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a b s t r a c t

Reliability is the ability of a system to perform its required functions under stated conditions for a specified
period of time. Reliability analysis is an important tool to evaluate the performance of a system and
make maintenance decision. In engineering practices, there are usually several processes to cause a
system to failure. Generally, the failure processes can be categorized into degradation process and shock
process. This research investigates the system reliability analysis when both degradation process and
eywords:
eliability analysis
uzzy degradation data
hock process
egradation process

shock process are involved. Furthermore, the effect due to shock process on the degradation process
is considered and degradation analysis is conducted under fuzzy degradation data. After that, a system
reliability model on competitive failure processes under fuzzy degradation data is constructed. Since
several states are formed when the effect due to shock process on degradation process is accounted for,
multi-state system reliability theory is employed to evaluate the proposed model. This method could be

of ma
rovid
ompetitive failure process
ulti-state system reliability theory

used to assess reliability
engineering example is p

. Introduction

System performance may degrade with time due to some fac-
ors from system themselves or environment, such as wear, erosion,
hocks and so on. System reliability decreases correspondingly. Sys-
em may also suddenly fail due to excessive loading, shocks or some
ther reasons. Basically, there are three major types of reliability
nalysis methods to deal with the two kinds of failures, including
inary-state methods, multi-state methods and continuous state
ethods.
A binary-state method only considers two states: perfect func-

ioning and full failure, which is the earliest reliability analysis
ethod and has been widely applied in engineering practices. Since
number of intermediate states may exist between the perfect

unctioning and full failure, such as in power supply systems and
ommunication systems, which have different performance levels
nd several failure modes with various effects on the entire sys-
em performance, multi-state system theory was introduced in the

iddle of 1970s [1–4].
Continuous state methods are suitable for the performance

egradation problems. Degradation is common in many compo-

ents and systems, especially in mechanical and structural systems.
erformance degradation is usually a function of time.

Since it is very difficult to obtain the failure data in the real
orld, degradation data is very useful for the reliability analysis

∗ Corresponding author. Tel.: +86 28 6183 0248; fax: +86 28 6183 0229.
E-mail address: hzhuang@uestc.edu.cn (H.-Z. Huang).

568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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ny devices precisely in the real world, such as diesel engines. A practical
ed to illustrate the proposed model and method.

© 2010 Elsevier B.V. All rights reserved.

[5,6]. Accelerated testing method is an efficient approach to obtain
the degradation data for the components and systems, especially
high reliable components and systems [7]. Classical reliability anal-
ysis is based on the precise degradation data under the assumption
that the collected data are crisp numbers. However, some collected
data are imprecise and are represented as fuzzy numbers in the
engineering practices [8].

Degradation is generally a stochastic process. There are two
methods to express the stochastic process from the degradation
data, including a degradation path curve method [9–11] and a
random process with general distributions method [12–14]. The
least-square method, maximum likelihood, and Bayesian method
are usually used to estimate parameters in the both methods [7,15].

Shocking is an important source to cause systems to fail and an
increasing attention has been focused on. Two methods to classify
shocks model are proposed in [16]. In the first method, the shock
effect and its arrival time are assumed independent. While in the
second one, the shock effect and its arrival time are considered
dependent. A general model is, furthermore, developed to describe
the cumulative damage, extreme damage, and run damage [16].
Under a generalized framework proposed in [17], the cumulative
shock model, extreme shock model and �-shock model are created.

The binary-state method is extended to the continuous state
method to assess system reliability under degradation in [12]. An
integrated model of binary-state method and continuous method is
created under the consideration that degradation and sudden fail-

ure may exist at the same time. Zuo et al. proposed a mixed model
to assess system reliability with degradation and sudden failure
data [13]. However, the effect of shock process was not considered
in [12,13].

dx.doi.org/10.1016/j.asoc.2010.11.018
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:hzhuang@uestc.edu.cn
dx.doi.org/10.1016/j.asoc.2010.11.018
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Nomenclature

Ai magnitude of the ith shock
Bi time interval between the ith and (i + 1)th shock
C(ı) the prefixed region
Df the prefixed critical degradation
D(t; X(t)) random degradation path
G(c) the damage distribution
g(t) the deviation of X(t)
k the prefixed critical maximum number of middle

shock
N(t) Poison distribution
r(t) failure rate without considering the effect of shocks
X(t) a random process used to express the variation of

degradation data
X1 binary state failure mode X1 ∈{0, 1}
X2 degradation process failure mode, X2 ∈ [0, M]
X3 failure mode caused by shock X3 ∈{0, 1, ..., M}
Yi a random variable used to express the effect on

degradation process due to the ith shock
˛(t) shape parameter in Weibull distribution
ˇ(t) scale parameter in Weibull distribution
�(t) mean degradation path of X(t)
CDF cumulative distribution function
HPP homogenous poison process

s
r
a
o
i
i
i
a
i
s

i
c
s
I
F
a
e
n
c

2

b
f
p
t
r

d
c
s
t
r

3X2X1X

S

Fig. 1. Irrelative among failure modes.
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iY
IFR increasing failure rate class
NHPP non-homogenous poison process

In many engineering applications, degradation process and
hock process occur at the same time. Li and Pham investigated a
eliability assessment model with two degradation processes and
shock process. This is a competitive failure model, in which if any
ne of the three processes exceeds the critical value, the system
s considered to fail. The two degradation processes are discretized
nto multiple states, and then multi-state system reliability method
s employed [18]. Klutke and Yang [19] studied the average avail-
bility of the systems with shocks and graceful degradation. But
n their models, the relation between the degradation process and
hock process is not accounted for.

The organization of this paper is as follows. In Section 2, the
ndependent competitive failure model (IDCFM) and dependent
ompetitive failure model (DCFM) under degradation process and
hock process is described. Shock process is analyzed in Section 3.
n Section 4, fuzzy degradation data analysis is briefly introduced.
ault tree analysis (FTA) is used to evaluate the reliability of IDCFM
nd the multi-state system reliability method is implemented to
valuate the reliability of DCFM in Section 5. In Section 6, an engi-
eering example is used to illustrate the proposed model. Some
onclusions and further work are given in Section 7.

. Model formulation

The failure of system is derived from three main failure modes:
inary-state failure mode, degradation process failure mode, and
ailure mode due to shock process. Two types of models are pro-
osed on the condition whether the shock process cause effect on
he degradation process. The models are shown in Figs. 1 and 2,
espectively.

In Figs. 1 and 2, X1, X2, X3, Yi, S denote binary state failure mode,

egradation process failure mode, failure mode due to shock pro-
ess, random effect by the ith shock on degradation process and
ystem reliability, respectively. In Fig. 1, there is no relation among
he three failure modes. However, in Fig. 2, shock process causes
andom effect on the degradation process.
321

Fig. 2. Shock cause impact on degradation.

Models are studied under some conditions as follows:

(1) The observed data are imprecise;
(2) The life distribution class is subjected to IFR;
(3) Shock process follows statistically Poison distribution N(t).

{Ai, Bi}∞i=1 can be used to describe the whole shock process,
where Ai denotes the magnitude of the ith shock with normal
distribution Ai ∼ N(�2, �2

2) and Bi denotes the time interval
between the ith and (i + 1)th shock;

(4) The impact on the system due to shock process is independent;
(5) The impact on the degradation process due to shocks is inde-

pendent identical distribution.

3. Shock process analysis

In engineering applications, many factors from devices them-
selves and random environment bring shocks to devices. Shock
process caused by devices themselves usually has regular peri-
ods, especially for rotating devices, while shock process caused by
the factors of random environment is usually considered to follow
Poisson process.

Four principal shock models have been studied in [17] and [18]:
extreme shock model where systems fails as soon as the magnitude
of any shock exceeds the prefixed critical level; cumulative shock
model where systems will break down when the cumulative mag-
nitude exceeds; run shock model where system will work until k
consecutive shocks with critical magnitude happen, and �-shock
model where the system will fail when the time lag between two
successive shocks falls into C(ı). Different magnitude of shocks can
lead to different damage to the system. Usually, a shock with mag-
nitude below a prefixed value is considered harmless to the system,
while a shock with magnitude above a prefixed value is considered
fatal to the system. Another case that magnitude is between the low
prefixed value and the high prefixed value is thought to cause mid-
dle damage to the system. Therefore, shocks are divided into three
states in terms of the magnitude of the shocks. When the magnitude
of shocks reaches the interval [0, cs], the shocks are harmless to the
system; when the magnitude of shocks goes into the interval [cs,
cl], the shocks cause middle damage to the system and the damage
is cumulative; and when the magnitude of any shock exceeds ci,
the system is down. The arrival times of shocks follow Poison dis-

tribution, and their magnitude and time interval can be described
in Fig. 3.

As studied in [20], the probability of the damage corresponding
to interval [0, cs], [cs, cl] and [cs, ∞] are denoted as Ps, Ps,l, Pl for
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Table 1
Degradation data.

t1 t2 ... tn

V1 ỹ11 ỹ12 ... ỹ1n

the regression model and provided that y = log(�(t)) and m = log(a),
the formulation can be rewritten as

y = m + bt (6)

Degradation 

t1 t2 t3     ………..  tn        t 

Fig. 4. Degradation path curve.

1

t
t1 t2 t3 t4  ……………… tn

Fig. 3. The relation between magnitude and time interval t.

HPP, respectively.

Ps(t) = exp{−
t∫
0

(1 − ps)h(x)dx}

Ps,l(t) = exp{−
t∫
0

(1 − ps,l)h(x)dx}

Pl(t) = exp{−
t∫
0

(1 − pl)h(x)dx}

(1)

And corresponding failure rates can be obtained

hps = (1 − ps)h(x)

hps,l = (1 − ps,l)h(x)

hpl = (1 − pl)h(x)

(2)

here ps = G(cs), ps,l = G(cl) − G(cs), pl = 1 − G(cl).
For the HPP, as a special example for the NHPP, h(x) = �.
If at least one shock from the process with failure rate hpl occurs

r if more than k shocks from the process with failure rate hps,l
ccur, the system will fail. Then the system reliability is provided

s,k(t) = exp(−hpl
t) exp(−hps,l

t)
k∑

i=0

(hps,l
t)i

i!
(3)

. Fuzzy degradation analysis

In the traditional degradation analysis, the observed data are
reated as crisp numbers without fuzziness. Furthermore, coeffi-
ients used to fit the degradation data are treated as crisp number
ithout fuzziness. In fact, in the practical engineering, many obser-

ation data are fuzzy. So far, fuzzy regression method has been
tudied by many authors [21–23]. Huang et al. [8] proposed a
ayesian reliability assessment method of gear lifetime under fuzzy
nvironment. In this section, a new method to make degradation
nalysis is proposed. The proposed method can deal with the prob-
em both shown in Table 1 and the observed data at different time
i for different devices. And then connect all the observed data
btained from the same device to form curve family shown in Fig. 4.
n succession, samples of observed data from different devices at

he same time ti. A table like Table 1 can also be obtained.

Some subjective factors, such as the warp of the observer, cause
he observed data to be imprecise. In order to characterize the real-
orld conditions, every degradation data is considered as a fuzzy
umber with symmetric triangular membership function (lji, ˇji),
V2 ỹ21 ỹ22 ... ỹ2n

... ... ... ... ...
Vn ỹn1 ỹn2 ... ỹnn

as shown in Fig. 5, where lji is the center and ˇji is the spread width.
The mean degradation value at time ti can be expressed as

˜̄yi = 1
n

n∑
j=1

ỹji (4)

Hence ˜̄yi is also a fuzzy number with symmetric triangular mem-

bership function (li, ˇi), as shown in Fig. 5, where li = 1
n

n∑
j=1

lji is the

center and ˇi = 1
n

n∑
j=1

ˇji is the spread width.

We can know that the spread width of ỹji and ˜̄yi is the same and
the center of ˜̄yi is the mean value of the degradation data at time
ti, if the spread width of each ỹji is the same. For each device, the
function of degradation vs. time is assumed to be expressed as

�(t) = aebt (5)

By implementing the natural log operation on both the sides of
jip jil jiq ip il iq jip jil jiq

Fig. 5. Membership function of ˜̄yi and ỹji .
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on analysis, fault tree analysis (FTA) is used to transact the reliabil-
q l r

Fig. 6. The membership function of ı(ti).

Fuzzy linear regression is employed to resolve data fitness. The
asic model assumes a fuzzy linear function as

˜ = Ã0X0 + Ã1X1 + ... + ÃNXN (7)

here X0, X1,..., XN are independent variables and Ã0, Ã1...ÃN are
he fuzzy coefficients presented in the form of symmetric triangular
uzzy numbers denoted by Ãj = (˛j, cj),where ˛j is the center and cj
s the spread width. Here, the fuzzy linear function can be written
s

˜ = m̃ + b̃t (8)

here t is the independent variable and m̃, b̃ are fuzzy coeffi-
ients with the symmetric triangular fuzzy number denoted by
˜ = (˛0, c0) and b̃ = (˛1, c1), respectively.

Provided that the degree of fitting the estimated fuzzy regres-
ion model ỹi = m̃ + b̃t to the mean observed data ˜̄yi has at least h
egree. According to the analysis above, the linear programming
roblem is obtained [21].

min
n∑

i=1

(c0 + c1ti)

s.t.˛0 + ˛1ti + (1 − h)(c0 + c1ti) ≥ li + (1 − h)ˇi

˛0 + ˛1ti − (1 − h)(c0 + c1ti) ≤ li − (1 − h)ˇi

c0 > 0, c1 > 0

h > 0

By resolving the linear programming problem, ˛0, ˛1, c0, c1 can
e obtained. Then the fuzzy number m̃ and b̃ can also be expressed.

From the view of statistical point, the deviation at time ti can be
iven by

(ti) = 1
n

n∑
j=1

(ỹji − ˜̄yi)
2 (9)

(ti) is fuzzy numbers with the similar membership function shown
n Fig. 6.

This membership function of ı(ti) is neither symmetrical nor tri-
ngular, because there is multiplication operation in the process of
olving ı(ti). According to the distribution of ı(ti), different type of
unction ı(t) is used to fit ı(ti) at time ti(i = 1, 2, ..., n). But intrinsi-
ally linear function and linear function are usually used. In [24],
wo types of degradation models, additive degradation model and

ultiplication degradation model, are analyzed. In the two models,
represents the random variance around a mean degradation level

nd is the same at any time t . In fact, the random variance around
i
he mean degradation is not a fixed random variable, since it can
hange with time. So the degradation curve can be expressed as:

(t, X(t), �) = �(t, �) + X(t) (10)
Fig. 7. The decomposed degradation path.

When all observations are operated in the same conditions, the
Eq. (10) can be rewritten as

D(t, X(t)) = X(t) (11)

The degradation data are rooted in different systems under
nearly the same environment. The observed data at time ti approx-
imately follow normal distribution. And the mean value and
deviation can be expressed as

�(t) = E(X(t)) = �(t)

ı(t) = D(X(t)) = ı(t)
(12)

When the observed data at time ti approximately follow Weibull
distribution, shape parameter ˛(t) and scale parameter ˇ(t) can be
obtained by resolving the following equations.

� = E(X(t)) = ˛(t)� (1 + 1
ˇ(t)

) = �(t)

ı = D(X(t)) = ˛2(t)[� (1 + 2
ˇ(t)

) − � 2(1 + 1
ˇ(t)

)] = ı(t)
(13)

When the observation data at time ti follows normal distribution,
the degradation path can be decomposed as shown in Fig. 7.

Where �(t) is the mean degradation path, X(ti) is the random
variable at time ti.

5. Reliability analysis

Reliability analysis, especially in the important large sys-
tems, plays an important role in the reliability engineering. It
helps engineers to evaluate the current system performance and
make maintenance decisions to reduce the probability of failure.
Independent and dependent competitive failure model reliability
analysis methods are studied as follows.

5.1. Independent competitive failure model reliability analysis

In independent competitive failure model, there is no inter-
action between the three failure modes. Furthermore, the three
failure modes form the parallel connection. If any failure mode
among them reaches the prefixed value, the system will fail. Based
ity analysis problem. The configuration of FTA in term of this model
can be described in Fig. 8.

The failure of the system is derived from three aspects: binary
state failure mode X1, degradation process failure mode X2, and the
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Fig. 8. The FTA of independent competitive failure model.

ailure mode due to shocks X3. The system will fail, when the degra-
ation process exceeds the prefixed value Df, or the failure of binary
tate occurs or the damage caused by shocks exceeds the prefixed
alue. Based on analysis abovementioned, the system reliability can
e represented as

= Pr
{

X1 = 1, X2 ≤ Df , Tp ∈ [t, t + �t]|Tp > t
}

= Pr
{

X1 = 1
}

Pr

×
{

X2 ≤ Df

}
exp(−hp1t) exp(−hps,1t)

k∑
0

(hps,1t)i

i!
(14)

here Tp denotes the random time to cause the system to fail due
o the shocks.

First, the calculation of Pr{X2 ≤ Df} can be realized as follows.

r
{

X2 ≤ Df

}
= p

{
X(t) ≤ Df

}
(15)

For different systems under nearly the same environment, the
easured data usually follows normal distribution. Then

r
{

X2 ≤ Df

}
= ˚

(
Df − �(t)

g(t)

)
(16)
Given a fixed value to k, the value of

xp(−hplt) exp(−hps,l)
k∑
0

(hps,lt)i

i! can be easily obtained.

t           1 t    2 t   3 ………. t

Degradation

Fig. 9. Degradation process un

Start State 0 State 1
0P

1P
2P

nP

Fig. 10. State transm
uting 11 (2011) 2964–2973

5.2. Dependent competitive failure model reliability analysis

Dependent competitive failure model is usually met in the prac-
tical engineering, such as engine, and crane. The failure of systems
is mainly caused by three failure modes: degradation process fail-
ure mode, binary state failure mode and the failure mode due to
shock process. The shock process not only causes the decrease of
system life directly but also accelerates the speed of degradation
process indirectly. Because the interval between the consecutive
shocks is not a real variable but a random variable, it is very dif-
ficult to resolve the varying failure rate problem with the random
time interval with analytical methods. In this section, the effect
due to shock process on degradation process is considered as a
random variable instead of resolving the varying failure rate prob-
lem in the random time interval as shown in Fig. 9. Actually, the
effect due to shock process gets along with the whole degrada-
tion process. A random degradation variable is provided as soon
as a shock occurs to make the effect forward. Furthermore, only
shocks with middle damage effects the continuous degradation
process. The dependent competitive failure model can be seen in
Fig. 2. Based on the analysis aforementioned, the system reliabil-
ity of the dependent competitive failure model can be represented
as

R = Pr

{
X1 = 1, X2 +

n∑
i=0

Yi ≤ Df , Tp ∈ [t, t + �t]|Tp > t

}

= Pr
{

X1 = 1
}

Pr

{
X2 +

n∑
i=0

Yi ≤ Df

}
exp(−hp1t) exp(−hps,1)

×
k∑
0

(hps,1t)i

i!
(n = 1, 2, ...k) (17)

The system maybe fail in term of the failure of the degrada-
tion process including original degradation and effect due to shock
components. So we should calculate the probability at the cause of
every shock. Each shock is treated as the state transmission signal to
the system. Then multi-state system reliability theory is employed
to resolve this problem. The state transmission chart considering

Y1

Degradation

Y2

t         1 t    2 t   3 ………. t

Y3 ……

der the effect of shocks.

State 2 State n..................

ission chart.
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he relation between degradation process and shock process can be
escribed in Fig. 10.

The ith shock causes system to divert from state i to (i + 1) (i = 1,
,. . .,n). The actual transition path is from state i to state i + 1 with-
ut jump as the solid line in Fig. 10. In the process of calculation,
ransition path considered is from state 1 to state j (j = 2, 3,. . .,n),
escribed as the dotted line in Fig. 10.

Probability in state j (j = 2, 3,. . .,n) can be expressed as follows
espectively.

1 = Pr
{

X1 = 1, N(t) = 1, �(t) + X(t) + Y1 ≤ Df , Tp ∈ [t, t + �t]|Tp >

= Pr
{

X1 = 1
}

Pr{N(t) = 1}Pr
{

�(t) + X(t) + Y1 ≤ Df

}
exp(−hp1t)

2 = Pr

{
N(t) = 2, �(t) + X(t) +

2∑
i=1

Yi ≤ Df , X1 = 1, Tp ∈ [t, t + �t]|T

= Pr
{

X1 = 1
}

Pr{N(t) = 2}Pr

{
�(t) + X(t) +

2∑
i=1

Yi < Df

}
exp(−

n = Pr

{
N(t) = n, �(t) + X(t) +

n∑
i=1

Yi ≤ Df , X1 = 1, Tp ∈ [t, t + �t]|T

= Pr
{

X1 = 1
}

Pr{N(t) = n}Pr

{
�(t) + X(t) +

n∑
i=1

Yi ≤ Df

}
exp(−h

The system reliability of the system can be represented as

=
∞∑

i=1

pi (21)

here n ≤ k
To obtain the system reliability, probability in every state must

e known. Yi (i = 1, 2, ...n) is independent and follows normal distri-
ution with CDF

(yi) = 1√
2	�1

yi∫
−∞

e−(t−�1)2/2�2
1 d (22)

According to the characteristic of normal distribution, Y =
n∑

i=1

Yi

till follows normal distribution with CDF

(y) = 1√
2	n�1

y∫
−∞

e−(yi−n�1)2/2n�2
1 dt (23)

The degradation under the ith shock can be written as

(t) = X(t) +
n∑

i=1

Yi (24)

ith CDF

FD(t) = Pr

{
X(t) +

n∑
i=1

Yi < Df

}

= Pr
{

X(t) + Y < Df

} (25)
Because X(t) is a random process following normal distribution
nd Y is a random variable following normal distribution, so X(t) + Y
s a random process following normal distribution

(t) + Y∼N(n�1 + �(t), n�1
2 + g(t))
uting 11 (2011) 2964–2973 2969

−hps,1)
1∑
0

(hps,1t)i

i!
(18)

}

exp(−hps,1)
2∑

i=1

(hps,1t)i

i!

(19)

}

exp(−hps,1)
n∑

i=1

(hps,1t)i

i!

(20)

Then Eq. (25) can be rewritten as

FD(t) = Pr{X(t) +
n∑

i=1

Yi < Df }

= Pr{X(t) + Y < Df }
Df − �(t) − n�1

= 
(
Df − �(t) − n�1√

n�2 + g(t)

(24’)

6. Case study

6.1. Degradation analysis

Lu and Meeker used path curve approach to analyze the fatigue
crack data sets including degradation data and failure data [11]. The
data sets were collected from 21 test specimens. All specimens had
an initial crack length of 0.90 in. The data in Table 2 is only a part
of data sets in [11], which only includes degradation data.

Some subjective factors, such as the warp of the observer, cause
the observed data to be imprecise. In order to characterize the
real-world conditions, the observed data could be treated as fuzzy
numbers and the value in Table 2 is considered as the center of the
fuzzy numbers. The fuzziness is mainly derived from the approxi-
mate evaluation to the mantissa of observed data and given that
they have the same spread width 0.01. Then the observed data
can be expressed as ỹji = (yji, 0.01) (j = 1, ..., 13 ; i = 0, ..., 12). So
the mean observed data at time ti can also be represented as
˜̄yi = (ȳi, 0.01). According to the distribution of yi (i = 0,...,12) the
formulation �(t) = aebt is used to describe the path curve of the
mean observed data at each time ti. After implementing the nat-
ural log operation on both sides of the formulation, the equation
ln(�(t)) = ln(a) + bt is derived. Provided that y = ln(�(t)) and m = ln(a),
the relation between y and t can be seen in Table 3.

When the numbers in Table 3 are crisp numbers without
fuzziness, Least Square is used to fit the number in Table 3 and
m = −0.1316, b = 0.0398 is obtained.

In order to make the fuzziness of the coefficients m̃ and b̃ mini-
mum, the linear program should be resolved

min
12∑
i=0

(c0 + c1ti)

s.t. ˛ + ˛ t + (1 − h)(c + c t ) ≥ l + (1 − h)ˇ
0 1 i 0 1 i i i

˛0 + ˛1ti − (1 − h)(c0 + c1ti) ≤ li − (1 − h)ˇi

i = 0, 1, ..., 12

h > 0, c0 > 0, c1 > 0
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Table 2
Fatigue crack growth data (in inch).

TS Loading cycle (104 cycles)

0 1 2 3 4 5 6 7 8 9 10 11 12

1 0.90 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 1.44 1.55 1.72
2 0.90 0.92 0.96 1.00 1.04 1.08 1.13 1.19 1.26 1.34 1.42 1.52 1.67
3 0.90 0.93 0.97 1.00 1.04 1.08 1.13 1.18 1.24 1.31 1.39 1.49 1.65
4 0.90 0.93 0.97 1.00 1.03 1.07 1.10 1.16 1.22 1.29 1.37 1.48 1.64
5 0.90 0.92 0.97 0.99 1.03 1.06 1.10 1.14 1.20 1.26 1.31 1.40 1.52
6 0.90 0.93 0.96 1.00 1.03 1.07 1.12 1.16 1.20 1.26 1.30 1.37 1.45
7 0.90 0.92 0.96 0.99 1.03 1.06 1.10 1.16 1.21 1.27 1.33 1.40 1.49
8 0.90 0.92 0.95 0.97 1.00 1.03 1.07 1.11 1.16 1.22 1.26 1.33 1.40
9 0.90 0.93 0.96 0.97 1.00 1.05 1.08 1.11 1.16 1.20 1.24 1.32 1.38
10 0.90 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19 1.23 1.28 1.35
11 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.20 1.25 1.31
12 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.19 1.24 1.29
13 0.90 0.92 0.94 0.97 0.99 1.02 1.04 1.07 1.11 1.14 1.18 1.22 1.27
Avg. 0.90 0.9231 0.9562 0.9854 1.0177 1.0531 1.0915 1.1338 1.1862 1.2431 1.2969 1.3731 1.4723

Table 3
The relation between y and t.

t 0 1 2 3 4 5 6 7 8 9 10 11 12

y −0.1054 −0.0800 −0.0448 −0.0147 0.0175 0.0517 0.0876 0.1256 0.1708 0.2176 0.2600 0.3171 0.3868
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Fig. 11. Fitness cure paths of

Table 4
Center and spread width of m̃ and b̃.

h = 0.80 h = 0.85 h = 0.90 h = 0.95

˛0 −0.1152 −0.1213 −0.1165 −0.1166
˛1 0.0382 0.0393 0.0384 0.0385
c 0.0600 0.1167 0.1120 0.2340

˛
s
c

T
T

0

c1 0.0139 0.0121 0.0254 0.0510
fval 1.8622 2.4572 3.5685 7.0200
Substituting the data in Table 3 into the linear program above,
0, ˛1, c0 and c1 can be obtained. Different ˛0, ˛1, c0 and c1 are
hown in Table 4 in terms of different values of h and the fitness
ure path is shown in Fig. 11.

able 5
he relation between f and t.

t 1 2 3 4 5 6

f −8.5172 −8.5172 −8.5172 −7.6009 −7.4186 −6.725
cles)

the mean of different h.

According to the distribution of vi (i = 0,...,12) the formula-
tion g(t) = cedt is used to describe the path curve of the variance
of observed data at each time ti. After implementing the natu-
ral log operation on both sides of the formulation, the equation
ln(g(t)) = ln(c) + bt is derived. Provided that f = ln(g(t)) and n = ln(c),
the relation between f and t can be seen in Table 5. Because the
variance in t0 is equal to 0, the nature log at t0 is meaningless. Then
the variance in t0 is ignored

When the numbers in Table 5 are crisp numbers without
fuzziness, Least Square is used to fit the number in Table 5 and
n = −9.4709, b = 0.4646 is obtained.

Because the variance should be big or equal to 0, li − ˇLi should
be big or equal to 0. The conclusion can be reached that ˇRi should
be biger than ˇLi. In order to make the fuzziness of the coefficients

7 8 9 10 11 12
4 −6.1193 −5.7764 −5.2785 −4.8409 −4.3901 −3.7132
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Table 6
Center and spread width of ñ and d̃.

h = 0.80 h = 0.85 h = 0.90 h = 0.95

˛3 −9.2156 −9.2854 −9.3205 −9.3556
˛4 0.4243 0.4361 0.4363 0.4365
c3 2.6987 3.6001 5.0558 9.4231
c4 0.0578 0 0 0
fval 39.5929 46.8007 65.7255 122.5001

n

˛
s
c

6

c
�
o
o
m
o
a

Assume that the effect of every shock on the degradation pro-
cess follows normal distribution with Yi ∼ N(0.02, 0.1). Because the
system will fail when more than 5 shocks from the process with
failure rate hps,1 occur, the total states of the system are six. The
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˜ and d̃ minimum, the linear program should be resolved

min
12∑
i=0

(c3 + c4ti)

s.t.˛3 + ˛4ti + (1 − h)(c3 + c4ti) ≥ li + (1 − h)ˇR

˛3 + ˛4ti − (1 − h)(c3 + c4ti) ≤ li − (1 − h)ˇL

i = 0, 1, ..., 12

h > 0, c3 > 0, c4 > 0

Substituting the data in Table 5 into the linear program above,
3, ˛4, c3 and c4 can be obtained. Different ˛3, ˛4, c3 and c4 are
hown in Table 6 in terms of different value of h and the fitness
urve path is shown in Fig. 12.

.2. Independent competitive failure model

Consider fatigue crack analyzed above as degradation pro-
ess failure mode to the system. Then X(t) ∼ N(�(t), g(t)) where
(t) = 0.891e0.0382t and g(t) = 9.2769 × 10−5e0.4361t. The parameter
f Poisson distribution is denoted as � = 1. Assumed that at least
ne shock from the process with failure rate hp1 occurs or if
ore than 5 shocks from the process with failure rate hps,1
ccur, the system will fail. The system reliability can be expressed
s

8 10 12

n cycles)

e variance of different h.

R = Pr{X1 = 1, X2 < Df , Tp ∈ [t, t + �t]|Tp > t}

= Pr
{

X1 = 1
}

Pr{X(t) ≤ Df } exp(−hp1t) exp(−hps,1t)

k∑
0

(hps,1t)i

i!

= ˚(
Df − 0.891e0.0382t√
9.2769 × 10−5e0.4361t

) ∗ 0.95 ∗ exp(−0.0498t) ∗ exp(−0.855t)∗

5∑
0

(0.855t)i

i!

The relation between reliability and time can be described as
Fig. 13.

6.3. Dependent competitive failure model
Fig. 13. The relation between reliability and time.



2972 Z. Wang et al. / Applied Soft Computing 11 (2011) 2964–2973

Start State 0 State 1 State 2 State 3 State 4 State 5
0P

1P
2P

3P
4P

5P

Fig. 14. State transmission chart.

10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(104 cycles)

p
ro

b
a

b
ili

ty

state 0

state 1

state 2

state 3

state 4

state 5

system reliabiliaty

ry state and system reliability curve.

s

P
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Fig. 15. Probability curve in eve

tate transmission chart can be seen in Fig. 14.where

P0 = e−t˚(
Df − 0.891e0.0382t√
9.2769 × 10−5e0.4361t

) ∗ 0.95 ∗ exp(−0.0498t) ∗ exp(−0.855t)

1 = te−t˚(
Df − 0.891e0.0382t − 0.02√
9.2769 × 10−5e0.4361t + 0.1

) ∗ 0.95 ∗ exp(−0.0498t) ∗ exp(−0.855t)

×
1∑

i=0

(0.855t)i

i!

P2 = 1
2

t2e−t˚(
Df − 0.891e0.0382t − 0.04√
9.2769 × 10−5e0.4361t + 0.2

) ∗ 0.95 ∗ exp(−0.049

3 = 1
6

t3e−t˚(
Df − 0.891e0.0382t − 0.06√
9.2769 × 10−5e0.4361t + 0.3

) ∗ 0.95 ∗ exp(−0.049

4 = 1
24

t4e−t˚(
Df − 0.891e0.0382t − 0.08√
9.2769 × 10−5e0.4361t + 0.4

) ∗ 0.95 ∗ exp(−0.04
5 = 1
120

t5e−t˚(
Df − 0.891e0.0382t − 0.10√
9.2769 × 10−5e0.4361t + 0.5

) ∗ 0.95 ∗ exp(−0.0498t

5∑ (0.855t)i

The probability curve in every state i (i = 0–5) and the system
eliability can be shown in Fig. 15.
) ∗ exp(−0.855t)
i=0
i!
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. Conclusions

In the real world, the failure of many systems is mainly derived
rom three modes: binary state failure mode, degradation process
ailure mode and failure mode due to shock process. Degrada-
ion process failure has been focused on by many researchers and
pplied to the practical engineering. Degradation analysis plays an
mportant role in the reliability evaluation, especially to the high
eliable systems. However, in the traditional degradation analy-
is, the degradation data are considered as crisp numbers without
uzziness and the random variance around the mean degrada-
ion level is invariable with time stepping forward. In this paper,
egradation data are treated as fuzzy number and random vari-
nce around the mean degradation level changes with time. We
gnore some meaningless fuzzy numbers while some transforma-
ion is used, such as nature log, when the fuzzy variance is analyzed.
hock is another important factor to cause the system to fail. FTA
s employed to evaluate the system reliability of independent com-
etitive failure model. Because shocks not only bring a random
irect effect to system, but also bring degradation a random indi-
ect effect to cause the degradation not be expressed by a uniform
unction, multi-state system reliability theory is employed to eval-
ate the system reliability of dependent competitive model. The
ifference from traditional multi-state system theory is that the

ump time from state i to i + 1 is a random variable. This causes
very state probability to be a function of t. This model will have
ider application fields. For example, diesel engines have a degra-
ation process by its effect, such as wear, erosion, crack and so on;
eanwhile, shocks are caused by random environment not only

n diesel engines but also on degradation process, especially in
he case that the vibration is very significant in specific frequency
anges. DCFM is used to estimate the reliability of diesel engines and
upply engineers a method to the design optimization and mainte-
ance decision-making. Some theoretical research and application
esearch are investigated as well.
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