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Hong-Zhong HUANG

STRUCTURAL RELIABILITY ANALYSIS USING FUZZY SETS THEORY

ANALIZA NIEZAwOdNOśCIOwA kONSTRUkCjI  
Z wYkORZYSTANIEm TEORII ZBIORów ROZmYTYCH

Prediction of structural performance is a complex problem because of the existence of randomness and fuzziness in engineering 
practice. In this area, reliability analyses have been performed using probabilistic methods. This work investigates reliability 
analysis of structure involving fuzziness and randomness. In particular, the safety state of the structure is defined by a fuzzy state 
variable, fuzzy random allowable interval, or fuzzy random generalized strength. Because the membership function of the fuzzy 
safety state is the key to structural reliability analysis using the fuzzy sets theory, this work proposes useful methods to determine 
the membership functions and develops a structural reliability analysis method based on the fuzzy safety state. Several examples 
are provided to illustrate the proposed methods.

Keywords: reliability, structure, fuzzy safety state, membership function, fuzzy random generalized stress, fuzzy 
random generalized strength.

Przewidywanie zachowania konstrukcji stanowi złożone zagadnienie ze względu na istnienie w praktyce inżynierskiej losowości 
i rozmytości. Na tym obszarze, analizy niezawodnościowe prowadzono dotąd przy pomocy metod probabilistycznych. W niniej-
szej pracy przedstawiono metodę niezawodnościowej analizy konstrukcji uwzględniającą rozmytość i losowość. Dokładniej, stan 
bezpieczeństwa konstrukcji określano za pomocą rozmytej zmiennej stanu, rozmytego losowego przedziału dozwolonego lub roz-
mytej losowej uogólnionej wytrzymałości. Ponieważ funkcja przynależności rozmytego stanu bezpieczeństwa stanowi klucz do 
niezawodnościowej analizy konstrukcji wykorzystującej teorię zbiorów rozmytych, w niniejszej pracy zaproponowano przydatne 
metody wyznaczania funkcji przynależności oraz opracowano metodę niezawodnościowej analizy konstrukcji opartą na rozmytym 
stanie bezpieczeństwa. Zaproponowane metody zilustrowano kilkoma przykładami.

Słowa kluczowe: niezawodność, konstrukcja, rozmyty stan bezpieczeństwa, funkcja przynależności, rozmyte loso-
we uogólnione naprężenie, rozmyta losowa uogólniona wytrzymałość.

1. Introduction

Stress Strength Interference (SSI) is a fundamental model for 
structural reliability-based design and has been widely used in engi-
neering practice [1, 6, 24, 25]. In an SSI model, a limit state function 
must be determined. In most studies, the limit state function is usually 
assumed to be exact without considering fuzziness. This means that 
the corresponding theory used to determine the limit states is perfect, 
which may not be realistic in real-world applications. Indeed, unvoid-
able errors could be resulted if such limit state function is used for 
reliability analysis. As a result, it is necessary to develop a new reli-
ability model that takes fuzziness into consideration [27, 28]. To this 
end, the following question must be answered: what fundamental is-
sue needs to be addressed for this purpose? The answer is that more 
data (i.e., experimental results) should be collected. As a matter of 
fact, if the exact value of the actual strength of a structure cannot be 
determined, we need to rely on more data to give additional informa-
tion necessary to correct the theoretical model used [18].

When it is expensive to obtain experimental data or there are a few 
but poorly documented instances of failure of the prototype system, 
it would be difficult to correct the theoretical model. There is another 
extreme case where there are no data at all for calculating the prob-
ability of failure at the early design stage. For these circumstances, 

using engineering judgment or experience for similar structures in SSI 
modeling becomes a very useful alternative. 

Uncertainties and ambiguities in structural performance have 
been dealt with using probability theory. However, it is worth point-
ing out that some uncertainties, which are not random in nature, may 
play important roles in the safety assessment of engineering structures 
[17]. In other words, the probability-based reliability provides a solu-
tion different from the observed failure rate which is inferred from the 
statistics of structural accidents [4, 28]. A more fundamental argument 
against the conventional approach to parameterizing model uncertain-
ties is provided by Blockley [2, 3]. 

Fuzziness could be produced due to some factors, such as omis-
sions, human error, inadequate modeling, experience, and intuition of 
the engineers. Such uncertainties are called “subjective uncertainties”, 
because they could be evaluated solely by an engineer’s experience 
and judgment. Fuzzy sets theory, which was proposed by Zadeh in 
1965, is available to deal with the subjective uncertainties in a quan-
titative way. Moreover, this theory makes it possible to define safety 
events in a more flexible form than the probabilistic approach.

The first known theoretical approach to using fuzzy logic for fail-
ure diagnosis belongs to Tsukamato and Tarano [23]. Brown [4] and 
Blockley [3] applied the fuzzy sets theory in an attempt to explain 
the difference between the calculated and observed failure probabili-
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ties. Savchuk [18] suggested some improvement of reliability estima-
tion in the framework of the SSI model, which was essentially based 
on a limit-state model. So far, only initial attempts have been made 
[14, 15], but sophisticated formulations and algorithms for numerical 
treatments and applications to complex structural reliability analysis 
have not been reported.

The approach proposed in this work aims to overcome some of 
the problems of the conventional treatment mentioned above. Specifi-
cally, the main purpose is to perform reliability estimation based on a 
limit-state model considering both the error of the limit-state model 
and the fuzziness of data.

2. Fuzzy safety state of structure

In a traditional SSI model, the generalized strength of a structure 
R and the generalized stress S are both considered to be random vari-
ables. The safety margin, also called the state variable of the structure, 
is defined as: 

 Z R S
∆
= − .  (1)

It is obvious that the state variable is also a random variable. The 
random event that the structure works satisfactorily during its service 
life T , denoted by A, is defined as:

 { }A S R
∆
= < .  (2)

This event is also called the state of safe operation, or simply the 
safety state, of the structure. Let ( )Sp x  denote the probability density 
function (pdf) of the generalized stress ( ),S∈ −∞ ∞ , ( )Rp y  the pdf 

of the generalized strength [ , )R x∈ ∞ , , ( , )S Rp x y  the joint pdf of S 
and R, and ( )Zp z  the pdf of the state variable Z. The reliability of the 
structure is simply the probability of the safety state of the structure 
and can be expressed by integrating the pdf of the random event A, 
with respect to the domains of x and y:

 ,
0

( ) ( )d ( , )d dr Z S R
x

P P A p z z p x y y x
∞ ∞ ∞

−∞

= = =∫ ∫ ∫ . (3)

The probability of structural failure is then given by:
 1 ( )fP P A= − . (4)

When the random variables S and R are independent, their joint 
pdf can be simply expressed as the multiplication of their individual 
pdf: 
 , ( , ) ( ) ( )S R S Rp x y p x p y= .   (5)

According to the SSI model, the structure is safe as long as the 
generalized stress S is lower than the generalized strength R. How-
ever, the accuracy of this theory has been widely questioned [13, 14, 
15, 19, 21]. First, the safety criterion should be fuzzy in practice [7, 8, 
9, 10, 26]. Second, the generalized strength is usually not known pre-
cisely and thus is fuzzy [11, 19]. For example, cracks had been found 
in the tail rotor components of a CH-149 Cormorant helicopter [22], 
which had been created by the generalized strength during its opera-
tions. Third, the load is also fuzzy [14, 19, 11]. In the space shuttle 
Columbia, the debris hitting it has led to its demise during the re-entry 
[13]. Moreover, a turbine blade was fractured and traveled through 
subsequent sections of the turbine, while a shroud that dropped into 
the turbine air path caused excessive wear to several turbine blades at 
Langley AFB [16]. Such impacts generated fuzzy random loads caus-
ing structural failures. Of course, the behavior of the structure under 
study and the stress developed may be fuzzy too. Solid rocket seal 
leakage during the launch of space shuttle Challenger was undetec-
ted and precipitated its disintegration [13]. This event has been most 
probability originated from the fuzzy random generalized stresses in 

the inter-connections. These observations have led to the fuzzy ver-
sions of SSI models.

When failure modes, such as fatigue, abrasion, and erosion, are 
considered, the safety state of operation of the structure under consid-
eration may exhibit both fuzziness and randomness [21]. Therefore, 
both fuzziness and randomness need to be considered in reliability 
analysis of the structure. 

In consideration of the above observations, the safety state of the 
structure, i.e., the state of satisfactory operation, is often treated as a 
fuzzy set, denoted by A , which is a subset of the universe of discourse 
of the state of the structure. This means that the event of the safe op-
eration is considered to be a fuzzy event and we should use the prob-
ability of this fuzzy event to measure the reliability of the structure. 

Using the equation for the probability of a fuzzy event [7, 30], we 
can define the reliability of the structure by multiplying the member-
ship function of the state variable Z, µ

A z( ) , belonging to the fuzzy 
safety state A  with the pdf of Z as:

 P P A z p z zr A Z= =
−∞
+∞
∫( ) ( ) ( )



µ d , (6)

Similarly, if we use the random variables S and R defined earlier, 
we can utilize the joint pdf of S and R to define the reliability of the 
structure as follows:

 P P A x y p x y x yr A S R= =
−∞
+∞

−∞
+∞
∫∫( ) ( , ) ( , ),





µ d d ,  (7)

where µ
A x y( , )  is the membership function of the fuzzy safety 

state A  in terms of realizations x and y of S and R, respectively. Note 
that we have the relationship between µ

A z( )  and µ
A x y( , ) : 

 µ µ
 A Az x z x( ) ( , )= − . (8)

Apparently, if S and R are independent, we can apply Eq. (5) to 
Eq. (7) and have

 P x y p x p y x yr A S R=
−∞
+∞

−∞
+∞
∫∫ µ



( , ) ( ) ( )d d .  (9)

It is easy to show that the reliability of a structure reduces to its 
conventional reliability, if we use the following membership function 
for the safety state of the structure, 

 µ
A x y( , ) =

1
0
,
,
   
   

x y
x y
<
≥





. (10)

As a result, Eq. (7) reduces to Eq. (3), and Eq. (9) can be written 
into

 ( ) ( )d dy
r R SP p y p x x y+∞

−∞ −∞
 =   ∫ ∫ . (11)

Evidently, Eq. (11) is the same as the traditional formula for struc-
tural reliability evaluation when the stress and strength are independ-
ent. This means that the proposed model of structural reliability analy-
sis is consistent with the model of conventional reliability analysis, 
and the latter is a special case of the former. The fuzzy safety state of 
a structure may be defined in one of three different forms. 

The fuzzy safety state is defined by the state variable Z:

 { }0A Z
∆
= >

 , (12)

where 0Z >  indicates that the state variable Z is larger than 0 
in a fuzzy sense. Here the membership function of A  is shown in 
Fig. 1(a). The transition curve from 0 to 1 may take a proportional, 
parabola, or in other forms. 

The fuzzy safety state is defined by the fuzzy random generalized 
strength R :

 { },    { }A S R A S R
∆ ∆
= < = <    . (13)
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The fuzzy random generalized strength R  is an index represent-
ing the generalized strength of the material of structure when both 
fuzziness and randomness are considered, and its membership func-
tion generally follows the shape illustrated in Fig. 1 (b).

The fuzzy safety state is defined by a fuzzy random allowable in-
terval of the stress, [ ]S :

 { [ ]},    { [ ]}A S S A S S
∆ ∆
= ⊂ = ⊂     , (14)

where S  is the fuzzy random generalized stress. On the other hand, 
the fuzzy random allowable interval of the generalized stress reflects 
the fuzziness of the safety criteria used. In defining the safety criteria, 
one needs to consider the fuzziness of the structural responses, includ-
ing the stress, deflection, deformation, frequency, etc., and the fuzzi-
ness of the allowable interval of the structural response. In other 
words, there is no clear boundary between what is allowed and what 
is not allowed. Thus, the allowable interval of the generalized stress 
possesses fuzziness, and its membership function generally has the 
shape as illustrated in Fig. 1(c). In the following sections, we discuss 
how to evaluate the reliability of a structure when one of the three 
forms of the fuzzy safety state is used.

3. Form 1: The fuzzy safety state defined by the state 
variable

In this section, we provide a method to analyze the reliability of a 
structure when the fuzzy safety state is defined by the state variable. 
In this form, the reliability is computed simply by integrating the 
membership function of A  times the pdf of Z. Under this definition, 
we consider two shapes of the membership function of the fuzzy safe-
ty state, namely, the rising half-trapezoidal distribution and the rising 
half-ridge distribution. When the shape of the membership function is 
specified, we consider the commonly used pdf of exponential distri-
bution, normal distribution,  lognormal distribution, or Weibull distri-
bution. 

3.1. The membership function of the fuzzy safety state 
follows a rising half-trapezoidal distribution

In this case, the membership function of the fuzzy safety state A  
is illustrated in Fig.1(a), and its mathematical form is given below, 
which represents a proportional type transition,

 µ
A z( ) =

0

1

1

2 1

z a
a a
−
−











,
,
,

  
  
  

z a
a z a
z a

<
≤ ≤
>

1

1 2

2
 (15)

3.1.1. The state variable follows the exponential distribution

In this case, the pdf of Z is exponential function with failure rate  λ
 p z eZ

z( ) = −λ λ .  (16)

With Eq. (6), we have the following expression for the reliability 
of the structure: 
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z
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a z

a
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=
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−

+
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− −
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d
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2
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+∞
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      = −
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2 1

1 2
λ
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( )a a
e ea a   (17)

3.1.2. The state variable follows a normal distribution

In this case, the pdf of Z is expressed as:

 p z eZ

z

( )
( )

=
−

−
1

2

2

22
πσ

µ

σ , (18)

where µ  and σ 2  are the mean and variance of Z , respectively. With 
Eq. (6), the reliability of the structure can be expressed as:
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where Φ( )⋅  denotes the cumulative distribution function of a standard 
normal random variable. 

3.1.3. The state variable follows a lognormal distribution

Herein, the pdf of Z is written as the lognormal form

 p z
z

eZ
z

z z

z( )
ln

(ln )ln
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−

−
1

2

2

22

π σ
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σ , (20)

where µln z  and σ ln z
2  are the mean and variance of ln Z . Then the 

reliability can be obtained by 
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3.1.4. The state variable follows the 3-parameter Weibull distribu-
tion

In this case, the pdf of Z is

 p z z eZ

z

( ) = −









− −
−







β

η
γ

η

β γ
η

β
1

. (22)

Then the reliability of the structure can be expressed as:

Fig. 1. Membership function
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where the integral can be solved numerically.

3.2. The membership function of the fuzzy safety state 
follows a rising half-ridge distribution

In this case, the membership function of the fuzzy safety state A  
is illustrated in Fig. 2, where the incremental process is in a sinusoidal 
form given by:
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3.2.1. The state variable follows an exponential distribution

The pdf of Z is 
p z eZ

z( ) = −λ λ

Then the reliability of the structure can be expressed as:
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3.2.2. The state variable follows a normal distribution

In this case, the pdf of Z is given by
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where the integral can be solved by a numerical method.

3.2.3. The state variable follows a lognormal distribution

In this case, the pdf of Z is expressed as:
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Then the reliability of the structure is written as:
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where the integral can be solved by a numerical method.

3.2.4. The state variable follows a Weibull distribution

The pdf of Z is written as
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Then the reliability of the structure is given by
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,
where the integral can be solved via a numerical method.

3.3. Simply Supported Beam under Stress

Consider a beam which is supported at both ends carrying uni-
formly distributed load as shown in Fig. 3. All concerned variables, 
including the dimensions of the beam, the load distribution, and the 
strength of the material, are assumed to follow the normal distribu-
tions, 

q ~ ( , ) ,N  N/mm  210 72

b ~ ( , ) ,N  mm120 102  

a1 0 a2 z

1



( )A zm

Fig. 2. Rising half-ridge distribution

µ
A z( )
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l ~ ( , ) ,N  mm  4000 1502  

 N  mmh ~ ( , )240 102 ,

R ~ ( , )N  MPa623 232 .

 1 
q 

l 
b 

h 

Fig. 3. The simply supported beam

We first apply the form 1 model where the fuzzy safety state is 
defined by the state variable Z. The membership function of the fuzzy 
safety state A  is given by the following half-trapezoidal distribution:
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Then the reliability of this beam can be calculated as follows. 
The maximum stress in the simple supported beam is given by
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Since , , ,q l b h  are all normal random variables, we can obtain the 

mean and the approximate standard deviation using the Taylor expan-
sion of the maximum stress S  with the following equations:
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= 52.4 MPa,
where 1 2 3 4( , , , ) ( , , , )X X X X X q l b h= = and µ µ µ µ µX q l b h= ( , , , ) . 

The mean and the standard deviation of the state variable are 
µ µ µZ R S= − = − =623 364 6 258 4. . MPa

σ σ σZ R S= +( ) = + =2 2
1
2 2 2

1
223 52 4 57 2( . ) . MPa

The pdf of Z  can be considered to follow the normal distribu-
tion

 
p z eZ

Z

z Z
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( )

=
−

−
1

2

2

22

πσ

µ

σ =
×

−
−

×1
2 57 2

258 4
2 57 2

2

2

π .

( . )
.e

z

Using the obtained µ
A z( ) , ( )Zp z , and Eq. (6), we have 

0.99928rP ≈ . If we use the conventional reliability analysis method, 
the reliability of the beam is 

 Pr
Z

Z
= = =Φ Φ( ) ( . ) .µ

σ
4 517 0 99999 .

From this example, we see that the reliability of the beam ob-
tained with the conventional reliability analysis method is higher than 
that with the proposed method. The conventional reliability method 
over-estimates the reliability of the beam, and thus the obtained de-
sign is risker than that obtained through the proposed method. This 
is because the conventional reliability method does not consider the 
fuzziness of the safety criterion.

4. Form 2: The fuzzy safety state defined by the fuzzy 
random generalized strength

In this form, the reliability is computed by integrating the mem-
bership functions of A  which is the weighted sum of µ

A x y
1
( , )  and 

µ
A x y
2
( , ) . µ

A x y
1
( , )  is the area ratio of µ

R s y( , ) , while µ
A x y
2
( , )  is 

the area ratio of µ
R s y
peak

( , )  in the case of random generalized stress 

and fuzzy random generalized strength. The reliability is computed by 
integrating the membership functions of A , which equals the weight-
ed sum of µ

A
x y' ( , )

1
 and µ

A
x y' ( , )

2
. µ

A
x y' ( , )

1
 is the area ratio be-

tween the difference of µ
S s x( , ) , µ

R s y( , )  and µ
S s x( , ) , while 

µ
A

x y' ( , )
2

 is the membership function of µ
R S x y( ( ), )peak  in the case 

of fuzzy random generalized stress and fuzzy random generalized 
strength.

4.1. Two characteristic values of a fuzzy number 

A real fuzzy number N  is defined as a fuzzy set in the domain of 
real numbers  , and its membership function (shown in Fig. 4) has 
the following characteristics: 
(1) It is a continuous mapping from   to the closed interval 

[0, ],   0 w 1w < ≤ ;

(2) It is equal to 0 in ( , ]c−∞ , i.e., µ
N s s c( ) = − ∞ < ≤0, when ; 

(3) It is strictly increasing in [ , ]c a ;

(4) It is equal to 1 in [ , ]a b , i.e., µ
N s a s b( ) ,= ≤ ≤1  when ; 

(5) It is strictly decreasing in [ , ]b d ;
(6) It is equal to 0 in [ , )d ∞ , i.e. µ

N s d s( ) ,= ≤ < ∞0  when ; 
where a, b, c and d are real numbers and c ≤ a ≤ b ≤ d. Among other 
choices, we may set c = −∞ , a b= , c a= , b d= , and d = +∞  in-
dividually or in various combinations. When the generalized strength 
and the generalized stress in structural safety analysis are treated as 
fuzzy variables, their membership functions often exhibit the shape 
depicted in Fig. 5. From detailed analysis of the membership function 
of a fuzzy variable, one can see that it can be well represented by two 
characteristic values, one is the area distribution of the membership 
function and the other is the position of the peak value. The area dis-
tribution of a fuzzy variable, i.e., to a certain point s , the area on its 
left and right sides under the membership function curve, is analogous 
to the pdf of a random variable. The peak value of a fuzzy number 
shown in Fig. 4 is 
 peak ( ) / 2s a b= +   (29)

4.2. Determination of the membership function of fuzzy 
safety state in the case of random generalized stress 
and fuzzy random generalized strength 

The fuzzy safety event in the case of random generalized stress 
and fuzzy random generalized strength is defined in Eq. (13), with 
fuzzy safety state in this case being denoted by A . According to the 
area distribution of the membership function µ

R s y( , )  of fuzzy ran-

dom generalized strength R  and the position of the peak value 
peak ( )R y  of µ

R s y( , ) , two partial expressions of µ
A x y( , ) , µ

A x y
1
( , )  

and µ
A x y
2
( , ) , can be obtained. Multiplying these two factors by 

weights 1w  and 2w  respectively ( 1w  + 2w  = 1), µ
A x y( , )  becomes 

the weighted sum of these two partial expressions: 
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 µ µ µ
  A A Ax y w x y w x y( , ) ( , ) ( , )= +1 21 2   (30)

4.2.1. Determination of µ
A x y
1
( , )  

As shown in Fig. 6, according to the area distribution of the mem-
bership function µ

R s y( , )  of fuzzy random generalized strength R , 

the partial expression µ
A x y
1
( , )  of µ

A x y( , )  has the expression of 

integral value of µ
R s y( , )  in the domain ( )max( ),s x R y    divided 

by the total integral value of µ
R s y( , )  in the full domain 

( ) ( )min max,R y R y  

 µ
µ

µ






A
Rs x

R y

RR y
Rx y

s y s

s y s1
( , )

( , )

( , )
( )

( )

( )
(

max

min

max
=
∫ d

d
 
 

 
 yy)
∫

   (31)

4.2.2. Determination of µ
A x y
2
( , )  

According to the relative position between generalized stress 
( )s x  and peak ( )R y , the partial expression µ

A x y
2
( , )  of µ

A x y( , )  can 

be determined. If peak ( )R y  is considered to be a deterministic value, 

µ
A x y
2
( , )  varies from 1 to 0 at peak ( )R y  when ( )s x  passes through 

peak ( )R y  from left to right, which leads to the discontinuity of the 

membership function µ
A x y( , )  at peak ( )R y . To overcome this prob-

lem, peak ( )R y  is converted to a fuzzy set peakR , whose membership 

function µ
R s y
peak

( , )  is a normal or symmetric triangular member-
ship function. The range δ2  of peakR  is determined according to how 

steep the change of µ
A x y
2
( , )  should be near peak ( )R y : the steeper 

the change of µ
A x y
2
( , )  is, the smaller δ2  is. As shown in Fig. 7, 

µ
A x y
2
( , )  can be determined as the ratio between the integral of 

µ
R s y
peak

( , )  in the domain s x R y( ) ( ) + , peak δ2  and the integral of 

µ
R s y
peak

( , )  in the domain R y R ypeak peak( ) − ( ) + δ δ2 2,  as

 µ
µ

µ

δ δ







A
Rs x

R y

R

x y
s y s

s y s2

1 2

( , )
( , )

( , )

( )
( )min

=

+ +
∫ peak

peak

d

d

 
 

  
 
R y
R y

min

min
( )
( )

+ −
+ +

∫ δ δ
δ δ

1 2

1 2
,  (32)

where R y R ypeak ( ) = ( ) +min δ1 .

4.2.3. Determination of weights 1w  and 2w  

The weights 1w  and 2w  denote the relative influence of the 
corresponding characteristic factors on µ

A x y( , ) . 1w  and 2w  can 
be determined based on experience and through other methods that 
may be problem-specific. Generally, the larger is the dissymmetry of 
the membership function µ

R s y( , ) , the larger is 2w . Based on Eqs. 
(30-32), the membership function of fuzzy safety state in the case 
of random generalized stress and fuzzy random generalized strength,
µ
A x y( , ) , takes the form 

Fig. 4. The membership function of a fuzzy number

Fig. 5. The membership function of generalized strength and generalized 
stress

Fig. 6. Determine µ
A x y
1
( , )  according to the area distribution of 

µ
R s y( , )

Fig. 7. Determine µ
A x y
2
( , )  according to the position of peak ( )R y   
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. (33)

Therefore the reliability can be computed using this membership 
function as

 P P A x y p x p y x yr A S RS
S

R
R

= = ∫∫( ) ( , ) ( ) ( )
min

max

min

max




µ d d , (34)

where ( )Sp x  is the pdf of the random generalized stress and ( )Rp y  

is the pdf of the fuzzy random generalized strength.

4.3. Determination of the membership function of fuzzy sa-
fety state in the case of fuzzy random generalized stress 
and fuzzy random generalized strength 

Fuzzy safety state in the case of fuzzy random generalized stress 
and fuzzy random generalized strength is denoted by 'A , and the cor-
responding membership function is µ

A
x y' ( , ) . Based on the member-

ship function of fuzzy safety state 'A , µ
A x y( , ) , the area distribution 

of the membership function of fuzzy random generalized stress S , 
µ
S s x( , ) , and position of the peak value of µ

S s x( , ) , peak ( )S x , two 

partial expressions of µ
A

x y' ( , ) , µ
A

x y
1
' ( , )  and µ

A
x y

2
' ( , )  can be ob-

tained. Multiplying these two factors by weights '
1w  and '

2w  respec-
tively ( '

1w  + '
2w =1), and µ

A
x y' ( , )  equals to the weighted sum of the 

two partial expressions: 

 µ µ µ
  A A A

x y w x y w x y' ' '( , ) ( , ) ( , )' '= +1 2
1 2

 (35)

Agin, the weights '
1w  and '

2w  denote the relative influence of the 

corresponding characteristic factors on µ
A

x y' ( , ) . '
1w  and '

2w  can be 

determined based on experience and through other problem-specific 
methods. Generally, the larger is the asymmetry of the membership 
function µ

S s x( , ) , the larger is '
2w . 

4.3.1. Determination of µ
A

x y
1
' ( , )  

As shown in Fig. 8, according to the area distribution of the mem-
bership function of fuzzy random generalized stress S , µ

S s x( , ) , the 

partial expression of µ
A

x y' ( , ) , µ
A

x y
1
' ( , )  is the ratio of between the 

integral of µ µ
 S Rs x s y( , ) ( , )  and the integral of µ

S s x( , )  in the do-

main of ( )max,s S y    

 µ
µ µ

µ


 



A
S R

S

SS

x y
s x s y s

s x s1
'

max

min

max
( , )

( , ) ( , )

( , )
= ∫

∫

d

d
 s
 

 
 S . (36)

For a certain element s  of fuzzy set S , the membership function 

value of s  in fuzzy safety state 'A  is µ
A

s y' ( , ), and the membership 

function value of s  in S  is µ
S s x( , ) , which can be considered to be 

the weight. Thus, the method to determine the expression µ
A

x y
1
' ( , )  is 

essentially a weighted-average method, as shown in Eq. (36). 

4.3.2. Determination of µ
A

x y
2
' ( , )  

According to the relative position between peak ( )S x  and R , 

µ
A

x y
2
' ( , )  takes the expression

 µ µ


A Rx y S x y
2
' ( , ) ( ( ), )= peak   (37)

On the basis of Eqs. (35–37), the membership function of fuzzy 
safety state in the case of fuzzy random generalized stress and fuzzy 
random generalized strength, µ

A
x y' ( , ) , takes the form 

 µ
µ µ

µ


 



A
S RS

S

SS

x y w
s x s y s

s x s
'

min

max

min

( , )
( , ) ( , )

( , )
'=
∫

1

d

d

 
 

 
 SS peakmax

' ( ( ), )
∫

+ w S x yR2µ     (38)

4.4. Reliability of output axis of gearbox

In engineering, the overall structure of a gearbox is complex, 
which makes it more difficult to analyze the stress-strength relation-
ship. For a gearbox,  Form 1 is too simple and does not comply with 
this structure. In many applications, gearboxes are usually damaged 
by catastrophic loads such as impactions which are directly related to 
the strength. Therefore, damage may not be related to stress only, and 
form 3 may not be applicable in this situation. For simplicity, we con-
sider a fuzzy reliability computation problem involving fuzzy random 
stress and fuzzy strength using the form 2 where the fuzzy safety state 
is defined by the fuzzy random generalized strength. It is known that 
the strength R  of the output axis of some gearbox is near 240MPa. As 
shown in Fig. 9, the membership function of R  is 

 µ
R s

s
s s

( )
( ) / ,

=

≤
− < ≤
0 220
220 20 240

          ,         
     220

(( ) / ,280 40 280
0 280
− < ≤

>






s s
s

     240
              ,        







  (39)

The peak value of fuzzy random stress S , peak ( )S x , follows the 
normal distribution σ ~ ( , )N 140 202 MPa. The membership function 
of S  is 

Fig. 8. Membership function of fuzzy random generalized stress and fuzzy 
random generalized strength

Fig. 9. The membership function of fuzzy random stress and fuzzy strength
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   (40)

In the domain ,min maxS S   , where ( )min peak 20S S x= −  and 

( )max peak 30S S x= + , we now calculate the fuzzy reliability of the 

output axis. According to the asymmetry conditions of the member-
ship functions of the fuzzy random stress and the fuzzy strength, the 
weight values are shown in Table 1. The membership functions of 
fuzzy random stress and fuzzy strength are both sectional functions, 
and it is difficult to obtain the analytical expressions for the member-
ship function of fuzzy safety state and the fuzzy reliability. To over-
come this technical difficulty, numerical methods are adopted, and 
MATLAB is used in implementing the computation of the member-
ship function of fuzzy safety state and the fuzzy reliability. 

With different peak values of fuzzy random stress S , peakS , the 

corresponding membership function values of fuzzy safety state are 

shown in Table 2. When S  is completely on the left-hand side of R , 

µ
A

S' ( )peak  equals 1. When S  is completely on the right-hand side of 

R , µ
A

S' ( )peak  equals 0. When S  moves through R  from the left to 

the right, µ
A

S' ( )peak  decreases from 1 to 0 continuously and monot-

onically. Such a computational result is reasonable. Based on the 

known conditions, the pdf of the peak value peakS  of the fuzzy ran-

dom stress is 

 p S
S

( ) exp
( )

peak
peak=

×
−

−

×













1
2 20

140

2 20

2

2π   (41)

From Eq. (6), the fuzzy reliability of the output axis of the reducing 
gearbox is 

P P A S p S Sr AS x
S x

= ( ) = ( )−
( )+

∫



'
' ( ) ( )µ peak peak peakd

peak

peak
20
30

== 0 99998869.
  (42)

5. Form 3: The fuzzy safety state defined by fuzzy ran-
dom allowable interval

When the generalized stress is a random variable and the allow-
able interval of generalized stress is a fuzzy random variable, fuzzy 
event A~  is a special fuzzy event. When both the generalized stress 

and its allowable interval are fuzzy random variables, A  is a general 
fuzzy event.

5.1. Membership function of the special fuzzy event

If any realization x  of the random generalized stress is within the 
interval of µ[ ]( , )

S s y =1  where the domain of [ ]S  is min max[ ] ,[ ]S S  
   

as shown in Fig.1 (c), the structure is absolutely safe, thus µ
A x y( , ) =1. 

When x  is within the interval of transition, that is, 0 1< <µ[ ]( , )
S s y , the 

structure is safe to some extent (depending on the value of µ[ ]( , )
S s y ). 

When x  is completely out of µ[ ]( , )
S s y , that is, µ[ ]( , )

S s y = 0 , the 

structure will absolutely fail. Therefore the membership function of the 
special fuzzy event A~  can be defined as 

 µ µ µ
  A S s x Sx y s y x y( , ) ( , ) | ( , )[ ] [ ]= ==

∆
  (43)

When only the randomness of the generalized stress and fuzziness 
of the allowable interval are taken into account, µ[ ]( , )

S s y  degener-

ates to be µ[ ]( )
S s  and  

 
µ µ µ
  A S s x Sx s x( ) ( ) | ( )[ ] [ ]= ==

∆

5.2. Membership function of the general fuzzy event

As for the general fuzzy event, the degree of structural safety also 
depends on the relative position of membership functions µ

S s x( , )  

and µ[ ]( , )
S s y . By imitating Eq. (43), the membership function of the 

general fuzzy event is defined as
 µ µ µ

   



A S s S Sx y s y S y( , ) ( , ) | ( , )[ ] [ ]= == . (44)

It is known that if µ
S s x( , )  is completely covered by µ[ ]( , )

S s y  

the structure is thought to be absolutely safe, i.e., µ
A x y( , ) =1 . In 

other words, if any generalized stress s S∈   satisfies
µ µ[ ]( , ) ( , )
 S Ss y s x≥

then µ
A x y( , ) =1 . As a result, µ

A x y( , )  can be defined as

 µ
µ µ

µ


 



A
S Ss

S

SS
Sx y

s y s x s

s x
( , )

( , ) ( , )

( , )

[ ]
max

min

max
=

∧



∫

∫

d

dss
  (45)

where “ ∧ ” means “minimal”. Thus, the determination of the mem-
bership function of the fuzzy event A~  becomes the calculation of the 
membership functions of the fuzzy random generalized stress S  and 
fuzzy random generalized strength R  as in the form 2 model. Gener-
ally speaking, by using a system analysis method and applying the 
Extension Principle [30], the membership function µ

S s x( , )  of S  can 

be calculated from the membership functions of the fuzzy load and the 
fuzzy geometric size of the structure. The membership function 

Table 1. The weight values of partial expressions`

1w 2w '
1w '

2w

0.7 0.3 0.8 0.2

Table 2. The membership function values of fuzzy safety state 

peakS 140 160 180 200 210 220 230 240

µ
A

S' ( )peak 1 1 1 0.9995 0.9904 0.9401 0.8027 0.5397

peakS 250 260 270 280 290 300 310 320

µ
A

S' ( )peak 0.2699 0.1145 0.0367 0.0062 0.0004 0 0 0
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µ
R s y( , )  of R  could be in the form of semi-trapezoid distribution, or 

semi-normal distribution. By using the probability formula of a fuzzy 
event, the general expression for the reliability of a structure is

 P P A x y p x y x yr AS
S

R
R

= = ∫∫( ) ( , ) ( , )
min

max

min

max




µ d d
 
 

 
 

,  (46)

where ( , )p x y  is the joint pdf. When only the randomness of general-
ized stress and fuzziness of allowable interval is taken into account, 
then

 P P A x p x xr AS
S

= = ∫( ) ( ) ( )



µ d
min

max 
  (47)

5.3. Simply supported beam under stress

Consider again the simply supported beam shown in Fig.3. As-
sume all random variables are normally distributed, that is 

q~N(110,72) N/mm,
l~N(3600,1502) mm,
b~N(120,102) mm,
h~N(240,102) mm. 
Suppose the beam is made of #45 steel (a steel in China) and the 

membership function of its allowable bending stress is 

 µ[ ]( )
,

S s
s

=
≤1 160                                               

 
                        

( ) / ( ),200 200 160 160 200
0

− − ≤ ≤s s
          , s >







 200

Now we determine the reliability of this simply supported beam. 
It is known from the strength of materials that the maximum stress of 
this simply supported beam is 2 20.75S ql bh= . Because q , l , b  

and h  are all normal random variables, the mean and standard devia-
tion of the maximum stress are µS =155MPa , σ S = 24MPa , respec-
tively. It is known that the stress is a random variable and follows the 
normal distribution S~N(155,242) MPa. For the strength, only its 
fuzziness is taken into account. Therefore,

 

µ µ
 A S s xx s
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where its domain is  S S   




 = [ ]min max

, ,160 200 . The correspond-

ing reliability is 

P P A x p x xr A= =
−∞
+∞
∫( ) ( ) ( )



µ d
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−

−
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−
1

2 24
200

40
1

2 24
160

155
2 24

160
200

2

2

π πS
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d
1155

2 24

2

2
)

× dx

0.825=

6. Quantitative analysis of the influence of fuzzy factor 
on reliability

From the above mentioned analysis, we know that the reliability 
of the structure is conducted on the fuzzy safety state (fuzzy safety 
criteria). Moreover, the reason for introduction of the fuzzy safety 
state is that the structure state (functioning and failure) is ambiguous 
when the structure is on the limit state boundary ( z = 0 ).

When the membership function of the fuzzy safety state follows 
the rising half-trapezoidal distribution, according to Eq. (15) with 
z = 0 , we have

 µ
A zz a

a a
( ) = −

−=0
1

2 1
.  (48)

When the membership function of fuzzy safety state follows the ris-
ing half-ridge distribution, according to Eq. (24) with 0Z = , we have

 µ
π

A zz
a a

a a( ) = +
−

−
+






=0

2 1

1 21
2

1
2 2

sin .  (48)

Let µ α
A z( ) =  and α = [ ]0 1, , and then α  is called the degree of 

confidence or confidence level of the structure safety when z = 0 . 
The larger α  becomes, the higher confidence level of structure safety 
at z = 0  will be. It is significant in practical applications to view this 
parameter as the criterion of confirming the fuzzy region, since the 
safety criterion is generally constructed on experiments or statistics. If 
statistics is quite comprehensive and experiment is highly reliable, 
then the safety criterion constructed on them has a higher confidence 
level. This shows that the fuzzy safety criterion can mostly consider 
uncertainty factors of human cognition. However, the conventional 
safety criterion is incapable of possessing this strong point. For a half-

trapezoidal distribution, let −
−

=
a

a a
1

2 1
α  then

 a a2 11 1
= −





α

 (49)

For a half-ridge distribution, let 
1
2

1
2 22 1

1 2+
−

−
+






 =sin π

α
a a

a a
 

then

 a a2

1

1 1
2 2 1
2 2 1

=
−( ) −
−( ) +

−

−
sin
sin

α π

α π
  (50)

That is to say, given a confidence level α , there exists the quanti-
tative relation to a certain degree between the upper tolerance and 
lower tolerance, e.g., Eq. (49) and Eq. (50). Therefore, in case a1  is 

given, a2  can be confirmed accordingly. After parameter α  is intro-

duced, the variational relation of the fuzzy reliability of structure with 
the tolerance is as follows
 P f ar = ( )α , 1   (51)

6.1. Simply supported beam under uniformly distributed load

A simply supported beam under uniformly distributed load is 
shown in Fig. 3. All basic random variables are assumed to follow 
normal  distributions, i.e. q ~ ( , ) ,N N/mm  210 72  l ~ ( , ) ,N mm4000 1502  

b ~ ( , ) ,N mm120 102 h ~ ( , )N mm240 102 . The beam is #45 steel and 
its strength is assumed to follow a normal distribution, i.e. 
R ~ ( , )N MPa623 232 . The membership function of the fuzzy safety 

state A  with proportional transition is
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with a a2 11 1
= −





α

. The relationship between the reliability and the 

tolerance is shown in Table 3, and the reliability curves are illustrated 
in Fig. 10. When the membership function of the fuzzy safety state A  
is assumed to follow a half-ridge distribution, i.e.
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where a a2

1

1 1
2 2 1
2 2 1

=
−( ) −
−( ) +

−

−
sin
sin

α π

α π
. The relationship between the reli-

ability and the tolerance is shown in Table 4, and the reliability curves 
are illustrated in Fig. 11.

We can arrive at conclusions by analyzing Table 3, Table 4, and 
Figs. 10-11, 

The reliability of structures is associated with the confidence 1) 
level α  and tolerance 1a  besides basic random variables of 
structures. With the increasing of confidence level, the reliabil-
ity of structures increases continuously. However, when con-
fidence level is close to 1, the rate of increasing becomes low. 
This is consistent with the qualitative analysis.
When the confidence level 2) α  is lower, the increasing rate of 
reliability reduces along with the increasing tolerance. Moreo-

ver, when confidence level α  is higher, the decreasing rate of 
reliability reduces along with the increasing of tolerance.
When the confidence level 3) α  is lower, the value of tolerance 

1a  should not be too large, and when confidence level α  is 
higher, the greater value of tolerance 1a  can be selected. This is 
also consistent with the qualitative analysis.

7.  Conclusion

Fuzziness always exists in actual structure analysis. Since it is 
impossible to analyze the influence of fuzziness on structural reliabil-
ity using the conventional reliability method, the evaluation of the 
structural reliability using the conventional reliability method cannot 
completely describe the reality. This work presents an investigation 
on reliability method of structures involved with fuzziness. The fuzzy 
safety state of a structure is defined by the state variable, fuzzy random 

Table 3. The relation of reliability and tolerances

       1a

  rP    
α

-0.05× 623 -0.1× 623 -0.15× 623 -0.2× 623 -0.25× 623 -0.3× 623 -0.35× 623 -0.4× 623 -0.45× 623 -0.5× 623

0.5 0.999990 0.999971 0.999820 0.999271 0.997346 0.992250 0.981452 0.962851 0.936768 0.906099
0.6 0.999997 0.999991 0.999972 0.999919 0.999766 0.999309 0.998553 0.996859 0.993800 0.988653
0.7 0.999998 0.999996 0.999992 0.999986 0.999973 0.999956 0.999892 0.999791 0.999622 0.999315
0.8 0.999998 0.999998 0.999998 0.999997 0.999996 0.999993 0.999991 0.999987 0.99998 0.999973
0.9 0.999999 0.999999 0.999999 0.999999 0.999999 0.999999 0.999999 0.999998 0.999998 0.999998

Table 4.  The relation of reliability and tolerances

       1a

  rP    
α

-0.05× 623 -0.1× 623 -0.15× 623 -0.2× 623 -0.25× 623 -0.3× 623 -0.35× 623 -0.4× 623 -0.45× 623 -0.5× 623

0.5 0.999997 0.999983 0.999920 0.999677 0.999094 0.997647 0.994349 0.987739 0.978378 0.964035
0.6 0.999997 0.999991 0.999975 0.999929 0.999803 0.999506 0.998900 0.997781 0.995721 0.992396
0.7 0.999997 0.999996 0.999992 0.999981 0.999966 0.999911 0.999824 0.999674 0.999332 0.998745
0.8 0.999998 0.999998 0.999997 0.999996 0.999993 0.999988 0.999980 0.999961 0.999958 0.999909
0.9 0.999999 0.999999 0.999999 0.999999 0.999999 0.999998 0.999997 0.999996 0.999995 0.999994

Fig. 10.  Relationship of fuzzy reliability and tolerances
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Fig. 11.  Relationship of reliability and tolerances
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allowable interval or fuzzy random generalized strength. Determina-
tion of the membership function of the fuzzy safety state is the key to 
the proposed method. This work concerns the fuzziness of the safety 
criterion, the fuzziness and randomness of generalized stresses and 

generalized strengths. The membership function of the fuzzy safety 
state is defined, and the structural reliability analysis method using 
fuzzy sets theory is proposed. Several examples are used to illustrate 
the proposed method.
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