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In view of multi-objective optimization problem in robust design, a
method combining fuzzy set theory and genetic algorithm is proposed.
The approach includes a fuzzy model of multi-objective problem in robust
design by taking into account principles of robust design and fuzzy factors
in mechanical design, and provides Pareto optimal set to multi-objective
robust design using genetic algorithm. Computational results showed that
the proposed approach is efficient to multi-objective optimization problem
in robust design.
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1 INTRODUCTION

Robust design, originally proposed by Taguchi [1], is an engineering method-
ology for improving the quality of a product by minimizing the effect of the
causes of variation without eliminating these causes [2]. Almost all prac-
tical problems in engineering robust design optimization hold the multiple
aspects of the objective, while so many methods and approaches have been
proposed in the literature to obtain multi-objective robust design. In gen-
eral these methods can be classified into three types according to preference
information.

(1) Pre-disposal technique [3,4]. The technique converts multi-objective
functions into single objective function through utilizing weighting factors.
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These weighting factors imply decision maker’s preference information. It is
easy to understand and practice this method, but it is difficult to decide the
weighting factors. Moreover, the final single objective function can not exactly
reflect the relationship between multi-objective functions.

(2) Interactive technique [5,6]. Using this kind of methods, decision
maker can participate in the whole optimization process. But the correction
of optimization solutions depends on subjective estimate of decision maker
heavily.

(3)Post-disposal technique [7–9]. Comparing with the two foregoing tech-
niques, this kind of methods are capable of producing the efficient set through
using the Pareto set concept. Decision maker can select a solution which he/she
needs from the efficient set. Among those kind of methods, genetic algorithm
is particularly representative. In the literatures, genetic algorithms have been
used to solve robust design problems [7–9]. However there are many fuzzy
factors in real-world engineering optimization. So a method is not all-around
without considering fuzzy factors.

In this paper, we propose a fuzzy model of multi-objective problem in
robust design. This model takes into account principles of robust design and
fuzzy factors in mechanical design. Pareto optimal set to multi-objective robust
design are obtained using genetic algorithm.

The remainder of this paper is presented as follows. In Section 2, a model
of multi-objective robust design combining fuzzy techniques is provided.
In Section 3, the multi-objective genetic algorithm based on Pareto-optimal
set is introduced. Section 4 illustrates our approach through an engineering
optimization example, and concluding remarks are given in Section 5.

2 FUZZY MULTIOBJECTIVE ROBUST DESIGN

The quality loss function is first used by Taguchi as a metric for robust
optimization. The quality loss function can be expressed as different forms
according to different types of quality characteristics (“the nominal the better”,
“the smaller the better”, “the larger the better”). For example, “the nominal
the better” type of problem can be expressed as [10]:

E[L(Y, T )] = K[σ 2 + (µ − T )2] (1)

whereK is the loss function coefficient,T is the target or desired value of the
quality characteristic,σ is the variance of the random variableY , µ is the mean
of the objective function. Their relationship can be illustrated in Figure 1.

Design optimization can be divided into two aspects. One is concerned with
aligning the peak of the bell shaped response distribution with the target quality
(optimizing the mean performance). The other is concerned with making the



“MVLSC” — “106i” — 2008/7/16 — 10:32 — page 41 — #3

Fuzzy Robust Design 41

FIGURE 1
Quality distribution in robust design.

bell shaped curve thinner (minimizing the varianceσ ). The general multi-
objective optimization can be expressed as follows:

minfi(x) i = 1, 2, . . . , N

s.t. gj (x) ≤ bj j = 1, 2, . . . , J

xL ≤ x ≤ xU

(2)

wherefi(x) is theith objective function,gj (x) is thej th constraint function,
andxL andxU indicate the lower and upper bound values of design variablesx,
respectively.

According to (1), multi-objective robust design can be stated as [11]:

min[µi − T , σi] i = 1, 2, . . . , N

s.t. gj (x) + kj

( n∑
i=1

∣∣∣∣∂gj

∂xi

∣∣∣∣ � xi +
k∑

i=1

∣∣∣∣∂gj

∂xi

∣∣∣∣ � zi

)
≤ bj j = 1, 2, . . . , J

xL+ � x ≤ x ≤ xU− � x

(3)
whereµi andσi are the mean and standard deviations of theith objective
functionfi(x), respectively. Their values can be obtained through statistical
analyses based on simulations or the first-order Taylor expansion if the design
deviations ofxi are small. We use the worst case scenario to study the variation
of constrains. It is assumed that all variations of system performance may
occur simultaneously in the worst possible combination of design variables.
The original constraints are modified by adding the penalty terms to each of
them, wherekj are penalty factors to be determined by the designer.�xi

is the deviation of the design variablexi . �zi is the deviation of the design
parameterzi .
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2.1 Construction of the objective membership functions
It is obvious that (3) is a multi-objective optimization problem. The solutions
of multi-objective optimization problem have close relationship with all the
individual objective functions. It should include contributions of all the indi-
vidual objective functions. Since the relationship between individual objective
functions and multi-objective function is not precisely limited or defined, the
solution is biased or dissatisfactory without considering the fuzzy factors [12].
So we use fuzzy set theory to reconstruct the objective functions in (3). Details
are indicated in the following step-by-step procedure.

(1) Seek the minimum and maximum values to the individual objec-
tive functionfi(x) subjected to the constraints using ordinary optimization
procedures. Let the solution beMi , mi respectively.

X = (x1, x2, . . . , xn)
T

minfi(x) i = 1, 2, . . . , I

s.t. Gj (x) ≤ bj j = 1, 2, . . . , J

(4)

and

X = (x1, x2, . . . , xn)
T

maxfi(x) i = 1, 2, . . . , I

s.t. Gj (x) ≤ bj j = 1, 2, . . . , J

(5)

(2) The membership functions of the fuzzy objective functions are
constructed as:

υf̃i
(x) =

(
Mi − fi(x)

Mi − mi

)q

(6)

whereq > 0 and it can be12, 2, 1
3, 3, . . . . It is obvious thatυf̃i

(x) may have
different forms. Therefore designer can use it to form differentυf̃i

(x), so as
to reflect characteristics of multi-objective functions, subjective wills of the
designer and thereby obtaining more satisfactory solutions.

2.2 Construction of the constraint membership functions
In many optimization problems, the issues of fuzzy bounds about constraints
are also exist. For example, the stress induced in a structure may be constrained
by an upper bound value asσ(X) ≤ σu = 30000 MPa. This implies that
σ = σu = 30000 MPa is acceptable, butσ = 30001 MPa is unacceptable
in the ordinary optimization. Since there is no substantive difference between
σ = 30000 MPa andσ = 30001 MPa, it is more reasonable to assume a
transition stage from absolute permission to absolute impermissibility. Thus
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we stated fuzzy constraints as follows [13]:

υG̃j
(x) =


0, if Gj(x) > bj + dj

1 −
{

Gi(x) − bj

dj

}
, if bj ≤ Gj(x) ≤ bj + dj

1, if Gj(x) < bj

(7)

wheredj denotes the permissible variation ofGj , j = 1, 2, . . . , J . Certainly
the constraint membership function can be different forms according to request
of design and properties of constraints.

By considering the optimum solution as the intersection of the membership
functions of the objective functions and constraints, the solution of the fuzzy
multi-objective optimization problem can be found by determiningλi andx

maxλi i = 1, 2, . . . , N

s.t. λi ≤ υf̃i
(x),

λi ≤ υG̃j
(x), j = 1, 2, . . . , J

(8)

3 MULTIOBJECTIVE GENETIC ALGORITHMS

From a mathematical point of view, genetic algorithms (GA’s) are categorized
as random walk search methods with direction exploitation [7]. They have been
utilized in a broad spectrum of engineering application. Pareto GAwhich based
on the concept of Pareto set is especially well-suited for identifying candidate
non-inferior designs of multi-objective optimization. In the Pareto GA three
techniques are added [14]:

(1) Ranks of candidate designs based on the concept of Pareto domination.

(2) Sharing technique.

(3) Pareto set filter.

3.1 Ranks of candidate designs
In order to distinguish the non-inferior solutions from population, the tech-
nique to rank candidate designs is adopted. At the beginning of selection, each
individual in the population of design is assigned a rank equal to the degree
of Pareto domination. The degree of domination of an individual design is the
total number of designs in the population that dominate that design. Adesign is
said to dominate another in the population if it is at least equal in all objectives
to that individual and better in at least one. Non-dominated designs, or those
that are not dominated by any individuals in the population, are assigned a
rank of one. In Figure 2, where the objectives are to minimize bothf1 andf2,
an example of a Pareto domination ranked population is shown. The fitness
value of each individual is the reciprocal of its rank value.
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FIGURE 2
Pareto domination ranking for a population.

3.2 Sharing procedure
To prevent the genetic drift phenomenon, a form of sharing should be carried
out when there is no preference between two candidates. This form of sharing
maintains the genetic diversity along the population fronts and allows the GA
to develop a reasonable representation of the Pareto-optimal front. Generally
the basic idea behind sharing is that the more individuals are located in the
neighborhood of a certain individual, the more its fitness value is degraded.
The definition of sharing function is as follows:

fshare(X, Y ) =
{

0 dXY ≥ σshare

1 − dXY /σshare dXY < σshare
(9)

wheredXY is a normalize Euclidean distance between individualiand another
individualj in the current population,σshareis a prespecified distance value.

For the individuals crowed in the process of evolution, we degrade their
fitness values by adding sharing function on them as

δ(X)share= nδ(X)∑n
i=1 fshare(X, Zi)

(10)

wheren is the size of the population.X is an individual in the population.Zi is
another individual in the population which is different fromX. δ(X), δ(X)share
are fitness values before and after adding sharing function.
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3.3 Pareto set filter
In some problems, the Pareto-optimal set can be extremely large or even an
infinite number of solutions. In this case, reducing the set of non-dominated
solutions without destroying the characteristics of the trade-off front is desir-
able from the decision maker’s point of view. A Pareto set filter is employed
to reduce the Pareto set to manageable size. It can be described as follows. In
each evolving generation, we reserve the individuals whose rank values are 1
in Pareto set filter. If the Pareto set filter exceeds the maximum allowable size,
we rank these individuals and eliminate dominated individuals. If the Pareto
set filter still exceeds the maximum allowable size, we use sharing procedure
to eliminate some individuals who are located in a neighborhood of a certain
individual.

3.4 Disposal of mixed discrete variables [15]
The three kinds of design variables are handled using the following mapping
functions:

(1) Discrete variables with equal spacing.

xi = xL
i + (Ni − 1)�s, i = 1, . . . , q (11)

(2) Discrete variables with unequal spacing.

xi = pNi,i−q, q < i ≤ d (12)

(3) Continuous variables.

xi = xL
i + (Ni − 1)εi, d < i ≤ n (13)

wherexi denotes theith design variable,xL
i indicates the lower bound value

of design variablexi . Ni is the natural number corresponding toxi . �s is
the value of equal spacing.q represents the matrix of the values of discrete
variables with unequal spacing. The value ofεi depends on the requirement
of engineering precision. Corresponding to each variablexi , only one value
of Ni exists. Thus, the problem of finding the optimal design variables can
be transformed into that of finding the optimal values ofNi . Thereupon, all
operations of the iterative procedure in genetic algorithm are to determine
suitable values ofNi , which in turn can be used to obtain the physical values
of the design variables.

3.5 Genetic operators
Each design variableNi is encoded as a finite length binary digit string. These
strings represent artificial chromosomes. Some pairs of strings are randomly
selected as parents to reproduce offspring according to the selection rule related
to their fitness values. For this case, the chromosomes are sorted according
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to their fitness. In the crossover operator, the multi-point crossover strategy is
selected. It can be stated as follows: multi-points are randomly chosen, which
cut the binary strings of parents into several segments. Some segments of father
string can be exchanged with those of mother string. An example is as follows:

Parents Offspring

01010010 01100001
Crossover→

10101001 10011010

Mutation is the occasional random alteration on a bit-by-bit basis. Similar
to the crossover, multi-point random mutation proved to be the best choice in
this step. An example is: 11001001⇒ 11111010.

Constraints can be applied explicitly in genetic algorithms by adding vari-
able penalty functions that increase the values of the objective functions
proportionally to the magnitude of constraint violations.

4 ILLUSTRATIVE EXAMPLE

To demonstrate our fuzzy robust optimization method, we applied it to a well-
know welded problem originally formulated by Ragsdell and Phillips [16].
We slightly modified the problem by assuming that there are variations in one
design variable and one design parameter.

The original formulation of the problem is shown as
Findx = [x1, x2, x3, x4]T = [t, b, h, l]T
Min F = (1 + c1)x

2
3x4 + c2x1x2(L + x4)

s.t.

g1(x) = [(τ ′)2 + 2τ ′τ ′′ cosθ + (τ ′′)2]1/2 − τd ≤ 0

g2(x) = 6FL/(x2x
2
1) − σd ≤ 0

g3(x) = F − 4.013
√

EIα

L2

[
1 − x1

2L

√
EI

α

]
≤ 0

g4(x) = 4FL3/(Ex3
1x2) − 0.25 ≤ 0

g5(x) = x3 − x2 ≤ 0

g6(x) = 0.125− x3 ≤ 0

0.5 ≤ x1 ≤ 10, 0.5 ≤ x2 ≤ 2

0.1 ≤ x3 ≤ 2, 1 ≤ x4 ≤ 10
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x1, x2 are discrete variables with equal spacing, respectively. The value of
spacing is 0.5.x3 is a continuous variable, whose engineering precision is
0.01.x4 is an integer variable.�x3 = 0.1 and�L = 1. For the optimal design
of the problem in a fuzzy environment, an allowable deviation of 10% for each
design constraint is considered as a fuzzy transition zone. At first we convert
the problem into conventional bi-objective robust design, then we apply our
method to transform the model of conventional robust design into the model
of fuzzy multi-objective robust design. Finally we implement Pareto GA in
Matlab6.0 to solve the problem. In the Pareto GA, the control parameters are
as follows. The size of population is 60, the maximal evolving generation is
200, crossover rate is 0.9, mutation rate is 0.1 and the size of Pareto set filter
is 100. The values of these parameters are set with reference to ref. [14].

The results are shown in Figure 3. In this figure, the Pareto fronts of both
conventional and fuzzy robust design solutions which are solved by using
Pareto GAare given. Figure 3 indicates that Pareto GAcan generate a majority
of Pareto optimal solutions. It is also evident that the objective function is in
conflict with the variance of the objective function. Two objectives, which
are simultaneously minimized, can never be attained. The Pareto fronts also
illustrate that the conventional robust Pareto set is inferior to the fuzzy robust
Pareto set. In Figure 4, we give the fuzzy robust design solved by Weighted-
sum method (WS method). In WS method,w1 evenly increases from 0 to 1
while w2 decreases from 1 to 0 accordingly. From the result, we can observe
that althoughw1 andw2 are changed evenly, the efficient solutions obtained
by using the WS method are not distributed evenly in the graph. There is an
unequal gap between any two solutions. The results illustrate that it is difficult
for design maker to obtain a satisfying solution through the use of WS method.

FIGURE 3
Pareto front comparisons between conventional and fuzzy robust design.
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FIGURE 4
Efficient solutions using the WS approach.

However by using Pareto GA, design maker can select a satisfying solution
easily from the Pareto front. The results we obtained for this engineering
problem clearly proves the advantage of our approach over the conventional
robust design and WS method.

5 CONCLUSIONS

A synthetic optimization method that combines fuzzy set theory with Pareto
genetic algorithm to perform robust design is proposed in the paper. This
method can compromise between multi-objective functions, and find globally
compromise solutions for fuzzy multi-objective robust design optimization
problems containing mixed-discrete design variables. As a demonstration, we
applied the method to an engineering example. In the example we observed
that the solutions obtained are more reliable and satisfactory than conventional
robust design. However, design maker has to select a solution from the Pareto
front by using our method. It may be difficult for design maker to make such
a decision in complicated engineering optimization problems. This difficulty
will be investigated as part of our future research in this area.
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