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Abstract Collaborative optimization (CO) is a bi-level
multidisciplinary design optimization (MDO) method for
large-scale and distributed-analysis engineering design pro-
blems. Its architecture consists of optimization at both the
system-level and autonomous discipline levels. The system-
level optimization maintains the compatibility among cou-
pled subsystems. In many engineering design applications,
there are uncertainties associated with optimization models.
These will cause the design objective and constraints, such as
weight, price and volume, and their boundaries, to be fuzzy
sets. In addition the multiple design objectives are gene-
rally not independent of each other, that makes the decision-
making become complicated in the presence of conflicting
objectives. The above factors considerably increase the
modeling and computational difficulties in CO. To relieve
the aforementioned difficulties, this paper proposes a new
method that uses a fuzzy satisfaction degree model and a
fuzzy sufficiency degree model in optimization at both the
system level and the discipline level. In addition, two fuzzy
multi-objective collaborative optimization strategies
(Max–Min and α-cut method) are introduced. The former
constructs the sufficiency degree for constraints and the satis-
faction degree for design objectives in each discipline
respectively, and adopts the Weighted Max–Min method to
maximize an aggregation of them. The acceptable level is set
up as the shared design variable between disciplines, and
is maximized at the system level. In the second strategy,
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the decision-making space of the constraints is distributed
in each discipline independently through the allocation of
the levels of α. At the system level, the overall satisfaction
degree for all disciplines is finally maximized. The illustra-
tive mathematical example and engineering design problem
are provided to demonstrate the feasibility of the proposed
methods.
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1 Introduction

Large scale problems or complex systems usually involve
multiple disciplines and coupling factors. When optimiza-
tion is conducted serially, low efficiency and non-optimal
solutions may be resulted in. Multidisciplinary design opti-
mization (MDO) is a methodology based on the decom-
position of the design problem of a system into problems
of lower dimensions, which can be distributed to groups
of engineers and experts in different disciplines. Collabo-
rative optimization (CO) (Kroo et al. 1994) was developed
to capture the multidisciplinary characteristics of enginee-
ring design. CO decomposes the design problem of a system
into two levels, i.e. the system level and the disciplinary level
in parallel. Each disciplinary subspace design is to satisfy its
local constraints while minimizing the disciplinary objective
discrepancy function. At the system level, target values are
determined for the design variable used to keep consistency
among disciplinary subspace designs while minimizing the
overall system objective function. In the application of CO
(Braun et al. 1995) employed it for the launch-vehicle design,
and Sobieski and Kroo (1995) for the aircraft configuration.
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Tappeta and Renaund (1997) presented Multi-objective col-
laborative optimization (MOCO), which was developed for
comparative studies and tested three types of MOCO formu-
lations for a modified aircraft sizing problem. CO has also
been widely used in decision-making (Gu et al. 2002) and
conceptual design (Balling and Rawlings 2000).

Collaborative optimization (CO) methods assume that all
the design data are precisely known and the constraints deli-
mit a well-defined set of feasible regions. However incom-
pleteness and uncertainty of input information is often typical
in many practical CO problems, especially in multi-objective
CO. Such incompleteness and uncertainty is mainly cau-
sed by fuzzy performance criteria, fuzzy ideas of decision
makers, as well as the presence of conflicting objectives
(Balling and Wilkinson 1997; Huang et al. 2006a,b,c, 2005a;
Huang and Li 2005; Huang et al. 2006d).

This paper proposes the use of a fuzzy satisfaction degree
and a fuzzy sufficiency degree model in design models at the
discipline level in order to construct the sufficiency degree for
constraints and the satisfaction degree for objectives in each
discipline. A typical CO architecture based on the model
fuzzy satisfaction degree and the fuzzy sufficiency degree
(FSSDCO) is developed. The two approaches developed are
applied in two examples. The proposed strategies extend the
work of Tappeta and Renaund (1997) to provide MOCO with
the capability to handle fuzzy information. In the FSSDCO
algorithm, every strategy follows the approach for CO sug-
gested by Huang et al. (2004) and the formulation method
of Tappeta and Renaund (1997). The first strategy utilizes
the weighted Max–Min method [Fuzzy intersection by Bell-
man and Zadeh (1970)] to evaluate the sufficiency degree
and the satisfaction degree, and employs the acceptable level
as a shared design variable among coupled disciplines. This
paper presents the FSSDCO based on an asymmetrical model
using the α-cut method, and obtains a sequence of solutions
using this model. A fuzzy CO problem is transformed into
a series of satisfaction degree optimization problems in dif-
ferent sufficiency degree spaces, constructed by an optimum
α-cut through the disciplinary analyses.

This paper is organized as follows. Section 2 discusses
the fuzzy satisfaction degree and fuzzy sufficiency degree
expression of decision-making problems as well as the pro-
cess of mechanism type selection. Section 3 proposes the
formulation of using the max-min method for the FSSDCO.
Section 4 proposes the model based on the α-cut method for
FSSDCO. An example is also used to illustrate the effective-
ness of the proposed method. Finally, Section 5 is a summary
of our conclusions.

2 Fuzzy satisfaction degree and fuzzy sufficiency degree

The conventional CO method assumes that all design variab-
les are precisely known and the feasible region should be

strictly satisfied. However, in applications some design var-
iables or constraints often contain incomplete, imprecise, and
vague (fuzzy) information, especially for a multi-objective
problem (Balling and Wilkinson 1997; Huang et al. 2006b,c).
Such imprecise information makes it difficult for CO to achi-
eve the optimal solution. To avoid the aforementioned pro-
blems, the fuzzy satisfaction degree and fuzzy sufficiency
degree models at the system level and discipline level have
been proposed as an alternative to CO. Utilizing this style for
modeling, the system-level objective becomes the acceptable
levels or the system overall satisfaction degree, while disci-
plines adopt the inequalities of subspace satisfaction and the
sufficiency degrees as their local constraints. In addition to
the conventional analysis that aids the computation of local
objectives or output variables coupled to other disciplines
at the discipline level, the subspace analysis responsibility is
extended to provide the sufficiency degree of local constraints
and the satisfaction degree of design objectives, as illustrated
in Fig. 1.

In Fig. 1 z∗ is design variable at the system level, and it
is the target which the discipline level will attempt to mach.
d∗

i is the cumulative compatibility constraint returned from
i th subspace optimization. xssi is the subspace design vector
for i th discipline. yi j is the coupling vector computed in
discipline i and used in discipline j . µc̃i j is the degree of
sufficiency for the j th constraint function at i th discipline.
µF̃i

is the degree of satisfaction for objective function at i th
discipline.

This architecture of the FSSDCO is appealing because
of its ability to distribute the model to decision-making or
engineering design in different areas, with the capability
to incorporate fuzzy or vague information. Firstly, the pro-
posed particular mechanism of CO can efficiently solve an
optimization problem with a distributed and parallel imple-
mentation. Secondly, the fuzzy satisfaction and sufficiency
integrated approach is a significant enhancement of CO to
deal with fuzzy information, which renders the optimum
solutions to be acquired more easily and more acceptable.

2.1 Fuzzy satisfaction degree for objectives

In 1947, Nobel Prize winner Herbert A. Simon first intro-
duced the satisfying criterion and proposed satisfying solu-
tions in place of the traditional optimum ones under certain
situations, which provided a new approach to solve an opti-
mization problem (Simon 1996). Since then, the satisfac-
tion degree theory has been extensively studied and applied.
Takatsu presented the basic mathematical theory and charac-
teristics of the latent satisfying decision criterion (Takatsu
1981). In engineering practice, Goodrich studied the theory
of satisfying control, and applied it to some classic control
problems (Goodrich 1990). Jin gives the satisfaction solution
theory in neural computing (Jin 1992).
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Fig. 1 The architecture of the FSSDCO
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Fig. 2 Linear satisfaction degree function for i th objective

Definition 1 (Huang 1997; Wang 1992) The fuzzy satisfac-
tion region of an objective is a fuzzy set which a decision
maker determines according to the degree of satisfaction for
different values of the objective. Suppose the fuzzy satisfac-
tion region of the i th objective is denoted by F̃i , then

F̃i =
∫

µF̃i
( fi )/ fi (1)

where µF̃i
( fi ) is the grade of membership of i th objective

value in the fuzzy set F̃i and also called the satisfaction degree
of the i th objective. It is denoted by αi , namely,

αF̃i = µF̃i
( fi ) (2)

A proper function needs to be selected as the member-
ship function of satisfaction degree of objectives according
to their characteristics. For simplification a linear member-
ship function of satisfaction degree of objectives is used, and
the shape of F̃i is shown in Fig. 2.

The membership function µF̃i
( fi ) is defined as

µF̃i
( fi ) =

⎧⎪⎪⎨
⎪⎪⎩

1, fi � f min
i

fi − f max
i

f min
i − f max

i
, f min

i < fi < f max
i

0, fi � f max
i

(3)

where f max
i , f min

i are the upper and lower limits of the objec-
tive fi , namely, the satisfaction interval of objectives for the
decision maker. For a minimization problem, f min

i is consi-
dered the most ideal value of the i th objective by the decision
maker; that is to say if fi = f max

i , then µF̃i
( fi ) = 0, and at

fi = f min
i , µF̃i

( fi ) = 1.
The satisfaction degree is an allowable interval of a mem-

bership function of an objective. It is difficult, especially for
larger-scale design problems, to find the appropriate mathe-
matical functions to express the satisfaction degree. Howe-
ver in many practical applications, acceptable extents may
be determined before conducting design. For example if the
engineering cost is selected as an objective function, the
investor usually constrains the cost within an allowable limit.
If the cost exceeds the upper limit, the design project cannot
be accepted; that is, the satisfaction degree is 0. If the cost is
less than the lower limit, the design project can be completely
accepted; that is, the satisfaction degree is 1. Otherwise, the
satisfaction degree is between 0 and 1.

2.2 Fuzzy sufficiency degree for constraints

In engineering optimization, constraints are limitations
on design variables in terms of cost, geometry, and other
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Fig. 3 Two linear sufficiency degree functions for constraints

conditions. These constraints likely contain fuzzy informa-
tion. It is essential to formulate these constraints by fuzzy
sets.

Definition 2 (Huang 1997; Wang 1992)
Similar to the definition for the satisfaction degree the

fuzzy sufficiency region of constraints is also a fuzzy set,
which represents the degree of a constraint being satisfied.
Suppose that the fuzzy sufficiency region of the i th constraint
is denoted by C̃i , then

C̃i =
∫

µC̃i
(gi )/gi (4)

The grade of membership of C̃i is called the sufficiency
degree for the i th constraint function. It is denoted by

αC̃i = µC̃i
(gi ) (5)

For the membership functions of constraints, its shape may
be selected according to constraint characteristics. For the
inequality constraints, there are generally two forms, gi � bi

and gi � bi . The shapes of gi for two types of expression are
as shown in Fig. 3, and the function of sufficiency degree of
constraints is defined in Eqs. (6) and (7).

µc̃i (gi ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 � gi < b
l
i

gi −b
u
i

b
l
i −b

u
i

, b
l
i � gi < b

u
i

0, gi � b
u
i

(6)

µc̃i (gi ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, gi � bl
i

bl
i −gi

bl
i −bu

i
, bl

i < gi � bu
i

1, gi > bu
i

(7)

b
u
i,b

l
i are allowable upper and lower limits of the i th con-

straints respectively, and di is the length of the permissible
deviation or tolerance which can be determined by decision
makers.

2.3 The aggregation of fuzzy satisfaction degree and fuzzy
sufficiency degree

According to the extension principle (Wang 1992; Zadeh
1975), fuzzy sets F̃i and C̃i are represented as �̃F and �̃C

in the decision space. The grade of membership of decision
vector R in �̃F and �̃C are respectively

µ�̃F
(R) = n∩

i=1
µF̃i

( fi ) = n∩
i=1

αF̃i
(R) (8)

µ�̃C
(R) = p∩

i=1
µC̃i

(gi ) = p∩
i=1

αCi (R) (9)

The intersection of �̃F and �̃C is depicted by

�̃ = �̃F ∩ �̃C (10)

The fuzzy set �̃ is called the acceptable region, and the
grade of membership of decision vector R in �̃ is called the
acceptable degree denoted by

α(R) = µ�̃(R) = T (µ�̃F
(R), µ�̃C

(R))

= T (αF̃i
(R), αC̃i

(R)) (11)

Because different operators for the modulo arithmetic T in
Eq. (11) create different results, here Zadeh’s fuzzy operator
(Zadeh 1975) is employed which is denoted by

µ�̃(x) =
(

n∧
i=1

µF̃i
(x)

)
∧

(
p∧

i=1
µC̃i

(x)

)
(12)

3 The formulation of max–min method for FSSDCO

In 1970 Bellman and Zadeh provided the symmetric fuzzy
mathematical programming model, named the Max–Min
method, which can be described as follows:

Fuzzy objective set f̃
Fuzzy constraint set C̃ j , j = 1, 2, . . . , J
Find x∗, such that

µD̃(x∗) = max

{
µ f̃ (x) ∧

(
J∧

j=1
µC̃ j

(x)

)}
(13)

The optimal decision is to select the best alternative from
the satisfaction region in the fuzzy decision space which
maximizes the membership function of the fuzzy decision.
For simplification of the FSSDCO formulation, the accep-
table level λi for i th discipline is formulated as the objective
while the α-cut of level λi for the satisfaction degree and
sufficiency degree at the i th discipline are adopted as the
decision-making space for i th discipline. The model is given
as follows:

Find x
Max µ�̃i

(x) = λi i = 1, 2, . . . , m
s.t. µC̃i j

(x) � λi j = 1, 2, . . . , p

µF̃ik
(x) � λi k = 1, 2, . . . , n

0 � λi � 1

(14)

where n, p and m are the number of objectives, constraints
at the i th discipline, and the sum of disciplines, respectively.
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Fig. 4 The architecture for FSSDCO based on weighted Max–Min method

The Bellman–Zadeh’s Max–Min operator reflects the con-
servative thought that the most dissatisfactory component
is improved in the decision space determined by the satis-
faction degree and sufficiency degree for the objectives and
constraints. This results in a fact that although the most dis-
satisfactory component has been maximized, the variation
of the remaining components within certain ranges does not
directly influence the final result and some useful and rela-
tive information is likely to be lost. The weighted Max–Min
method (Zuang et al. 1999) can effectively solve the afore-
mentioned problem. Before practical optimization, using the
relative importance of objectives and constraints, the decision
maker may select suitable coefficients for the satisfaction
and sufficiency degree. This method not only considers the
fuzzy information for objectives and constraints, but also
reflects the practical situation in which the decision maker
pays unequal attention to the membership of objectives and
constraints. The models at i th discipline are shown as follows:

Find x

Max µ�̃i
(x) = λi i = 1, 2, . . . , m

s.t. µC̃i j
(x) � ωi jλi j = 1, 2, . . . , p

µF̃ik
(x) � ωikλi k = 1, 2, . . . , n

0 � λi � 1 0 � ωi � 1

(15)

The architecture for FSSDCO based on the weighted
Max–Min method is shown in Fig. 4. In this architecture,
system level design variables include the shared variables
z0

sh and the auxiliary variables z0
aux. In addition the accep-

table degree level λ0 maximized by the system optimizer,
is the target for all the disciplinary objectives for each dis-
cipline to maintain consistency. For the subspace analysis,
each discipline’s duty is extended to include three compo-
nents, namely, conventional analysis for output variables,
satisfaction degree analysis, and sufficiency degree analy-
sis. The first analysis computes the coupling vector that is
used in i th discipline, the second one provides the satisfac-
tion degree of local objectives, and the third one provides
the sufficiency degree of local constraints for the discipline
optimizer. The acceptable degree level λi at i th discipline is
used in the discrepancy function di which is minimized by
the i th disciplinary optimizer. Also, it is used as a component
of the compatibility constraints at the system level.

Note that FSSDCO separates the original problem into one
system level and two discipline level problems, and that the
system level coordinates the shared, auxiliary variables and
level of satisfaction and sufficiency degree λi while maximi-
zing λ0. This enables two disciplines to search independently
for the optimum solutions in the decision space when the
satisfaction degree or the sufficiency degree level is greater
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Table 1 Design vectors for the mathematical example

Discipline 1 Discipline 2

System targets to be matched [z∗
1,z

∗
3,z

∗
4,z

∗
5,λ

∗] [z∗
1,z

∗
3,z

∗
4,z

∗
5,λ

∗]
Shared design vector [x1,x3,λ1] [x1,x3,λ2]
Auxiliary design vector [y21] [y12]
Local design vector [x2] Empty

Subspace analysis [y12,µF̃1,
µc̃1i ] = S A1[x1,x2,x3,y12]i = 1, 2, 3, 5 [y21,µF̃2,

µc̃2i ] = S A2[x1,x3,y21]i = 1, 3, 4

Table 2 The possible lower and upper limits for constraints

gi bu
i bl

i b
u
i b

l
i

x1 4 2 − −
x2 3 1 − −
x3 − − 5.5 3.5

y12 10 8 − −
y21 − − 11 9

than or equal to the weighted level ωiλi . Due to the mini-
mization of the discrepancy function, λ0 and λi can obtain
mutual consistency to the utmost extent. Therefore as the
system level design variable λ0 reaches the maximum value,
the disciplines may acquire the optimum solution simulta-
neously.

3.1 Mathematical example

This example is comprised of a coupled analysis to eva-
luate two objectives and the associated constraints. As shown
in Eq. (16), the objective functions include two coupling
variables y12 and y21. Each calculates its value with the other
as an input variable. Table 1 contains all the design vectors in
CO standard notation for disciplines 1 and 2. This example
focuses on the influence of fuzzy information. In view of
the requirement of the degree of sufficiency for objectives,
this paper presents the possible lower and upper limits for
each of constraint as depicted in Table 2. With these data
and adopting Eqs. (6, 7), the linear membership function for
constraints can be constructed. Corresponding to the formu-
lation for FSSDCO, the model is shown as Fig. 5.

Min F1(x) = (x2 + 3)2 − 9x2
3 + (y12 + 2)2

Min F2(x) = (y21 − 10)2

find x1,x2,x3

s.t. 4 � x1 � 15
3 � x2 � 10
0 � x3 � 3.5
(y12 − 3)/10 − 2 � 0
5 − y12/2 � 0
y21/2 − 4.5 � 0
−y21 � 0

(16)

where

y12 = x2
1 + x2 + x3 − 0.2y21

y21 = x1 + x3 + √
x4

The final result using the weighted Max-Min method for
FSSDCO is listed in Table 3.

Note that when the weight coefficient is allocated with
different values, the optimization by FSSDCO may obtain
different results. If the weight is equivalent to each constraint
and objective of the two disciplines (the decision-maker pays
equal attention to constraint and objects), the framework of
FSSDCO is attributed to the symmetric fuzzy optimization
problem. The last row in Table 3 gives the corresponding
results. Note also that from the first row to the third row,
the larger the weight coefficient of the objective the smaller
the sum of the objective function value. The data in Table 3
indicate that alteration of weight coefficients brings about the
comprehensive influence to optimum solutions.

4 The formulation of α-cut method for the FSSDCO

In this section, we propose the model based on the α-cut
method for FSSDCO and give an example to illustrate the
effectiveness of the proposed method.

4.1 α-cut method using fuzzy satisfaction degree

In many engineering designs objectives and constraints com-
monly play different roles. That is, satisfying constraints
is the precondition for achieving the optimum solutions of
the objectives. For most of the engineering problems only
the constraints include fuzzy information, while the design
variables and objective functions are often deterministic. The-
refore, the model using α-cuts method is described as
follows:

Find x
max αF̃ (x) = T (αF̃1

(x), αF̃2
(x), . . . , αF̃n

(x))

s.t. µc̃ j (x) � λ∗ j = 1, 2, . . . , p
(17)
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Fig. 5 The FSSDCO model for mathematical example

Table 3 The result of Max–Min method for FSSDCO using a sequence of weights

Discipline 1 Discipline 2 x1 x2 x3 y12 y21 F1 + F2 λ

ω1 ω2

[1.0,0.6,0.7,0.8,0.6] [1.0,0.4,0.6,0.7] 2.8857 2.0333 3.7517 12.0892 10.1143 97.1732 0.7381

[0.8,0.6,0.7,0.8,0.6] [0.8,0.4,0.6,0.7] 3.0331 2.2053 3.3599 12.7718 9.9669 143.7009 0.8610

[0.5,0.6,0.7,0.8,0.6] [0.5,0.4,0.6,0.7] 3.2001 2.4002 2.4797 13.2566 9.3208 207.0485 1.0000

[0.9,0.2,0.5,0.4,0.7] [0.8,0.2,0.3,0.7] 2.3713 1.9283 4.1972 9.8086 9.7004 5.2724 0.9283

[1.0,1.0,1.0,1.0,1.0] [1.0,1.0,1.0,1.0] 3.2521 2.2521 2.7976 13.6764 9.7479 202.8609 0.6261

where αF̃ (x) is the overall satisfaction degree, αF̃i
denotes

the satisfaction degree of i th objective. µc̃ j is the membership
function of the j th constraint, which constructs the feasible
region for the overall satisfaction degree of α-cut C jλ∗ , i.e.

C jλ∗ =
{

x |µc̃ j (x) � λ∗} (18)

where C jλ∗ is also called the level cut set λ∗ which cuts the set
for the sufficiency degree of the j th constraint function. The
smaller the value of λ is, the greater the range of Cλ is. If λ is
equal to 0, C0 is the so-called support set. If λ is equal to 1,
C1 is the most rigorous acceptable value. Therefore from the
point of view of engineering design, the selection of different
values of λ can result in different designs. For a sequence of
λ values there must exist an optimum λ∗, which is the most
reliable, economical, and safe; meanwhile the corresponding
Cλ∗ is the optimum level cut set. For the sake of simplicity
the overall satisfaction degree of the objective employs the

Bellman–Zadeh’s operator, and Eq. (17) is transformed into
the following expression:

Find x

max µD̃(x) = αF̃ (x) = n∧
i=1

µF̃i
(x)

s.t. g j (x) � b
l
j + d j (1 − λ) j = 1, 2, . . . , J

g j (x) � bu
j − d j (1 − λ) j = J + 1, . . . , p

0 � λ � 1

(19)

4.2 FSSDCO based on α-cut method

The formulation using the α-cut method is shown in Fig. 6.
Note that depending upon the formulations, the level λ does
not belong to the interdisciplinary variable set between dif-
ferent disciplines. In addition each discipline possesses the
model for subspace optimum level analysis, returning the
optimum level λ∗

i to form the allowable region for constraints
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Fig. 6 The architecture for the FSSDCO using α-cuts method

at the i th discipline. The satisfaction degree µF̃1
used as the

original objective function for the single level optimization
problem becomes a part of the discrepancy function di (xssi ).
The system level optimizes design variables µ0

F̃i
, while satis-

fying the compatibility constraints d∗
i to keep µF̃i

and µ0
F̃i

consistent. As the system objective, the aggregation of µ0
F̃i

reaches the maximum value each discipline can obtain the
optimum solution simultaneously.

Subspace optimum level analysis generally adopts two
methods to achieve λ∗

i , i.e. mathematical programming and
the fuzzy synthetical evaluation method (Huang 1996; Huang
et al. 2005b). The former solves the mathematical program-
ming problem to get λ∗

i according to the interrelationship bet-
ween the maintenance and manufacture costs. In the fuzzy
synthetical evaluation method, λ∗

i is evaluated by relevant
engineers and experts based on influence factors, such as the
capabilities of design and manufacturing, the characteristic
of material, and the environment.

4.3 Gear reducer example using α-cut method
in the FSSDCO

In this section, a gear reducer example is presented as shown
in Fig. 7. The design objective is to minimize the overall
volume. According to the CO method, the reducer example

l

B

d2

d1
d'

1 d'
2

Fig. 7 A gear reducer

Table 4 Meanings of design variables in disciplines 1, 2

Item Discipline 1 Discipline 2

Gear face width, B (cm) x1 x1

The number of teeth of pinion x2 y12(i x2)

Module, m (cm) x3 x3

Distance between bearings, l (cm) x4 x4

Diameter of shaft 1, d ′
1(cm) x5 Empty

Diameter of shaft 2, d ′
2 (cm) Empty x6
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Table 5 Design vectors for gear
reducer problem Discipline 1 Discipline 2

System targets to be matched [z∗
1,z

∗
3,z

∗
4,z

∗
aux,µ

∗
F̃1

] [z∗
1,z

∗
3,z

∗
4,z

∗
aux,µ

∗
F̃2

]
Shared design vector [x1,x3,x4] [x1,x3,x4]
Auxiliary design vector Empty [y12]
Coupling vector [y12] Empty

Local design vector [x2,x5] [x6]
Subspace analysis [y12,µF̃1

] = S A1[x1,x2,x3,x4,x5] [µF̃2
] = S A2[x1,x3,x4,x6,y12]

Table 6 Maximum and minimum values for objective function fi

fi f max
i f min

i

f1 60965.9307 2772.50129

f2 385411.7444 20476.9991

is decomposed into two disciplines, (1) drive pinion and shaft
1 and (2) driven pinion and shaft 2. The design variables for
each discipline are as shown in Table 4.

In Table 4, i is the velocity ratio of the gear reducer, and y12

is coupling variable which is computed in discipline 1 and
used in discipline 2. In Table 5, the design vectors for the
gear reducer problem are listed. Note that, unlike the mathe-
matical example, there is no inter-coupling vector between
disciplines; that is, y12 is the only coupling vector. Note also
that the subspace analysis assumes the responsibility of gai-
ning the degree of satisfaction. The corresponding Max–Min
interval for the original objective of disciplines is also shown
in Table 6.

The subspace analysis makes use of data in Table 6 and
Eq. (3) to construct the satisfaction degree as the objective
function for each discipline. The nonlinear programming for
different disciplines is as follows:

Discipline 1

Find xss1 = [x1,x2,x3,x4,x5]
Min d1(xss1) = ((x1 − z∗

1)
2 + (x3 − z∗

3)
2 + (x4 − z∗

4)

+(y12 − z∗
aux)2 + (µF̃1

− µ∗
F̃1

)2)1/2

s.t. 18 − (1 − λ1) � x2 � 37 + 3(1 − λ1)

0.9 − 0.1(1 − λ1)�x1/(x2x3)�1.3 + 0.1(1−λ1)

0.3 − 0.1(1 − λ1) � x3 � 1.0 + 0.2(1 − λ1)

x2x3 � 30
10 − (1 − λ1) � x5 � 13 + 2(1 − λ1)

441630/(x2x3x0.5
1 ) � 7695 + 855(1 − λ1)

70980/(x1x2x2
3 (0.619 + 66.66 × 10−4x2

−85.4 × 10−6x2
2 )) � 2355 + 262(1 − λ1)

0.01233x3
4/(x2x3x4

5 ) � 0.003x4

10(((29050x4/(x2x3))
2+(0.58×27300)2)0.5)/x3

5
� 500 + 50(1 − λ1)

where y12 = i x2

(20)

Discipline 2

Find xss2 = [x1,x3,x4,x6,y12]
Min d2(xss2) = ((x1 − z∗

1)
2 + (x3 − z∗

3)
2 + (x4 − z∗

4)

+(y12 − z∗
aux)

2 + (µF̃2
− µ∗

F̃2
)2)1/2

s.t. 18 − (1 − λ2) � y12/ i � 37 + 3(1 − λ2)

0.9 − 0.1(1 − λ2) � x1/(y12x3/ i)
� 1.3 + 0.1(1 − λ2)

0.3 − 0.1(1 − λ2) � x3 � 1.0 + 0.2(1 − λ2)

x2x3 � 30i
13 − (1 − λ2) � x6 � 18 + 2(1 − λ2)

x4 − x1 − 0.5x6 � 4
70980/(x1 y12x2

3/ i(0.2824 + 17.7 × 10−4 y12/ i

−39.4 × 10−6 y2
12/ i2)) � 1920 + 213(1 − λ2)

10(((29050x4/(y12x3/ i))2

+(0.58×27300 × 5)2)0.5)/x3
6 � 500 + 50(1−λ2)

(21)

In the actual deign, constraints in the disciplines are likely
to include fuzzy information, which are listed in Table 7.
bu

i,b
l
i are the allowable upper and lower limits of the relevant

variable, respectively.
For simplification and demonstration purposes this paper

does not apply the optimum cut levels, but rather develops
a sequence of cuts levels which are implemented in a com-
parison study. The FSSDCO method computes the optimum
solutions at different cut levels, respectively. The results are
shown in Table 8.

It can be seen from Table 8 that the fuzzy information
in the CO influences the optimum solutions and objectives.
Different cut levels for fuzzy constraint functions may result
in different solutions. As indicated by the first four rows of
Table 8, the smaller the cut level, the lower the overall objec-
tive F . Considering that CO supports distributed design envi-
ronment, if cut levels for different disciplines take different
values, an alteration of the allowable space of constraints
can be obtained as well as the optimum solution in each dis-
cipline, even though some constraints are the same among
disciplines.

The data in the last row of Table 8 is used as the opti-
mum solution to this problem of the FSSDCO. According to
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Table 7 The allowable intervals for fuzzy factors fi

[σH](kg/cm2) [σF1 ](kg/cm2) [σF2 ](kg/cm2) [σb](kg/cm2) φdx1/(x2x3) x2 x3 (cm) x5 (cm) x6 (cm)

b
u

8,550 2,617 2,133 550 1.4 40 1.2 15 20

b
l

7,695 2,355 1,920 500 1.3 37 1.0 13 18

bu 0.9 18 0.3 10 13

bl 0.8 17 0.2 9 12

Table 8 The result using a sequence of cuts levels for FSSDCO

λ1 λ2 x1 (cm) x2 x3 (cm) x4 (cm) x5 (cm) x6 (cm) F (cm3) µF̃1
µF̃2

0.4 0.4 12.6882 17.4010 0.8681 22.9935 9.6054 12.6106 33714.7518 0.9609 0.9776

0.6 0.6 13.0710 17.6004 0.8636 23.3710 9.6955 12.6000 34692.0792 0.9583 0.9753

0.8 0.8 13.4658 17.8000 0.8595 23.8658 9.8000 12.8000 36067.8237 0.9553 0.9720

1.0 1.0 14.1544 18.2010 0.8381 24.6544 10.0000 13.0000 37547.5487 0.9512 0.9686

0.2 0.4 12.5150 17.4013 0.8562 22.7150 9.5502 12.4000 32428.9626 0.9631 0.9807

0.4 0.6 12.8888 17.6007 0.8515 23.2538 9.6599 12.7299 33879.3971 0.9603 0.9772

0.4 0.8 13.0879 17.8004 0.8355 23.5125 9.7138 12.8492 34049.5825 0.9596 0.9768

0.6 0.8 13.2729 17.8001 0.8473 23.7047 9.7586 12.8637 35089.9619 0.9575 0.9743

Table 9 The rounded result for gear reducer design

λ1 λ2 x1 (cm) x2 x3 (cm) x4 (cm) x5 (cm) x6 (cm) F (cm3) µF̃1
µF̃2

0.6 0.8 13.27 18 0.9 23.70 9.76 12.86 38430.66 0.9512 0.9662

the meaning of design variables, the final rounded optimum
values are shown in Table 9.

5 Conclusions

This paper focuses on the use of the fuzzy satisfaction degree
and the fuzzy sufficiency degree models for collaborative
optimization. The illustrative mathematical example shows
that the satisfaction and sufficiency degree theory based on
the weighted Max–Min method is a rational and practical
approach for decision making in multidisciplinary design
optimization. In the gear reducer optimization example, the
α-cut method is employed to construct allowable subspace
in disciplines. The gear reducer problem also adopts the
satisfaction degree to create the objective function for each
discipline. The problem is effectively solved based on an
asymmetrical model in MDO environments.

In addition, two strategies of the FSSDCO enhance the
capability of CO containing fuzzy information. In enginee-
ring design practice, especially for the MOCO, there often
exist conflicting objectives. This paper proposes using the
satisfaction degree theory to solve MOCO problems. Moreo-
ver in MDO environments, the constraints generally are dis-

tributed to different disciplines. Therefore the α-cut method
is applied to the FSSDCO, such that optimum cut levels can
be obtained independently for each discipline to form various
allowable spaces. The developed approaches in this paper can
efficiently deal with CO problems in the fuzzy and distributed
environment.
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