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Abstract. A fuzzy directed graph is used to represent the dynamic relationships among the sub-objectives of a fuzzy multi-
objective optimization problem. Using the comprehensive coordination function with exponential weights, we transform a fuzzy
multi-objective optimization problem into a single-objective optimization problem. The optimal solution of the single-objective
optimization problem can then be obtained with conventional single-objective optimization methods. The optimal solution
represents the best trade-off among the possibly conflicting sub-objectives in the original optimization problem. An illustrative
example is given to illustrate the effectiveness of the proposed approach.
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1. Introduction

Most engineering design problems involve optimiza-
tion of several objectives subject to multiple inequality
and equality constraints. These multiple design objec-
tives often compete against one another and a simul-
taneous optimization of all these objectives is rarely
achieved. Thus, in most cases, the design is accom-
plished by considering the best comprise among the
competing objectives. Although the methods of find-
ing a compromise solution to a multi-objective design
problem are fairly well established in the literature of
engineering optimization [1], the designer often en-
counters a problem in the development of a precise
mathematical model of the system. Vagueness and im-
preciseness often arise due to poorly defined data, un-
clear system boundaries, unsatisfactory formulation of
design objectives, and inability to evaluate the relative
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importance of the objectives. As the complexity of the
system to be designed increases, more assumptions are
made about its behavior and hence the ability of the
designer to exactly model the system in precise mathe-
matical terms is severely affected. To model the vague
and imprecise nature of the design problem, one often
uses the fuzzy sets theory [2].

The first application of fuzzy sets theory to the
decision-making processes was presented by Bellman
and Zadeh [3]. Their paper described the basic con-
cepts and definitions associated with a decision-making
process in a fuzzy environment. After their work, there
come out a great number of articles dealing with the
fuzzy optimization problems. The collection of pa-
pers on fuzzy optimization edited by Slowinski [4] and
Delgado et al. [5] gives the main stream of this topic.

Formulating a fuzzy optimization problem entails
developing membership functions for each constraint
and each objective. These membership functions re-
semble normalization schemes. A variety of such func-
tions are available in the literature (Rao) [6–8]. A rel-
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atively high value for a membership function of a con-
straint set indicates a near or definite membership in the
set, i.e., a high likelihood of the constraint satisfaction.
Therefore, the goal of a fuzzy optimization problem is
to maximize all membership functions simultaneously.
Most often, this is done using a formulation similar to
the min-max formulation for multi-objective optimiza-
tion [9]. Fuzzy objectives and constraints can be com-
bined to provide an efficient algorithm for optimization.
In terms of fuzzy optimization, both of the objective
functions and constraint functions are treated as mod-
ified constraints. Consequently, fuzzy optimization
lends itself to multi-objective optimization where addi-
tional objective functions are modeled as constraints [6,
10].

Zimmermann [10] initiated the application of fuzzy
theory to optimization by solving theoretical, fuzzy,
linear programming problems. Zimmermann [11] also
proposed a max-min approach, which was used for
solving fuzzy mathematical problems with fuzzy ob-
jectives and fuzzy constraints. Delgado et al. [12], Ca-
denas and Verdegay [13] and Verdegay [14] discussed
fuzzy mathematical programming problems with fuzzy
objective coefficients. In their approach the k-th objec-
tive λ-constraint approach was used for solving fuzzy
multi-objective problems with fuzzy objective coeffi-
cients. Chanas [15] presented the possibility of the
identification of a complete fuzzy decision in fuzzy lin-
ear programming by use of the parametric program-
ming technique. This parametric approach can ana-
lytically describe the set of solutions incorporating the
whole range of possible values of the fuzzy decision
and provides some information on other alternatives
close to the maximizing solution. Lai and Hwang [16]
proposed an augmented max-min approach, which is
essentially an extension of Zimmermann’s approach in
essence.

G.-Y. Wang and W.-Q. Wang [17] used a level-cuts
approach to solve non-linear, structural problems with
fuzzy constraints (and crisp objectives). Rao [6–8] used
explicit, continuous membership functions for fuzzy
constraints and fuzzy objectives to optimize mechanical
systems and structure design; membership functions
for the objective function and for the constraints are
aggregated into a single, standard optimization prob-
lem. Rao’s method of λ-formulation yields a unique
compromise solution with maximum overall satisfac-
tion for fuzzy optimum structural design. Furthermore,
he introduced the α-cut approach which provided the
results in a parametric form for multi-objective prob-
lems. Werner [18,19] proposed an interactive decision

support system which aids in solving multiple objec-
tive programming problems subject to crisp and fuzzy
constraints. One part of the system is an extension of
a well-known fuzzy sets approach evaluating possible
solutions by their degrees of membership to objectives
and constraints.

Xu [20] also transforms problems with fuzzy con-
straints into standard optimization problems, though
with a slightly different format; the final solution is then
determined with a bound-constrained optimization ap-
proach. Despite the significant amount of work that has
been completed with fuzzy optimization, there are few
investigations on the use of fuzzy theory to determine
feasible points of constrained problems.

Shih [21] presented a global criterion method by
fuzzy logic to obtain solutions for multi-criteria crisp
or fuzzy structural design, which is not only capable of
acquiring the non-dominated solution, but also capable
of achieving the highest degree of satisfactory design.

However, the conflicting degree among objectives
and the designer’s preferences are neglected to some
extent. Loetamonphong et al. [22] studied the opti-
mization problems that have multiple objective func-
tions subject to a set of fuzzy relation equations.
Huang [23] presented a fuzzy multi-objective optimiza-
tion decision-making method, which can be used for
the optimization decision-making on two or more ob-
jectives of system reliability.

A variety of other new techniques and applications
for multi-objective optimization have been developed
in recent years for overcoming the drawbacks of tra-
ditional methods. Representative work includes multi-
objective collaborative optimization [24], interactive
multi-objective optimization [25], physical program-
ming [26], game theoretic approach [27], Taguchi rou-
tine based method [28], modified Dempster-Shafer the-
ory [29], satisfaction metrics based method [30], ge-
netic algorithms [31–33] and so on. They attempted to
resolve the conflicting objectives so that the search for a
compromise design over a feasible design space can be
facilitated. A comprehensive survey of multi-objective
optimization methods (traditional, evolutionary and in-
teractive) is given in [34,35].

As discussed previously, conflicts in design objec-
tives are unavoidable in any multi-objective optimiza-
tion problem. How to model and resolve the conflicts is
the ongoing and important topic. In this paper, we pro-
pose a coordination method for solving multi-objective
optimization problems. In Section 2, we summarize the
fuzzy multi-objective optimization problem. In Sec-
tion 3, we develop the coordination method for solv-
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ing multi-objective optimization problem with fuzzy
sets theory. A case study is provided in Section 4 and
conclusions are given in Section 5.

2. Model of fuzzy multi-objective optimization [6,
23]

Let the crisp multi-objective optimization problem
be stated as follows:

Find X which minimizes f(X)
Subject to

g(l)
m � gm (X) � g(u)

m ; m = 1, 2, . . . , q (1)

where X is the vector of n design variables, f(X) =
{f1(X), f2(X), . . . , fp(X)}T is the vector of objective
functions, gm(X) is the mth constraint function, and
the superscripts (l) and (u) indicate the lower and upper
bound values, respectively. This problem can also be
expressed as

Find X which minimizes f(X)
Subject to

gm (X) ∈ Gm; m = 1, 2, . . . , q (2)

where Gm denotes the allowable interval for the con-
straint function gm; Gm = [g(l)

m , g
(u)
m ]. When the

constraints contain fuzzy information, the problem in
Eq. (2) becomes

Find X which minimizes f(X)
Subject to

gm (X) ∈ G̃m; m = 1, 2, . . . , q (3)

where the tilde is used to denote that the operators or
variables contain fuzzy information. Thus the con-
straint gm (X) ∈ G̃m means that gm (X) is a member
of the fuzzy set G̃m in the sense that the membership
function value is greater than 0, i.e., µG̃m

(gm) > 0.
To solve the fuzzy optimization problem in Eq. (3), we
propose a coordination method in the following section.

3. A coordination method for fuzzy multi-objective
optimization

3.1. Fuzzy directed graph for multi-objective
optimization

In the literature of fuzzy systems several approaches
to the idea of fuzzy graph have been introduced [36–
40]. Reference [41] overviewed most of the literature
and gave a general way of treating fuzzy graph prob-

lems. The concept of fuzzy directed graph was sum-
marized in [36]. Because of the characteristics of a
fuzzy directed graph, we find that it can also be used to
represent the dynamic relationship of the entities in a
fuzzy multi-objective optimization problem. As shown
in Fig. 1, {f1 (X) , f2 (X) , · · · , fp (X) , F (X)} is a
set consisting of p sub-objectives and one objective set
function. The objective function measures the overall
satisfaction of the p sub-objectives. We use µj (fj), or
µj for simplicity, to denote the degree of satisfaction of
the jth sub-objective and call it the coordination func-
tion of the jth sub-objective (j = 1, 2, · · · , p). This co-
ordination function is actually the membership function
of fj (X). A parameter denoted by βj is used in the co-
ordination function µj (j = 1, 2, · · · , p). Correspond-
ingly, we use µ (F ) to denote the coordination function
of the overall objective. In expressing the overall ob-
jective F (X) as a function of the p sub-objectives, we
use αj to represent the relative importance of the jth

sub-objective with the requirement of
p∑

j=1

αj = 1.

3.2. The coordination function of a sub-objective

A membership function is used to fuzzify a sub-
objective into a coordination functionsµj with an expo-
nential weight as a parameter. This exponential weight
denoted by βj controls the pace at which the jth sub-
objective changes between being satisfactory and non-
satisfactory. If the jth sub-objective should be maxi-
mized, we formalize its coordination function using a
monotonically increasing function given below:

µj =

⎧⎪⎪⎨
⎪⎪⎩

0, fj � f l
j(

fj−f l
j

fu
j
−f l

j

)βj

, f l
j < fj < fu

j

1, fj � fu
j

(4)

If the jth sub-objective should be minimized, we for-
malize its coordination function using a monotonically
decreasing function as follows:

µj =

⎧⎪⎨
⎪⎩

1, fj � f l
j(

fu
j −fj

fu
j
−f l

j

)βj

, f l
j < fj < fu

j

0, fj � fu
j

(5)

In both Eqs (4) and (5), f u
j and f l

j are the upper and
lower bounds of the jth sub-objective, respectively, and
βj is the exponential weight parameter. The upper and
lower bounds are usually available from the description
of the optimization problem while β j has to be selected
based on the following discussions.
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Fig. 1. Fuzzy directed graph for a multi-objective optimization problem.

The parameter βj of the jth sub-objective used in
Eqs (4) and (5) must be greater than 0. Its effects on
the shape of the coordination function are illustrated in
Fig. 2. When it is in the range between 0 and 1, we
have the following observations.

When the value of the sub-objective function changes
from being the least satisfactory to being the most satis-
factory, the slope of the satisfaction decreases. Near the
least satisfactory point, even if there is a little change
in the sub-objective function value towards satisfac-
tion, the coordination function will be improved greatly.
Near the most satisfactory point, even if there is a great
change in the sub-objective function value towards sat-
isfaction, the value of the coordination function will
change very little. Therefore, the smaller the β j value
is, the more easily for the jth sub-objective to become
satisfactory. However, when β j takes a value between
1 and ∞, the observations are just the opposite.

The exponential weights are usually determined by
the designer’s knowledge on the relative importance of
the sub-objectives. The knowledge is usually fuzzy
and can’t lead to accurate β j values. They can also
be determined with a systematic approach called fuzzy
comprehensive evaluation documented in [42–44].

3.3. Development of the coordination function of the
overall objective

Once we have obtained the coordination functions
for all sub-objectives as described in Section 3.2, we

need to develop a method to find the coordination func-
tion of the overall objective function.

Given a solution X , we can find the coordination
function values of all sub-objectives, that is, µj for
j = 1, 2, . . . , p. The degree of dissatisfaction of the
jth sub-objective is measured by 1 − µj . The total
degree of dissatisfaction of all p sub-objectives is equal

to
p∑

j=1

(1 − µj). The relative degree of dissatisfaction

of the jth sub-objective becomes (1−µj)
p∑

j=1

(1−µj)

. As we are

in the process of finding a solution that would maximize
a comprised satisfaction of all sub-objectives, we can
use this relative degree of dissatisfaction as the weight
in calculating the degree of satisfaction of the overall
objective. In other words, we can calculate αj using
the following equation:

αj =
(1 − µj)

p∑
j=1

(1 − µj)
, j = 1, 2, . . . , p (6)

With αj calculated with Eq. (6), we find the fol-
lowing expression of the coordination function of the
overall objective:

µ (F ) =
p∑

j=1

αjµj =

p∑
j=1

(1 − µj)µj

p∑
j=1

(1 − µj)
(7)
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Fig. 2. Effects of βj on the shape of the coordination function.

At any solution, if µj = 1, that is, the jth sub-
objective is totally satisfied, then this sub-objective has
no effect on the comprehensive decision-making pro-
cess any more. This sub-objective can then be removed
from this comprehensive decision making process.

When the µj (1 � j � p) values do not reach their
maximum value 1 simultaneously, then there exists a
point X∗∗ and the kth sub-objective which satisfy the
following equations:

∂µ(F (X∗∗))
∂(µk(fk(X∗∗)))

=

⎡
⎣ p∑

j=1

(1 − µj(fj(X∗∗)))(1 − 2µk(fk(X∗∗))

+ µj(fj(X∗∗)))

⎤
⎦

/

⎧⎪⎨
⎪⎩

⎡
⎣ p∑

j=1

(1 − µj(fj(X∗∗)))

⎤
⎦

2
⎫⎪⎬
⎪⎭ = 0 (8)

∂2µ(F (X∗∗))
∂(µk(fk(X∗∗)))2

= −4·
p∑

j=1,j �=k

(1 − µj(fj(X∗∗)))
p∑

l�j,l �=k

(1 − µl(fl(X∗∗))

[
p∑

j=1

(1 − µj(fj(X∗∗)))

]3

< 0 (9)

Based on Eqs (8) and (9), once the values of the co-
ordination function of all other sub-objectives are spec-
ified, there exists an optimal value of the coordination
function of the kth sub-objective at which the coordi-
nation function of the overall objective attains its maxi-
mum. We take a multi-objective optimization problem

with two sub-objectives as an example. When the value
of one sub-objective function is specified (correspond-
ingly its coordination function value is specified), there
is an optimal value of the other sub-objective at which
the overall objective function has the highest satisfac-
tion value, as shown in Fig. 3.

4. Hypothetical case example

A system with five series sub-systems is considered.
The relationship between the cost Ci and reliability Ri

of the ith sub-system can be represented as

Ci(Ri) = ai ln(1/(1 − Ri)) + bi
(10)

(i = 1, 2, . . . , 5)

where ai and bi are the reliability cost coefficient of the
ith sub-system. For illustrative purposes, we use the
following values of the parameters:

a1 = 24, a2 = 8, a3 = 8.75, a4 = 7.14,

a5 = 3.33

b1 = 120, b2 = 80, b3 = 70, b4 = 50, b5 = 30

These parameters are in generic units. In addi-
tion, we are also given requirements that the cost
of the system CS should be between 500 and 600
and the system reliability RS should be above 0.90.
We need to determine the sub-systems’ reliabilities
R = [R1, R2, · · · , R5]

T to maximize RS and minimize
CS .

The multi-objective optimization model of the prob-
lem is expressed as

find R = [R1, R2, · · · , R5]
T (11)

to maximize RS (R) =
5∏

i=1

Ri (12)
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(a) mesh grid (b) contour line 

Fig. 3. Illustrative diagram of coordination method.

and minimize

CS =
5∑

i=1

{ai ln[1/ (1 − Ri)] + bi} (13)

The coordination functions of the reliability and the
cost of the system are expressed, respectively, as

µ1(RS) =
(14)⎧⎨

⎩
1, RS = 1
((RS − 0.90)/0.1)βR, 0.9 < RS < 1
0, RS � 0.90

µ2(CS) =
(15)⎧⎨

⎩
1, CS � 500
((600 − CS)/100)βC , 500 < CS < 600
0, CS � 600

The comprehensive coordination function consider-
ing both sub-objectives can be defined as

µ(F (R, C)) = α1µ1(RS) + α2µ2(CS), (16)

where

α1 =
1 − µ1(RS)

2 − µ1(RS) − µ2(CS)
,

(17)

α2 =
1 − µ2(RS)

2 − µ1(RS) − µ2(CS)
.

These expressions in Eq. (17) are obtained from
Eq. (6).

The exponential weights βR and βC of the reliabil-
ity and the cost of the system can be set at different

values. The results obtained using an unconstrained
optimization method [45] are shown in Table 1.

From the results given in Table 1, we can see the
larger the exponential weight βR of system reliability
is, the larger the reliability RS and the cost CS will
be, the larger the satisfaction degree in reliability will
be, and the smaller the satisfaction degree in cost will
be. When the exponential weight βC of system cost
increases, system reliability RS decreases, and system
cost CS decreases. Then the satisfactory degree in re-
liability decreases, and the satisfactory degree in cost
increases. When βR and βC are equal, the satisfactory
degree in each sub-objective will be the lowest, the un-
satisfactory degree in each sub-objective is the highest,
and the comprehensive coordination ability of decision
maker is the weakest. With the gradually increasing of
the difference of the two exponential weights, the sat-
isfactory degree of each sub-objective becomes larger,
the total unsatisfactory degree becomes smaller, and the
comprehensive coordination ability of decision maker
becomes stronger, until the single-objective optimiza-
tion is reached.

5. Conclusion

A coordination method for fuzzy multi-objective op-
timization is developed. It incorporates not only fuzzy
factors in the decision-making process but also the de-
signer’s experience and knowledge. The optimization
results of the numerical example illustrate that when
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Table 1
Optimization results with different exponential weight values of reliability and cost

βR βC R1 R2 R3 R4 R5 RS CS µ1 µ2 µ(F (R,C))

0.01 1 0.9499 0.9843 0.9829 0.9861 0.9934 0.9002 537.9 0.9416 0.6207 0.6635
0.1 1 0.9547 0.9844 0.9830 0.9861 0.9934 0.9050 540.5 0.7408 0.5955 0.6522
0.5 1 0.9655 0.9882 0.9871 0.9895 0.9951 0.9273 554.6 0.7231 0.4537 0.4860
0.8 1 0.9696 0.9897 0.9887 0.9908 0.9957 0.9360 561.3 0.4425 0.3871 0.4131
1 1 0.9715 0.9903 0.9894 0.9913 0.9959 0.9397 564.4 0.3973 0.3556 0.3758
1 0.8 0.9731 0.9909 0.9900 0.9918 0.9962 0.9432 567.5 0.4318 0.4067 0.4190
1 0.5 0.9764 0.9920 0.9913 0.9929 0.9967 0.9502 574.4 0.5020 0.7477 0.5039
1 0.1 0.9839 0.9946 0.9941 0.9952 0.9977 0.9659 594.1 0.6592 0.7531 0.6986
1 0.01 0.9849 0.9954 0.9950 0.9956 0.9980 0.9692 599.5 0.6923 0.9487 0.7290
1.5 1 0.9745 0.9914 0.9906 0.9923 0.9964 0.9463 570.4 0.3145 0.2957 0.3050
1 1.5 0.9690 0.9894 0.9885 0.9906 0.9956 0.9347 560.2 0.3466 0.2510 0.2956

the exponential weight of system reliability is equal to
that of system cost, comprehensive coordination abil-
ity of decision maker is weakest. When the difference
of the two exponential weights increases, the compre-
hensive coordination ability of decision maker is also
strengthened until the single-objective optimization is
reached.

The exponential weights of sub-objectives can be
positive number, which is convenient to use in compar-
ing and judging the complex relationship among sub-
objectives. The range of an exponential weight should
be determined based on specific problems. If the ex-
ponential weight is much larger than one, the slope of
the coordination function will be very large near the
most satisfactory point, and the ideal satisfactory so-
lution will probably not be obtained. Therefore, the
exponential weight is suggested to be less than one.
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