1)

The corresponding failure rates are then given by [25]

(2)

If at least one shock from the process with failure rate
occurs, or if more than shocks from the region occur,
the system will fail. Based on this assumption, the reliability at
time can be calculated by [28]

(3)

Shocks with large and moderate damage are considered in
this work. Shocks with a fixed time period and varying time
periods are also accounted for. Because shocks in the region

have no consequence, we divided shocks into two re-
gions: moderate damage region , and large damage region

. In the moderate damage region, damage is cumula-
tive. And the probability that the damage falls into the region

and can be respectively calculated by

(4)

Then the corresponding failure rates are

(5)

When shocks occur with a fixed time period, the reliability at
time can be expressed by

(6)

where is the damage of the th shock, and ; is the
threshold of the damage of shocks.

When shocks are assumed to follow a HPP, the reliability at
time can be expressed by

(7)

where is the damage of the th shock.
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Fig. 1. Relationship between performance and three failure modes.

III. THREE FAILURE MODES CONSIDERED IN THIS WORK

In this work, the performance of a system or component is as-
sumed to degrade due to three failure modes, as shown in Fig. 1.

The three failure modes are -independent static failure mode
(FM1), failure due to degradation (FM2), and failure due to
shocks (FM3). FM1 is statistically time independent, and is
also -independent of degradation and shocks. It may come
from manufacture imprecision, damages during transportation,
or storage. It may occur before the system or component is put
into operation. is used to denote the reliability associated
with this failure mode. FM2 is caused by the degradation during
product servicing time. FM3 is resulted from shocks, which not
only affect the performance of a system or component, but also
speed up FM2.

Let , , and denote the corresponding events of FM1,
FM2, and FM3, respectively. As discussed above, is -in-
dependent of and . Whichever failure mode occurs, the
system or component is considered not functioning. Hence the
overall reliability can be calculated by the competitive failure
model

(8)

As mentioned previously, the probability of the first event is
. For , when the degradation is greater

than a threshold , FM2 occurs. The probability of is
therefore computed by .

Then the reliability can be rewritten as

(9)

From different perspectives about the effects of shocks on
degradation, two reliability analysis methods are proposed.
In the first method, the effects of shocks on degradation are
considered as changes in the failure rate. In the second method,
the effects of shocks on degradation are considered as random
changes in the degradation process. In both methods, two
shock models are used: shocks with a fixed time period, and
shocks with varying periods. The first method is presented in
Section IV, and the second method is presented in Section V.

Fig. 2. Flowchart of reliability calculation process.

IV. RELIABILITY ANALYSIS WITH INCREASING FAILURE RATES

In this Section, we consider the effect of shocks causing a
sudden increase in the failure rate of a degradation process.

A flowchart (Fig. 2) is used to demonstrate the idea. In Fig. 2,
the input denotes the degradation process, denotes the
failure rate affected by the th shock at time , denotes the
random damage by the th shock, and the output denotes the
reliability at time .

Shocks may occur internally within a system, or come from
the operational environment. Some internal shocks within
rotating machinery occur in a fixed time period. On the other
hand, the occurrence of external shocks from the environment
usually is random, and in this case a HPP is often used to
model the shocking process. Both shocks with a fixed time
period (Section IV-A), and those with varying time periods
(Section IV-B) are studied in this paper.

Reliability can be computed by an integral if the failure rate
is known. For shocks with a fixed time period, the integral
limits are constants; and it is relatively easy to calculate (see
Section IV-A). For those shocks with varying time periods,
however, the integral limits are random numbers; it is difficult,
or even impossible, to obtain an analytical solution. We then
propose a simulation method (see Section IV-B).

A. Shock With a Fixed Time Period

As shown in Fig. 3, shocks with a fixed time period affect a
product performance with associated degradation processes.
For example, an engine is fixed in a factory, where the shocks
with a fixed period due to the manufacturing defect affect the
engine performance. We consider the effect of shocks with a
fixed time period on degradation by two approaches. In the first
approach, the effect of shocks is an increasing function with re-
spect to the failure rate. This approach is discussed in the fol-
lowing paragraphs. In the other approach, the effect of shocks is
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Fig. 3. Performance degrading process.

assumed to be the discrete random changes in the degradation.
The latter approach will be discussed in Section V-A.

In Fig. 3, the vertical axis denotes a performance, and the
horizontal axis denotes time. The fixed time period is , and

are therefore the time instances when shocks
occur. The shocks cause random damage , in the
performance . is the initial failure rate without shocks
while denotes the failure rate after the th shock. For easy
computation due to the additive property of the Gaussian distri-
bution, are assumed to follow a -indepen-
dent Gaussian distribution in this paper. The proposed method
can also be extended to the cases that the damage follows an-
other distribution, such as the lognormal distribution, or the
Weibull distribution. There may not be an analytical expression,
but Monte Carlo simulation could assist the search of the solu-
tion for these extended cases.

We also assume the failure rate increases with a constant rate
after each shock. The failure rates in terms of time

can then be represented by

(10)

From the above equation, a general formulation is given by

(11)

The failure rate is one important measure for reliability which
can be derived [29]. The initial failure rate, before the f

(12)

When is less than , the component or system is con-
sidered operational. Therefore, in (12), repre-
sents reliability.

In most engineering problems, the mean and standard devi-
ation of a degradation process increase in terms of time. The
Gaussian process with increasing mean and standard deviation
could be used to describe these engineering problems. Fur-
thermore, when is a Gaussian process with increasing
mean and standard deviation, is a monotone
decreasing function with respect to time. Therefore, a Gaussian

process with increasing mean and standard deviation could be
considered as an approximate monotone process. Given the
Gaussian distribution assumption, (12) becomes

(13)

where .
When only the degradation is considered without shocks, re-

liability is denoted by , and can be written as a function of
the initial failure rate

(14)

In this paper, the mixed shock model in (6) is used. Based on
(9), reliability can be expressed as follows.

When ,

(15)

where , ,
and .

When ,

(16)

(17)

(18)
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Fig. 4. Performance degrading process under random shocks.

Because of the relationship between reliability and failure
rate, (18) can be rewritten as

(19)

The number of periods can be determined by ,
where int stands for taking the integer part of . When the
product serviceable life is given, can then be determined.
Because (19) is a recursive formulation, and can be ob-
tained by (14), it is straightforward to calculate .

B. Shocks With Poisson Process

In the above subsection, shocks with a fixed time period of oc-
currence are discussed. In this subsection, shocks with varying
time periods of occurrence are considered. For example, an en-
gine is put in a car, where the shocks due to the condition of the
road affect the engine performance. The varying time periods of
occurrence may follow a certain probability distribution. In this
paper, we employ the most commonly used HPP to describe a
shocking process. The performance process under the random
shocks is depicted in Fig. 4.

In Fig. 4, the vertical axis denotes the performance, and
the horizontal axis denotes time. The time periods are varying,
and are the time instances when shocks occur.
The shocks cause random damages, on the perfor-
mance metric . denotes the initial failure rate without
shocks, while denotes the failure rate after the th shock.
In this paper, are assumed to follow a -inde-
pendent Gaussian distribution. However, the proposed method
can also be extended to cases that do not
follow the -independent Gaussian distribution. The model (in
Section IV-A) is a special case of the model herein.

Then reliability can be derived as follows.

When ,

(20)

When ,

(21)
From (7),

(22)

Because the time instances of occurrence follow a HPP, the
survival probability under shocks can be expressed by

(23)

The survival probabilities are also plotted in Fig. 4. Then reli-
ability, the sum of all the survival probabilities, is calculated by

(24)
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Fig. 5. Degradation process under random shocks.

Because the shocking process is assumed to follow a HPP,
is a Gamma distribution with parameters and . Because no
analytical solution is available, a simulation method is used to
solve (23) and (24). A matrix is used to represent the samples
of , as shown below.

samples of ( columns in the matrix) are obtained from
Monte Carlo simulation. Then reliability functions can be
obtained by

(25)

Then the mean reliability is computed by

(26)

And the standard deviation of the reliability is given by

(27)

V. RELIABILITY ANALYSIS WITH DEGRADING PERFORMANCES

In Section IV, the effect of shocks on degradation is con-
sidered as a sudden increase in the failure rate. A simulation

Fig. 6. Degradation process under shocks with a fixed time period.

method is used to calculate reliability when shocks occur with
varying time periods. In this section, the effect of shocks is con-
sidered as random changes in the degradation process.

The comparison between the two methods is depicted in
Fig. 5, where is the degradation. is the
random effect on degradation due to the th shock, and is
assumed to be a Gaussian distribution with .
In the first method, the failure rate suddenly increases when a
shock occurs. In the second method, a sudden random increase
in degradation is assumed after a shock.

From Fig. 5, we know that shocks cause the degradation
process to jump at time for method 2. Then the degradation
process is no longer continuous, and forms several states. Each
shock can be considered as a state transmission signal. For
more details, see [21].

A. Shocks With a Fixed Time Period

Fig. 6 describes the degradation process under shocks with a
fixed time period.

In Fig. 6, the vertical axis is the degradation measure. The
fixed time period is , and are therefore the
time instances when shocks occur. is the random change in

caused by the th shock.
The mixed shock model in (6) is used here. By accommo-

dating three failure modes (see Fig. 1), (9), and (28) (shown at
the bottom of the next page) is obtained to assess the reliability.

(28)
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, and are -independent, and are
assumed to follow the Gaussian distribution with CDF

(29)

Because is a linear combination of random
variables with a Gaussian distribution, also follows a
Gaussian distribution with the CDF

(30)

Because is a stochastic process, and is assumed to be a
Gaussian process in this paper, is also a stochastic
process, and .

Then in (28) can be computed
by

(31)

are assumed to follow a -independent Gaussian distribu-
tion with . By substituting (31) into (28), relia-
bility can be rewritten as (32), shown at the bottom of the page

B. Shocks With Poisson Process

In Section V-A, shocks occur with a fixed time period. In
this subsection, shocks arrive with varying time periods, which
follow a HPP. Given the shock model in (7), the survival prob-
ability under shocks can be expressed by

(33)

Then the reliability, the sum of all the survival probabilities,
can be computed by

(34)

Note from (34) that reliability is not related to time instances.
Only the number of shocks is needed. Then an analytical result
can be obtained, and is given by

(35)

VI. CASE STUDY

The case study is based on the fatigue crack data in [30]. We
demonstrate the proposed methods presented in Sections IV
and V, with necessary modifications in the problem from
[30]. Meanwhile, some information on the shocking process
is provided to illustrate the proposed method. Even though the
shocking process is hypothetical, the proposed methods are
still useful with real data. Note that the effect of shocks on
degradation reduces the reliability compared to that without
consideration of any given information on the shock process.

A. Degradation and Shock Processes

In [30], the degradation path approach is used to analyse the
fatigue crack growth data. The data were collected from 21 test
specimens (TS). All specimens have an initial crack length of
0.90 cm. The degradation metric (crack length) in Table I are
part of the data sets in [30]. The loading cycles in the original
data are transformed into the loading time herein.

The formulation for the mean, and
for the standard deviation of the degradation process are as-
sumed, where , , , and are undetermined coefficients. Then
the LS method is employed to determine the coefficients , , ,
and . The results are

(36)

(37)

From the data analysis, a Gaussian process is suitable to fit
the data sets. Hence, is assumed to follow a Gaussian process,
and the degradation path can be described by

(38)

We then introduce shocks into the problem. As discussed pre-
viously, shocks are categorized into two types in terms of their
arrival time: shocks with a fixed time period, and those with
varying time periods.

For the shocks with a fixed time period, the time period
is used. Yet for the shocks with varying time periods,

a HPP is used, and the occurrence rate is .

(32)
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TABLE I
FATIGUE CRACK GROWTH DATA (CM)

The damage on the performance due to the th shock follows a
Gaussiandistributionwith .TheCDF
of damage is also assumed to follow a Gaussian distribu-
tion, and the threshold between moderate and large damage is de-
finedas .Theprobabilitiesofdamageofoneshock
falling into the regions , and are ,
and , respectively. Then the corresponding failure
rates and can be obtained through (5), and the results
are , and . The probability asso-
ciated with FM1 is . The degradation,
and shock thresholds are , and , re-
spectively. Next, we solve the problem in two scenarios: shocks
resulting in an increasing failure rate, and shocks resulting in a
direct change in the degradation process. If we did not consider
thecorrelationbetweenthedegradationandshocks,wewoulduse

to calculate reliability.

B. Reliability Analysis With Increasing Failure Rate Due to
Shocks

The theory of this method is presented in Section IV. The
aforementioned two types of shocks are considered. The failure
rate increases with a constant rate .

1) Shocks with a fixed time period When , as
shown in (15), reliability is computed by

(39)

When , according to (16),
reliability is given by

(40)

Fig. 7. Reliability curves under shocks with a fixed period.

The results are plotted in Fig. 7 (the lower curve). The
curve shows how reliability changes in terms of time,
considering the effect of shocks on degradation, e.g.

. The reliability
curves are not continuous because there is a sudden in-
crease in the failure rate when a shock occurs.
When the correlation between the degradation and shocks
is not taken into consideration, it means that the degrada-
tion is -independent from the shocks. Because we did not
account for the effects of shocks, the reliability estimate
would be higher. The reliability curve without considering
the correlation between the degradation and shocks is also
plotted in Fig. 7 (the upper curve). The results indicate that
the reliability estimation will be too optimistic without the
consideration of the correlation between the degradation
and shocks.
As shown in the figure, both reliability curves overlap be-
fore the 13th month. This overlap indicates that the effects
of shocks are not significant before the 13th month. The
curves began to separate at the 13th month, and the effects
of shocks become a dominant factor of the reliability per-
formance.

2) Shocks with a HPPWhen shocks occur with varying time
periods, which are modeled by a HPP, a simulation method
is used to calculate reliability as shown in Section IV-B.
The number of simulations is 10,000. The reliability curves



WANG et al.: APPROACH TO RELIABILITY ASSESSMENT UNDER DEGRADATION AND SHOCK PROCESS 861

Fig. 8. Reliability curves under shocks with Poisson process.

are depicted in Fig. 8. The mean reliability curve (the lower
curve) is plotted. The curves of the survival probability
under shocks are also plotted, which is a family of curves,
and is determined by (23).
The reliability curve (the upper curve) without considering
the correlation between the degradation and shocks is also
plotted. Hence, the reliability would be lower when the cor-
relation between the degradation and shocks is accounted
for.
Because the effects of shocks are not significant before
the 12th months, the two reliability curves nearly overlap
before that. The curves separate after the 12th month, and
the effects of shocks become larger.

C. Reliability Analysis With Random Change in Degradation

In Section VI-B, the effects of shocks on degradation are as-
sumed to be changes in the failure rate. In this subsection, the ef-
fect is assumed to be a random change in degradation. Two types
of shocks are also considered. The random change in degrada-
tion caused by the th shock is a Gaussian distribution with

.
1) Shocks with a fixed time period

When , as shown in (32), reliability can be
expressed as

(41)

When , as shown in (32),
reliability can be expressed by

(42)

Fig. 9. Reliability curve under fixed time period shock.

The reliability curve (the lower curve) under shocks
with a fixed time period is plotted in Fig. 9. The
curve shows how reliability changes in terms of time
considering the effect of shocks on degradation, e.g.

. The reliability
curves are not continuous because there is a sudden in-
crease in the degradation when a shock occurs.
Without considering the correlation between the degrada-
tion and shocks, the reliability (the upper curve shown in
Fig. 9) is higher than the case with the correlation between
the degradation and shocks.
As shown in the figure, the effects of shocks are not signifi-
cant before the 12th month; they overlap before that month.
However, the two curves begin to separate after the 12th
month, and the effects of shocks become larger.

2) Shocks with Poisson process
The survival probability under shocks, as shown in (33),
can be expressed as

(43)

The reliability, according to (34), can be expressed by

(44)

The results are plotted in Fig. 10 (the lower curve). The
curve shows how reliability changes with time with con-
sidering the effects of shocks on degradation, e.g.

. Because the occurrences of
shocks are random, the reliability curves are continuous.
As shown in Fig. 10, the reliability curve without consid-
ering the correlation is much higher than the actual relia-
bility.
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Fig. 10. Reliability curves under Poisson process shocks.

VII. CONCLUSION

The impact of shocks on product performance, especially on
reliability performance, is critical. How to model such an impact
is very complicated. This work is an attempt to analyse product
reliability with performance degradation and shocks under two
scenarios. In the first scenario, each shock is assumed to result
in a sudden increase in the failure rate of the product. In the
second scenario, each shock is assumed to result in a random
increase in a degradation path. Shocks with a fixed time period,
and shocks with varying time periods, are also considered. The
four combinations of the two scenarios on the effects of shocks,
and the two types of shocks, have been carefully studied.

To calculate product reliability with both degradation and
shocks, three failure modes are considered, including the cat-
astrophic (binary state) failure, degradation (continuous pro-
cesses), and the failure due to shocks (impulse processes). The
reliability for the four combinations with the three failure modes
are derived, under stated assumptions. For instance, the change
in performance and degradation is assumed to follow a -inde-
pendent Gaussian distribution. With suitable adjustments, the
proposed methods are applicable to situations where those as-
sumptions do not hold.

As shown in the example, shocks have a significant impact on
the performance degradation, and on the product reliability. If
the correlation between performance degradation and shocks is
not considered, the predicted reliability would be higher than the
actual case. For an accurate reliability prediction, it is necessary
to consider the correlation between the performance degradation
and shocks. The example indicates that, without the considera-
tion of the correlation, the reliability estimation will be risky
(higher than the accurate value).

Future research will seek the answers to three questions. 1) In
what situations can the two scenarios be used? 2) How can the
proposed methods be used for non-Poisson processes? 3) And
when should maintenance be performed based on the estimated
reliability?
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