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Reliability prediction plays an important role in product lifecycle management. It has been used to assess various
reliability indices (such as reliability, availability and mean time to failure) before a new product is physically
built and/or put into use. In this article, a novel approach is proposed to facilitate reliability prediction for
evolutionary products during their early design stages. Due to the lack of sufficient data in the conceptual design
phase, reliability prediction is not a straightforward task. Taking account of the information from existing similar
products and knowledge from domain experts, a neural network-based fuzzy synthetic assessment (FSA)
approach is proposed to predict the reliability indices that a new evolutionary product could achieve. The
proposed approach takes advantage of the capability of the back-propagation neural network in terms of
constructing highly non-linear functional relationship and combines both the data sets from existing similar
products and subjective knowledge from domain experts. It is able to reach a more accurate prediction than the
conventional FSA method reported in the literature. The effectiveness and advantages of the proposed method
are demonstrated via a case study of the fuel injection pump and a comparative study.
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1. Introduction

Reliability is a critical measure of the performance of
engineered products. Generally speaking, reliability
analysis is needed at the conceptual design stage, where
the reliability performance can be assessed based on all
information available at that point. In addition, it
needs to be continuously conducted throughout the
entire lifecycle of products, including design,
manufacturing, testing, operation and maintenance
(Blischke and Murthy 2000; Wang, Huang, and Du
2010).

Reliability prediction has been used as a tool to
determine as early as possible whether the product will
be reliable enough or whether it needs further
improvement to function successfully for the company
(Dupow and Blount 1997). It has been applied in
various fields, such as software engineering (Kumar
and Misra 2008), mechanical system (Avontuur and
Werff 2001; Hu, Si, and Yang 2010), etc. In most cases,
an achievable reliability value, which serves as a target

across the entire development and management pro-
cess of a new product, must be predicted at the
conceptual design stage. Based upon the anticipated
reliability, relevant analyses and decision-making
exercises can be executed before the prototype and

product are physically made and/or put into use

(Blischke and Murthy 2000). Such exercises include

risk analysis, maintenance planning, marketing and

warranty policy, and they provide insights on the risk

of cost and profit for manufacturers. On the other

hand, technical efforts from various aspects, such as

design, manufacturing and management, will be made

to improve the product reliability with the aim of

achieving the anticipated reliability target. To make the

predicted reliability meaningful and reasonable in the

early design phase, information from various sources

should be taken into account and appropriately

incorporated into the prediction exercise. Either opti-

mistic or pessimistic reliability goal may mislead the

manufacturers and customers, and will further have an

impact on the risk and cost analysis. Since product

reliability depends on many factors, its accurate

prediction is a challenging task, especially when the

new design is still at its conceptual design stage.
MIL-HDBK-217 (reliability prediction of elec-

tronic equipment) documents the formulations well

for reliability prediction of electronic devices based on

their failure physics (MIL-HDBK-217 1991). Denson

(1998) provides a review of the history of reliability

prediction. Bowles (1992) surveys six reliability
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prediction procedures for microelectronic devices, and
the 64K DRAM is studied as an illustrative case. Jones
and Hayes (1999) summarise many electronic reliabil-
ity prediction models and report some comparative
studies. However, the aforementioned reliability pre-
diction models deal with reliability prediction for
individual electronic devices. They are not suitable
for complicated mechanical products since failure
mechanisms of the components in the product are
unique and there exist interactive faults among com-
ponents. Additionally, the components to be used,
detailed configuration of the new product, as well as
working stress may be unknown at the conceptual
design stage. Understanding the underlying failure
physics completely is difficult, and it is therefore
impossible to apply the aforementioned methods
directly or build a mathematical model to characterise
the potential failure mechanism and further assess the
product reliability.

At the conceptual design stage of a new product,
many alternative design schemes may be devised to
meet the customer requirements and pre-determined
objectives. The essential design and manufacturing
techniques are usually distinct from one scheme to
another. By evaluating and comparing these candidate
schemes, an optimal scheme for the new product can
be identified to realise the reliability target. As a matter
of fact, many factors influence the product reliability.
Due to the lack of sufficient test data, as well as the
complicated interactive impacts among factors, it is
often difficult, even impossible, to assess the exact
weights and impacts imposed by these factors (Hu,
Wu, and Yi 2008). On the other hand, uncertainties
resulting from the lack of sufficient knowledge of
underlying failure physics and subjective judgements
from domain experts widely exist at the conceptual
design stage. Both subjective and objective information
would get involved in reliability prediction activity
(Zadeh 1979; Cai 1991; Wang, Yam, Zuo, and Tse
2001; Huang, Zuo, Fan, and Tian 2005; Levitin 2007).
Some commonly used methods for reliability predic-
tion are (Blischke and Murthy 2000): (1) Parts count
method where the reliability of a product is associated
with the number of components (Bowles 1992;
Blischke and Murthy 2000); (2) Part stress analysis
method which evaluates reliability of a new product by
comparing the predicted strength to the anticipated
stress (Bowles 1992; Blischke and Murthy 2000); (3)
Similarity method in which the reliability prediction of
a new product is based upon the ‘known’ reliability of
an existing product with similar attributes, and these
attributes could be the type of design and manufactur-
ing technology, system configuration, complexity of
components and comparable operating environment
(Bowles 1992; Blischke and Murthy 2000);

(4) Fuzzy synthetic assessment (FSA) method which

incorporates the experts’ experiences and judgements

via fuzzy set theory (Zhao, Wen, and Duan 2004a; Hu

et al. 2008). Other reliability prediction methods have

also been proposed in recent years. For example, Bazu

(1995) proposes a combined fuzzy-logic and physics-

of-failure approach. Zhao, Wen, and Duan (2004b)

introduce a multi-stage FSA approach to predict the

reliability of aeroengines. Yang, Lin, He, and Chen

(2003) develop a similarity-based reliability prediction

method via combining both qualitative and quantita-

tive fuzzy similarity approaches. Ling, Song, and Sun

(2011) develop a reliability prediction method which

incorporates the product defect information from the

failure mode and effects analysis (FMEA). Mamtani,

Green, and McDonald (2006) apply the analytic

hierarchy process to predict the relative reliability

risk index of a new product in the conceptual design

phase. In the case where the failure rates of compo-

nents and subsystems are partially known, Ormon,

Cassady, and Greenwood (2002) propose reliability

prediction models by using both simulation and

analytic techniques. It is noteworthy that selecting a

suitable reliability prediction method depends on the

kind of information available at the conceptual design

stage.
In this article, a novel approach is introduced to

predict the reliability of a new evolutionary product at

the conceptual design stage. Since the new evolutionary

product inherits a majority of technologies used by

existing similar products, the reliability information of

similar products can provide useful insights into the

new product reliability prediction. In consideration of

such a situation, the proposed method utilises not only

subjective knowledge and judgements from domain

experts, but also reliability information from existing

similar products. Due to the high degree of non-

linearity between the influence factors and the product

reliability, it is difficult to describe such highly non-

linear relationship via a mathematic formulation. The

back-propagation (BP) neural network, a model free

approach, is proposed to characterise the complex

input–output relationship between the influence fac-

tors and the product reliability. By treating the results

from FSA as inputs of the proposed BP neural

network, the reliability of the new evolutionary prod-

uct can be predicted via the trained neural network.
The remainder of this article is organised as

follows. Section 2 introduces FSA method. The struc-

ture of BP neural network, together with the flowchart

of the proposed method is provided in Section 3. An

illustrative study of reliability prediction for the fuel

ejection pump of a diesel engine is provided in

Section 4, and it is followed by a comparative study.
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Brief remarks and conclusions are presented in
Section 5.

2. FSA method

The influence factor set, comment set, single factor
assessment (or called fuzzy relation matrix) and
evaluation set are the four key elements in FSA
method (Zhao et al. 2004a,b; Hu et al. 2008). The
influence factor set is a finite discrete crisp set
containing various possible factors that affect the
product reliability, and it is denoted by:

U ¼ fu1, u2, . . . , ung, ð1Þ

where ui represents a certain influence factor i and n is
the total number of possible influence factors. It should
be noted that there would be many factors that can
impact the product reliability. However, only the most
significant ones will be contained in the influence
factor set U. Sensitivity analysis can be first conducted
to identify these influence factors according to their
importance rankings, and the less important factors
can be ignored to reduce the complexity (Sobol 1993;
Saltelli et al. 2008; Reedijk 2000; Liu, Yin, Arendt,
Chen, and Huang 2010).

The comment set consists of a finite number of
levels associated with each influence factor. The
purpose of the comment set is to classify the infinite
amount of the possible values of each influence factor
into several levels, from the highest to the lowest, and
this classification is often provided by domain experts.
Due to the lack of sufficient data, fuzzy linguistic
variables can be used to characterise the possible levels
of each factor. The comment set is therefore expressed
as a fuzzy vector:

~V ¼ f ~V1, ~V2, . . . , ~Vng, ð2Þ

where ~Vi is a sub-set of the fuzzy linguistic variables
for the ith influence factor, and it can be further
denoted as:

~Vi ¼ f ~vi1, ~vi2, . . . , ~vikig, ð3Þ

where ~vij is the jth fuzzy linguistic variable for the ith
influence factor and ki is the total number of fuzzy
linguistic variables for the ith influence factor. In this
article, the trapezoid fuzzy number is used to represent
the fuzzy linguistic variable ~vij, and its membership
function is mathematically expressed as:

� ~vijðxÞ ¼

0, x � a
ðx� aÞ=ðb� aÞ, a5 x � b
1, b5 x � c
ðd� xÞ=ðd� cÞ, c5 x � d
0, x4 d

8>>>><
>>>>:

ð4Þ

This trapezoid fuzzy number can be denoted by
~vijð�L, b, c, �RÞ, where �L ¼ ðb� aÞ is the left parameter
and �R ¼ ðd� cÞ is the right parameter. When
�L ¼ �R ¼ 0, ~vij degenerates to a crisp interval. A
larger �L and/or �R indicates that ~vij is more imprecise
and ambiguous. Thus, ~vij is able to describe the
linguistic variable, such as ‘high’, ‘very high’, ‘moder-
ate’, etc., and it is more realistic than a crisp value,
especially when sufficient information is not available
at the early design stage. In addition to the trapezoid
fuzzy number, the triangular or other types of fuzzy
numbers may also be used to represent the fuzzy
linguistic variable ~vij. The type and parameters of the
fuzzy linguistic variables will be determined on the
basis of the experts’ perception of the subjective terms.
For example, an expert could be asked what his
perception is of the term ‘low material quality’, and his
response could be ‘the material quality is somewhere
between 1 and 4’. These sorts of judgements can be
collected and represented by fuzzy numbers (Gupta
and Bhattacharya 2007).

A sample of the fuzzy comment set for the influence
factor, say ‘material quality’, is presented in Figure 1,
where the values of the influence factors are classified
into five categories, represented by five fuzzy linguistic
variables.

According to the fuzzy comment set of each
influence factor, the membership of the product with
respect to the fuzzy linguistic variables of the influence
factors can be identified based on the scores given by
the domain experts. However, in the case where the
experiences of experts cannot be precisely transformed
into a crisp score located in the horizontal axis, a fuzzy
number can be used to quantify this kind of uncer-
tainty. On the other hand, if there are multiple crisp
scores from several experts, only using the mean value
of the multiple scores could not fully characterise the
variation (or uncertainty) due to the subjective judge-
ments from different experts. To illustrate the general
idea of our proposed method, we use a triangular fuzzy
number ~Lða,m, bÞ depicted in Figure 2 to represent the
score given by domain experts.

M
em

be
rs

hi
p 

m

0 1 2 3 4 5 6 7 8 9 10

1.0 Very low Low Moderate High Very high

Material quality

1iv 2iv
3iv 4iv 5iv

Figure 1. The fuzzy comment set of the influence factor
‘material quality’.

International Journal of Systems Science 547

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
E

le
ct

ro
ni

c 
Sc

ie
nc

e 
an

d 
T

ec
hn

ol
og

y 
of

 C
hi

na
] 

at
 0

5:
08

 2
7 

D
ec

em
be

r 
20

12
 



If the fuzzy scores are from more than one expert,

they can be integrated together to get a final fuzzy

score. Suppose ~Liðai,mi, biÞ represents the fuzzy score

given by the ith expert on a certain influence factor. If

the �-level set of ~Li is denoted by ~L�i ¼ a�i , b
�
i

� �
, and

then one has the average �-level set for the total scores
given by N experts:

~L� ¼
1

N

XN
i¼1

~L�i ¼
1

N

XN
i¼1

a�i ,
1

N

XN
i¼1

b�i

" #
, ð5Þ

and then the final fuzzy score is given by (Chen 1994):

~L a,m, bð Þ ¼
1

N

XN
i¼1

ai,
1

N

XN
i¼1

mi,
1

N

XN
i¼1

bi

 !
, ð6Þ

which is also a triangular fuzzy number according to

the fuzzy number composition rule (Chen 1994). Thus,

the final fuzzy scores on all influence factors given by

domain experts can be denoted by the fuzzy matrix ~Z:

~Z ¼ ~z1, ~z2, . . . , , ~zn½ �, ð7Þ

where ~zi is the final fuzzy score for the ith influence

factor. Some alternative approaches to integrating

multiple expert opinions into a single fuzzy number can

be found in Bardossy, Duckstein, and Bogardi (1993).

However, it should be kept in mind that we should

stick to applying the same integration rule for all the

data sets.
Based on the final fuzzy scores and the fuzzy

linguistic variables, the membership degree that the

product belongs to each fuzzy linguistic variable of the

influence factors can be computed as follows:

maxðu ~ZðxÞ ^ u ~VðxÞÞ, ð8Þ

where u ~ZðxÞ denotes the membership degree of the

final fuzzy score, u ~VðxÞ represents the membership

degree of each fuzzy linguistic variable and ^ is a

fuzzy arithmetic operator which is to find the minimum

membership degree between u ~ZðxÞ and u ~VðxÞ.

An example of this manipulation is illustrated in

Figure 3.

From Figure 3, we conclude that the membership

degree of the material quality of the product is 0.2 for

the fuzzy linguistic variable to be at the ‘Low’ level, 0.3

at the ‘High’ level and 1.0 at the ‘Moderate’ level.
The evaluation set is a set containing possible

results of synthetic assessment. It is often represented

by a set of crisp values as follows:

E ¼ fe1, e2, . . . , ekg, ð9Þ

where ei is the ith possible evaluation option and k is

the total number of possible options. In reliability

prediction, E contains the possible values of product

reliability, and the membership degree is used to

represent the degree to which the product reliability

belongs to each possible value.
For existing similar products, it is possible to

evaluate the product reliability based on their field and

experiment data. Reasons such as insufficient statisti-

cal data, subjective judgements from experts will result

in the imprecise assessment of product reliability

(Cai 1991; Verma, Srividya, and Gaonkar 2004;

Huang, Lin, and Ke 2008; Liu, Huang, and Levitin

2008; Liu and Huang 2010; Lin, Ke, and Huang 2010).

Thereby, the product reliability is presented as a fuzzy

number ~R rather than a crisp value. Several methods

have been introduced in the literature to construct the

membership function based on the sparse failure data

and subjective judgements from experts (Nikolaidis,

Chen, Cudney, Haftka, and Rosca 2004; Du, Choi,

and Youn 2006). The membership degree di of the

product reliability belonging to each evaluation option

ei can be computed by (Figure 4):

di ¼ maxðu ~RðeiÞÞ, ð10Þ

where ei is the ith possible reliability value and ~R is the

reliability value of the existing product. We will assume

that ~R is a triangular fuzzy number to demonstrate the

general idea of our proposed method.
The synthetic assessment method establishes an

analytical relationship among the influence factors,

0 1 2 3 4 5 6 7 8 9 10

M
em

be
rs

hi
p 

m

1.0 Very low Low Moderate High Very high

Material quality

0.3

0.2

Z
1iv 2iv 3iv

4iv 5iv

Figure 3. The membership degree of the final fuzzy score
belonging to the fuzzy linguistic variables.
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1.0 L

mm−a m+b

Figure 2. A triangular fuzzy number.
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fuzzy linguistic variables and the evaluation sets, and it

can be formulated as:

f ð ~ZÞ ~U� ~V ! E ð11Þ

Conventional synthetic assessment methods set up

the relationship through fuzzy operators (say ‘�’ or ‘þ’
operator), the fuzzy relation matrix and a weight set.

The latter two indicate the importance of the influence

factors and the associated levels. Nevertheless, the
relationship between the product reliability and

the influence factors is highly non-linear. Assessing

the fuzzy relation matrix and the weight set is therefore
not straightforward. In this article, the BP neural

network is adopted to learn and approximate the

complicated relationship between the product reliabil-
ity and its influence factors.

3. The proposed neural network

Artificial neural networks, which mimic a complex

non-linear system by a mass of neurons, are widely
utilised in pattern recognition, identification and clas-

sification because of their favourable characteristics

including self-learning, self-organising capacity, fault

tolerance and model-free (Rojas 1996). It could pro-
vide a pretty accurate mapping between the inputs and

outputs through learning from a set of samples. In

recent years, the neural network technique has been
successfully applied to different sorts of reliability

engineering problems (Liu, Zuo, and Meng 2003; Lin

and Tseng 2005; Rajpal, Shishodia, and Sekhon 2006;
Hu, Xie, Ng, and Levitin 2007; Liu, Li, Huang, Zuo,

and Sun 2010).
In general, BP neural network is a multi-layer feed-

forward network with an input layer, an output layer
and one or more hidden layers in between. The weights

of connections between pairs of neurons in the

neighbour layers are trained through the given sam-
ples. The deviations between the outputs of the neural

network and the actual outputs of the samples will

approach to zero once the neural network converges

after a proper iterative training process. Therefore, the

trained neural network can act as a function approx-
imator to predict the possible outputs for given inputs.

By treating the final fuzzy scores from experts as
inputs and the product reliability values as the outputs,
a BP neural network can be built to memorise the non-
linear relationship between the influence factors and
the product reliability. After training the neural
network via the data sets from existing similar prod-
ucts, the neural network can be used to predict the
reliability of a new evolutionary product based on the
final fuzzy scores given by the domain experts. In most
cases, the new evolutionary product inherits some
relationship between the influence factors and the
product reliability from existing similar products (Ling
et al. 2011). The basic structure of the proposed BP
neural network is shown in Figure 5.

The proposed neural network contains four layers.
The first layer is the input layer where the inputs are
the triangular final fuzzy scores of influence factors
given by domain experts, as shown in Equation (6).
The number of the inputs equals the number of the
influence factors. The second layer is the membership
degree generating layer, where the inputs from the first
layer are transformed into the membership degree
based on the fuzzy linguistic variables of each individ-
ual influence factor (Equation (8)). The total number
of nodes in the second layer is

Pn
i¼1 ki, determined by

the number of the fuzzy linguistic variables and the
number of the influence factors being considered.

D

1z

2z

nz

d

d

d

Layer 1
Fuzzy score 

input

Layer 2
Membership of 
fuzzy linguistic 

variable 

Layer 3
Hidden layer

Layer 4
Evaluation set 
membership

1u

2u

nu

11v

12v

1mv

21v

22v

2mv

1nv

2nv

nmv

Figure 5. The structure of the proposed BP neural network.

1e 2e 3e ke

2d

1d

R

M
em

be
rs

hi
p 

m

1.0

Figure 4. Membership degree of the fuzzy product reliability
with respect to the evaluation set.
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However, there are no weights between the first and

second layers since the inputs of the second layer are

purely computed by Equation (8). The third layer is

called the hidden layer. The exact number of hidden

neurons is difficult to estimate theoretically

(Rojas 1996). In most cases, the number of hidden
neurons should be in the range between the size of the

input layer and that of the output layer. The fourth

layer is the output layer, and the number of the output

nodes is k, exactly the same as the number of

evaluation options in the evaluation set. The outputs

represent the membership degree of each evaluation

option, and they are denoted by:

D ¼ ½d1, d2, . . . , dk�: ð12Þ

The reliability of a new product can be expressed

either by the crisp form of:

�e ¼
Xk
i¼1

eidi

�Xk
i¼1

di, ð13Þ

or by the fuzzy form as follows:

~e ¼
d1
e1
þ
d2
e2
þ � � � þ

dk
ek

, ð14Þ

which denotes the degree to which the new product

belongs to each possible reliability value.
By using the reliability values of existing similar

products as outputs and the corresponding final fuzzy

scores given by domain experts as inputs, the neural

network can be trained and further used to predict the

reliability of a new evolutionary product. The basic

flowchart of the proposed method is shown
in Figure 6.

Before predicting the reliability of a new product,

the trained neural network needs to be validated

(Twomey and Smith 1998). In this article, the leave-

one-out cross-validation, a process of estimating errors

by training the neural network with one of the existing
samples left out and using this sample as the validation

data, is utilised to validate the predictive capability of

the trained neural network (Twomey and Smith 1998;

Setiono 2001). The ErrorCV, namely cross-validation

error, is defined as follows:

ErrorCV ¼
1

M

XM
j¼1

Xk
i¼1

d̂ð j Þi � dð j Þi

� �2
, ð15Þ

where M is total number of existing sets of samples, i.e.

the number of existing similar products, d̂ð j Þi is the

predicted membership degree (output) for the ith

evaluation option when the neural network is trained

without the jth set of data and dð j Þi is the membership
degree of the actual product reliability of the existing

product j with respect to the ith evaluation option,

computed by Equation (10). As shown in the flow-

chart, the training data sets need to be continuously

collected until the cross-validation error of the trained

neural network is less than a pre-specified threshold,

and then the trained neural network can be further

used to predict the reliability of a new evolutionary

product.

4. An illustrative case study

In this section, the proposed method is applied to the

reliability prediction problem for the fuel injection

pump of a diesel engine to demonstrate its effective-

ness. The physical function of the fuel injection pump

is to deliver an exact metered amount of fuel, under

high pressure, to the injector at the right time. It is one

of the most important parts of diesel engines, and its

reliability is crucial to the reliability of the entire engine

system. Therefore, predicting the reliability of the fuel

injection pump accurately at the conceptual design

stage will facilitate the business decision-making for

manufacturers before the product is physically

produced.
At the conceptual design stage, three factors, i.e.

design technique, material quality and manufacturing

technique, were identified as the most important

influence factors that impact the reliability of the fuel

Start

Collect data and judgements 
for the existing products

Product reliability   R
Final fuzzy score Z of 
synthetic assessment  

Identify the influence factor 
set U and specify the fuzzy 

linguistic variables V

Construct and train the 
neural network 

Reliability prediction 

End

Experts’ judgements 
for a new product

Outputs Inputs

Can pass cross 
validation?

No

Yes

Figure 6. The flowchart of reliability prediction for a new
evolutionary product.
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injection pump. These factors compose the influence

factor set U:

U ¼ fu1, u2, u3g ¼ fDesign,Material,Manufacturingg:

Based on the experts’ perceptions, each influence

factor was classified into three levels from the highest

achievable level to the lowest one. However, it should

be noted that different influence factors might have

different measuring units. It is necessary to unify the

values of the influence factors into a uniform scale. For

methods to convert a fuzzy linguistic variable to a

scaled fuzzy number, readers can refer to Chen and

Hwang (1992). In our case, all the measurements were

scaled into the range 0–10. The value 10 represents the

maximum value of each influence factor, whereas 0.0 is

the lowest value. The real numbers between 0 and 10

indicate the intermediate values of each influence

factor. For example, if the maximum value of the

influence factor ‘design technique’ is Dmax and the

fuzzy linguistic variable for the ‘moderate’ design

technique is denoted by the unscaled fuzzy trapezoid

fuzzy number ~vð�L, b, c, �RÞ; then, the scaled trapezoid

fuzzy number in this case can be expressed as:

~v0 ¼ ð10� �L=Dmax, 10� b=Dmax,

10� c=Dmax, 10� �R=DmaxÞ:

In the same manner, the scales of material quality

and manufacturing technique were also unified to the

range of [0, 10]. The three levels of each influence

factor after unified scaling are tabulated in Table 1

from high to low. This classification composes the

comment sets of the FSA method.
There are eight sets of synthetic assessment data

from existing similar products, as listed in Table 2.

Each set of data contains the final fuzzy scores of the

three influence factors and the fuzzy reliability values

represented by triangular fuzzy numbers. It is noted

that the method proposed in Gupta and Bhattacharya

(2007) was followed to develop the membership

function of the triangular fuzzy number from the

experts’ judgements.
Based on Tables 1 and 2, the membership degree

that the existing products belong to each fuzzy

linguistic variable can be computed by Equation (8).

The evaluation set in this case is defined as the

achievable reliability value of the fuel injection pump,
which can be written as:

E ¼ fe1, e2, . . . , e8g

¼ f0:94, 0:90, 0:86, 0:82, 0:78, 0:74, 0:70, 0:66g

The basic settings for the neural network are listed
in Table 3. To determine the optimal number of the
hidden nodes, we tested the neural network via
changing the number of nodes from 5 to 20. For
each tested number of the hidden nodes, the neural
network was trained 10 times. It has been observed
that when the number of the hidden nodes is 10, the
associated average error between the actual reliability
and the ones generated by the neural network is
minimal. By using the cross-validation method for the
eight existing sets of data from similar products, the
validity of the trained neural network can be quanti-
fied. The average cross-validation error of 10 tests is
0.4833, meaning that the average cross-validation error
of each output node is around 0.06 which is acceptable
in the conceptual design stage. Given the final fuzzy
scores for a new fuel injection pump product as shown
in Table 4, the reliability can be predicted through the
trained neural network.

The predicted outputs are:

D ¼ ½d1, d2, . . . , d8�

¼ ½0, 0, 0:526, 0:998, 0:923, 0, 0, 0�:

Therefore, the associated reliability of the new
product can be written in fuzzy form as:

~e ¼
0

0:94
þ

0

0:90
þ
0:526

0:86
þ
0:998

0:82
þ
0:923

0:78

þ
0

0:74
þ

0

0:70
þ

0

0:66
,

or in crisp form:

�e ¼
X8
i¼1

eidi

�X8
i¼1

di ¼ 0:8135:

It is noteworthy that compared with the conven-
tional FSA method, the proposed method has two
important merits. First, in the conventional FSA-based
reliability prediction approach, a fuzzy relation matrix
between the fuzzy linguistic variable levels of the
influence factors and the evaluation set has to be

Table 1. The comment sets of each influence factor.

Factor Level 1 Level 2 Level 3

Design High(1.5, 8.0, 10.0, 0) Moderate(1.5, 4.0, 6.0, 1.5) Low(0, 0, 2.5, 1.0)
Material High(1.0, 8.0, 10.0, 0) Moderate(1.5, 4.5, 6.5, 1.0) Low(0, 0, 2.5, 1.5)
Manufacturing High(1.5, 8.5, 10.0, 0) Moderate(1.5, 4.5, 6.5, 1.5) Low(0, 0, 3.0, 1.5)
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specified by the domain experts (Zhao et al. 2004a,b).
Without completely understanding the underlying
physics behind the influence factors and product
reliability, it is really subjective to determine this
fuzzy relation, and would bring more uncertainties in
the new product reliability prediction. However, in our
proposed method, the relation can be learned from
existing similar products by the proposed neural
network. It can reduce the additional uncertainty
from experts’ perceptions. Second, the neural network
is capable of approximating any non-linear relation-
ship between inputs and outputs. Therefore, it is able
to characterise a more complicated relation between
the influence factors and product reliability than the
conventional FSA method. A comparative study is
given below to illustrate this point.

In order to ensure that the comparative study
between the proposed and the conventional FSA
methods be comparable and the amount of available
information is identical, we assume that in the FSA
method, the relationship between the influence factors
and product reliability can be modelled by a weighted

function rather than introducing an extra fuzzy rela-
tion matrix for the fuzzy linguistic variable levels and
evaluation set as used in (Zhao et al. 2004a,b). The
weighted function can be written as:

~R ¼ w1 � ~z1 þ w2 � ~z2 þ w3 � ~z3 þ w4 � ~z1 � ~z2 þ w5 � ~z2 � ~z3

þ w6 � ~z1 � ~z3 þ w7 � ~z1 � ~z2 � ~z3,

where wi is the weight to be determined by the data sets
from existing similar products and ~zi is the final fuzzy
scores of influence factor i. This relationship indicates
that the product reliability is a linear function of the
final fuzzy scores of the influence factors and their
interactions. Since there are seven unknown weights in
the function, they can be evaluated based on the seven
out of eight data sets presented in Table 2, and the one
left out will be used to compute the associated cross-
validation error. The average cross-validation error is
2.21, much larger than that of the proposed method. It
proves that the proposed neural network-based FSA
approach has a more accurate reliability prediction
than the conventional FSA method.

5. Remarks and conclusions

Reliability prediction deals with the evaluation of the
achievable reliability of a new product design prior to
its development and manufacturing. It is an important
and useful tool to guide the business decision-making
process before the system is assembled and/or put into
use. However, reliability prediction in the conceptual
design stage faces some challenging issues. The first
one is that due to the lack of sufficient statistical data,
the traditional reliability modelling and analysis
methods, which need precise data set, become infeasi-
ble. On the other hand, the subjective information
from experts’ judgements and perceptions may be
useful to facilitate the reliability prediction when the
experiment data are not available. The second issue is
that at the early design stage, it is difficult to
mathematically formulate the relationship between
the influence factors and the product reliability due
to the lack of knowledge of the underlying physics.

Table 2. Final fuzzy scores and reliability values of existing similar products.

Product model Design Material Manufacturing Reliability

6108ZQ (1.5, 8.0, 1.0) (1.0, 8.2, 1.5) (1.2, 8.5, 1.2) (0.08, 0.92, 0.05)
6108Q (1.2, 7.5, 1.0) (1.0, 8.0, 1.0) (0.8, 8.1, 0.8) (0.06, 0.87, 0.06)
6112ZLQ (1.5, 7.2, 1.0) (1.2, 7.5, 1.0) (1.2, 7.6, 1.0) (0.07, 0.83, 0.05)
6105QC (1.5, 6.0, 1.2) (1.0, 6.2, 1.2) (0.8, 7.0, 0.6) (0.05, 0.79, 0.05)
4108ZQ (1.2, 5.6, 1.2) (1.0, 5.6, 1.5) (0.9, 6.2, 0.8) (0.08, 0.75, 0.06)
4108Q (1.2, 5.0, 1.0) (1.0, 5.0, 1.0) (1.0, 5.0, 0.5) (0.04, 0.72, 0.03)
4110ZQ (1.0, 4.2, 1.0) (1.2, 4.5, 1.5) (1.0, 4.2, 0.8) (0.05, 0.70, 0.03)
4110Q (1.5, 3.0, 1.2) (0.8, 3.5, 1.5) (1.2, 3.5, 1.2) (0.04, 0.67, 0.05)

Table 3. The configuration of the proposed BP neural
network.

Parameters Value

Total sample size 8
Number of input nodes 3
Number of output nodes 8
Number of hidden nodes 10
Learning rate 0.01
Performance goal 10E�5
Training epochs 1500
Training function TRAINLM
Adaption learning function LEARNGDM
Transfer function PURELIN/TANSIG

Table 4. Final fuzzy scores of new product.

Product model Design Material Manufacturing

6114ZQH (1.2, 7.2, 1.2) (1.0, 7.0, 1.2) (1.1, 8.0, 0.8)
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To address these two issues, a neural network-based
FSA approach is proposed here in which the uncer-
tainty from the experts’ subjective judgements and
imprecise data are represented by the fuzzy number, and
the highly non-linear relationship between the influence
factors and the product reliability is learned by the
tailored neural network. The benefit of this proposed
method is that without providing the fuzzy relation
between the fuzzy linguistic variable levels and evalu-
ation set as it is in the conventional FSA method, the
neural network can be trained to approximate this
complicated relationship by the data sets of existing
similar products. The effectiveness of the proposed
method is illustrated by a case study of the fuel injection
pump. The advantage of the method in terms of
accuracy of reliability prediction is demonstrated by a
comparative study with the conventional FSA method.
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