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Design Optimization With
Discrete and Continuous
Variables of Aleatory and
Epistemic Uncertainties
Reliability based design optimization has received increasing attention for satisfying high
requirements on reliability and safety in structure design. However, in practical engineer-
ing design, there are both continuous and discrete design variables. Moreover, both
aleatory uncertainty and epistemic uncertainty may associate with design variables. This
paper proposes the formulation of random/fuzzy continuous/discrete variables design
optimization (RFCDV-DO) and two different approaches for uncertainty analysis
(probability/possibility analysis). A method named random/fuzzy sequential optimization
and reliability assessment is proposed based on the idea of sequential optimization and
reliability assessment to improve efficiency in solving RFCDV-DO problems. An engi-
neering design problem is utilized to demonstrate the approaches and the efficiency of the
proposed method. �DOI: 10.1115/1.3066712�

Keywords: aleatory uncertainty, epistemic uncertainty, continuous and discrete
variables, random/fuzzy continuous/discrete variables design optimization, sequential op-
timization and reliability assessment
Introduction
In recent years, increasing attention has been focused on the

ffect of uncertainties on structure design. Uncertainties can be
ategorized into aleatory uncertainty �AU� and epistemic uncer-
ainty �EU�. The design variables with AU can be treated as ran-
om variables. EU—reducible uncertainty, subjective
ncertainty—caused by lack of knowledge, can be modeled with
ossibility theory. Design variables with EU can be treated as
uzzy variables �1,2�.

To deal with the case of design variables associated with AU,
eliability-based design optimization �RBDO�, which assumes that
here are sufficient data to construct probability distributions of
nputs, is popular in structure design optimization �3–14�. Perfor-

ance measure approach �PMA�, which can efficiently decrease
omputational cost in reliability analysis, was proposed in Ref.
12�. Sequential optimization and reliability assessment �SORA�
eveloped in Ref. �9� decouples the reliability assessment from
ptimization.

To deal with the case of design variables associated with EU,
ossibility theory was utilized in Refs. �2,15–17�. The case of
esign variables associated with both AU and EU was dealt with
n Refs. �2,17�. In Ref. �2�, the uncertainty analysis was based on
he concept of conditional possibility of failure, and a method
amed maximal failure search �MFS� based on PMA was pro-
osed. In Ref. �17�, possibility constraints are treated as functions
f the corresponding reliability index. Evidence theory was ap-
lied in design to deal with the case when both types of uncer-
ainties exist �18�. In Ref. �19�, Bayesian statistics was also used;
n objective function of the confidence of design’s reliability was
dded into the original optimization.

In this paper the RFCDV-DO problem is dealt with. Two ap-
roaches for uncertainty analysis �probability/possibility analysis�
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are developed based on conditional possibility of failure, and for-
mulations for probability/possibility analysis are proposed. To ef-
ficiently deal with RFCDV-DO problems, a method named
random/fuzzy SORA �RFSORA� is developed based on SORA.

This paper is organized as follows. In Sec. 2, the mathematical
formulation of RFCDV-DO is given. In Sec. 3, two different ap-
proaches for uncertainty analysis and their mathematical formula-
tions are developed. In Sec. 4, the method RFSORA is proposed.
An engineering design problem is utilized to demonstrate the ap-
proaches and the efficiency of RFSORA in Sec. 5, followed by the
conclusions in Sec. 6.

2 Random/Fuzzy Continuous/Discrete Variables De-
sign Optimization

The mathematical formulation of RFCDV-DO is given as

min
�dc,dd,Xc

M,Xd
M�

f�dc,dd,Xc
M,Xd

M,Pc
M,Pd

M�

such that

��G�i��dc,dd,Xc,Xd,Pc,Pd� � 0� � �t

g�j��dc,dd,Xc
M,Xd

M,Pc
M,Pd

M� � 0

dc
L � dc � dc

U, dd
L � dd � dd

U �1�

Xc
M,L � Xc

M � Xc
M,U, Xd

M,L � Xd
M � Xd

M,U

i = 1,2, . . . ,nG, j = 1,2, . . . ,ng

where Xc= �Xrc ,Xfc� ,Xd= �Xrd ,Xfd� ,Pc= �Prc ,Pfc�, and Pd

= �Prd ,Pfd�. Subscripts c, d, rc, rd, fc, and fd denote that the type
of variables and parameters is continuous, discrete, continuous
random, discrete random, continuous fuzzy, and discrete fuzzy,
respectively. The fuzzy variable is continuous if the possibility
��X=x� is a continuous function of x. The fuzzy variable is dis-
crete if a countable sequence �x1 ,x2 , . . .� exists such that ��X

�x1 ,X�x2 , . . .�=0 �20�. The superscript M denotes the mean
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Dow
alue of a random variable or parameter, and maximal grade point
f a fuzzy variable or parameter, respectively. The maximal grade
oint of a fuzzy variable X is defined as XM = �x �max��X�x���
here �X�x� is the membership function of X. d is a vector of
eterministic design variables. X is a vector composed by random
nd fuzzy variables while P is a vector of random and fuzzy
arameters. The mean value or maximal grade point of parameter
ith uncertainties is known and fixed while that of a variable with
ncertainties is design variable. f�·� is the objective function. The
robability/possibility constraint is ��·���t for the failure event
f G�dc ,dd ,Xc ,Xd ,Pc ,Pd��0. �t is the allowable possibility of
ailure. g�·��0 are deterministic constraints. nG ,ng are numbers
f probability/possibility constraints and deterministic constraints,
espectively. Superscripts L and U denote lower and upper
ounds, respectively.

During optimization process, the feasibilities of probability/
ossibility constraints should be checked out at an obtained design
oint. This analysis process is called uncertainty analysis
probability/possibility analysis�. In the Sec. 3, two different ap-
roaches for uncertainty analysis are proposed.

Approaches for Uncertainty Analysis
The conditional possibility of failure developed in Ref. �2� is

ntroduced. Suppose two continuous fuzzy variables X1 ,X2 are
utually noninteractive with membership functions �X1

�x1� and

X2
�x2�, respectively, and the failure event is G�x1 ,x2��0. The

ossibility of failure � f can be computed by

� f = sup
G�x1,x2��0

�min��X1
�x1�,�X2

�x2���

= sup
x2

� sup
x1:G�x1,x2��0

�min��X1
�x1�,�X2

�x2����

= sup
x2

�min� sup
x1:G�x1,x2��0

�X1
�x1�, sup

x1:G�x1,x2��0
�X2

�x2���

= sup
x2

�min�� f��X2 = x2�,�X2
�x2���

here � f � �X2=x2�=supx1:G�x1,x2��0 �X1
�x1� is defined as the con-

itional possibility of failure when X2=x2 �2�.
Based on the concept of the conditional possibility of failure,

wo different approaches for probability/possibility analysis are
eveloped when continuous and discrete variables and parameters
ontain both AU and EU. First of all, the meanings of some sym-
ols are explained as follows. FXrd

�xrd� is the joint cumulative
istribution function �CDF� of discrete random variables Xrd;

fXrc
�xrc� is the joint probability density function �PDF� of continu-

us random variables Xrc; FPrd
�prd� is the joint CDF of discrete

andom parameters Prd; and fPrc
�prc� is the joint PDF of continu-

us random parameters Prc; �X f,P f
�x f ,p f� is the membership func-

ion of fuzzy variables X f = �Xfc ,Xfd� and fuzzy parameters P f

�Pfc ,Pfd�, where Xfc ,Xfd are continuous and discrete fuzzy vari-
bles, respectively, and Pfc ,Pfd are continuous and discrete fuzzy
arameters, respectively.

The constraint function G�dc ,dd ,Xc ,Xd ,Pc ,Pd� is a continuous
unction when all variables and parameters are continuous. All
andom variables and parameters are assumed to be independent.
ll fuzzy variables and parameters are assumed noninteractive.
ach continuous fuzzy variable and parameter is assumed with its
embership function satisfying properties of unity, strong con-

exity, and boundedness �detailed definitions of these three
roperties can be found in Ref. �15��. In this paper, this type
f discrete fuzzy variable and parameter is dealt with: assume
�x� is the membership function on �x1 ,x2 , . . . ,xn�, only one
alue xt� �x1 ,x2 , . . . ,xn� satisfies ��xt�=maxh=1�n ��xh�=1; x1
x2� ¯ �xt�xt+1� ¯ �xn, ��x1����x2�� ¯ ���xt� ,��xt�

��xt+1�� ¯ ���xn�.
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3.1 Transformation. This transformation for fuzzy variables
and parameters in X-space into standard noninteractive ones in
V-space is on: the membership is the same before and after trans-
formation �15�. The standard normalized fuzzy variable V has an
isosceles triangular membership function as

�V�v� = 	v + 1 − 1 � v � 0

1 − v 0 � v � 1

 = 1 − �v�, �v� � 1

This transformation can be written as

v = 	�X�x� − 1 x � XM

1 − �X�x� x � XM 
 �2�

where �X�x� is the membership function of fuzzy variable X. The
discrete fuzzy variables and parameters of the type discussed here
can also be uniquely transformed into the standard normalized
fuzzy ones using Eq. �2�.

Suppose there are two mutually noninteractive fuzzy variables
X1 ,X2 with their membership functions �X1

�x1� ,�X2
�x2� belong-

ing to the type discussed before. After transforming into the stan-
dard normalized fuzzy ones, the joint membership function is
given as

�X1,X2
�x1,x2� = min��X1

�x1�,�X2
�x2��

= min��V1
�v1�,�V2

�v2��

= min�1 − �v1�,1 − �v2��

= 1 − ��v1,v2���

3.2 Approach 1 for Uncertainty Analysis. The possibility of
failure � f =��G�dc ,dd ,Xc ,Xd ,Pc ,Pd��0� can be calculated by
the following steps.

First, temporarily fix the fuzzy variables and parameters at X f
=x f = �xfc ,xfd�, and P f =p f = �pfc ,pfd�; the conditional probability
of failure can then be calculated by

Pf��X f = x f,P f = p f� = �
t=1

N 
�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc

� FXrd
�xrd

t � � FPrd
�prd

t ��
where G�·�=G�dc ,dd ,Xrc ,xrd

t ,xfc ,xfd ,Prc ,prd
t ,pfc ,pfd�. N is the

total number of all possible combinations of discrete random vari-
ables and parameters. xrd

t ,prd
t are values of Xrd ,Prd in the combi-

nation mode t.
Second, set the conditional possibility of failure to be the same

as the conditional probability of failure. It is a reasonable assump-
tion because possibility is an alterative and a vague measure when
probability is difficult to compute or when information is limited,
and also the possibility of an event can be assigned as the upper
bound of the probability when the probability of that event is
unknown. If there exists the probability, the possibility can be set
the same as the probability �2�.

Finally the possibility of failure � f can be calculated by

� f = sup
xf,pf

�min�� f��X f = x f,P f = p f�,�Xf,Pf
�x f,p f���

= sup
xf,pf

�min�Pf��X f = x f,P f = p f�,�Xf,Pf
�x f,p f���

= sup
xf,pf

min	�

t=1

N 
�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc

�FXrd
�xrd

t � � FPrd
�prd

t ��,�Xf,Pf
�x f,p f�
� �3�
In approach 1 for uncertainty analysis, to avoid the huge compu-
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ation in direct calculation of the conditional probability of failure,
iscrete random variables and parameters are initially transformed
nto discrete fuzzy ones based on possibility-probability consis-
ency. In this paper the following possibility-probability transfor-

ation is used. Assume that p�y� is a probability distribution on
= �y1 ,y2 , . . . ,yn� whose elements have been indexed in descend-

ng order of their probabilities p1	 p2	 ¯ 	 pn. Then the possi-
ility distribution on Y can be calculated as

�n = n � pn

� j = j�pj − pj+1� + � j+1 �4�

j = n − 1, . . . ,1

f pj = pj+1, then � j =� j+1; if pj =0, then � j =0 �21�.
In approach 1 for uncertainty analysis, this type of discrete

andom variables and parameters is dealt with: p is a probability
istribution on �x1 ,x2 , . . . ,xn� , �x1�x2� ¯ �xt� ¯ �xn�, only
ne value xt� �x1 ,x2 , . . . ,xn� satisfies p�xt�=maxm=1�n p�xm� and
�x1�� p�x2�� ¯ � p�xt� , p�xt�� ¯ � p�xn−1�� p�xn�. The dis-
rete fuzzy variables and parameters transformed from discrete
andom ones are assumed to be noninteractive with X f ,P f.

After the discrete random variables and parameters have been
nitially transformed into discrete fuzzy variables and parameters,
here are no longer discrete random variables and parameters.
ence, the possibility of failure can be calculated as

� f = sup
xf,xfrd,

pfrd,p f


min	�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc,

��x f,xfrd,pfrd,p f�
� �5�

here ��·� is the membership function of X f ,Xfrd ,Pfrd ,P f. The
ubscript frd denotes a discrete fuzzy variable or parameter trans-
ormed from the discrete random one.

All fuzzy variables and parameters X f ,Xfrd ,Pfrd ,P f, including
he ones transformed from discrete random variables and param-
ters, are transformed into standard normalized fuzzy variables
nd parameters V f ,Vfrd ,VPfrd ,VP f in V-space. Equation �5� can
e written as

� f = sup
xf,xfrd,

pfrd,p f


min	�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc,

��x f,xfrd,pfrd,p f�
�
= sup

vf,vfrd,

vpfrd,vp f


min	�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc,1

− �v f,vfrd,vpfrd,vp f��
� �6�

When design point dc ,dd ,Xc
M ,Xd

M is given, two ways can be
tilized to check the feasibility of a probability/possibility con-
traint, which is given by ��G�dc ,dd ,Xc ,Xd ,Pc ,Pd��0���t.

The first way, whose computation is huge, directly computes
he possibility of failure using Eq. �6� and then compares the
esult with �t. If the result is not larger than �t, the design point is
easible, otherwise infeasible.

The second way is when the design point �dc ,dd ,Xc
M ,Xd

M� is
iven, the probability distributions of random variables and pa-

ameters and the membership functions of fuzzy variables and

ournal of Mechanical Design
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parameters are obtained. Among all points which satisfy
G�dc ,dd ,Xc ,Xd ,Pc ,Pd��0, there are three cases:

�1� 1− �v f ,vfrd ,vpfrd ,vp f����t
�2� 1− �v f ,vfrd ,vpfrd ,vp f��=�t
�3� 1− �v f ,vfrd ,vpfrd ,vp f����t

When the fuzzy parts satisfy cases �1� and �2�, the value of
min��xrc,prc:G�·��0fXrc

�xrc�fPrc
�prc�dxrcdprc ,1− �v f ,vfrd ,vpfrd ,vp f���

will be not larger than �t. These two cases do not affect the final
result of � f ��t.

If the value of integration �xrc,prc:G�·��0fXrc
�xrc�fPrc

�prc�dxrcdprc

is not larger than �t whenever the fuzzy part satisfies case �3�,
then the possibility of failure satisfies � f ��t. Transform continu-
ous random variables and parameters Xrc ,Prc into standard normal
ones Urc ,UPrc in U-space using the Rosenblatt transformation
�22�. Given the fuzzy part that satisfies 1− �v f ,vfrd ,vpfrd ,vp f��

��t, whether or not �xrc,prc:G�·��0fXrc
�xrc�fPrc

�prc�dxrcdprc��t can
be checked by following optimization based on the first order
reliability method �FORM�:

max G�dc,dd,Urc,UPrc,v f,vfrd,vpfrd,vp f�
such that

�Urc,UPrc�2 � − 
−1��t� �7�

where 
�·� is the CDF of the standard normal random variable. If
the maximal value G�dc ,dd ,Urc

� ,UPrc
� ,v f ,vfrd ,vpfrd ,vp f��0 at

the solution Urc
� ,UPrc

� , the value of integration
�xrc,prc:G�·��0fXrc

�xrc�fPrc
�prc�dxrcdprc��t and vice versa. Hence,

whether or not � f ��t at the current design point
�dc ,dd ,Xc

M ,Xd
M�, optimization formulated as follows can be used

to judge:

max G�dc,dd,Urc,UPrc,V f,Vfrd,VPfrd,VP f�
such that

�Urc,UPrc�2 � − 
−1��t�

�V f,Vfrd,VPfrd,VP f�� � 1 − �t �8�
The solutions are the most probable/possible point �MPPP�
�Urc

� ,UPrc
� ,V f

� ,Vfrd
� ,VPfrd

� ,VP f
�� and G�dc ,dd ,Urc

� ,UPrc
� ,V f

� ,Vfrd
� ,

VPfrd
� ,VP f

��, which is the value of the performance measure at the
MPPP. If G�dc ,dd ,Urc

� ,UPrc
� ,V f

� ,Vfrd
� ,VPfrd

� ,VP f
���0, the current

design point dc ,dd ,Xc
M ,Xd

M is not feasible and vice versa.
This way is called PMA. Although there are different kinds of

transformations from discrete random variables and parameters
into fuzzy ones, the differences in transformations do not affect
the final results whenever the following requirements are satisfied:
�1� Discrete random variables and parameters belong to the type
discussed before, and �2� the minimum value of membership func-
tion of the discrete fuzzy variable or parameter transformed from
the discrete random one is larger than �t and the maximum value
is equal to 1.

3.3 Approach 2 for Uncertainty Analysis. In approach 2 for
uncertainty analysis, there is no requirement about each discrete
random variable and parameter. The steps of calculating the pos-
sibility of failure are the same as those in Sec. 3.2.

Equation �3� in Section 3.2 can be further written as

� f � sup
xf,pf

min	max

xrd,prd

�

xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc�
� �

t=1

N

�FXrd
�xrd

t � � FPrd
�prd

t ��,�Xf,Pf
�x f,p f�
� �9�

where �t=1
N �FXrd

�xrd
t ��FPrd

�prd
t �� can be obtained initially in de-
sign and is the sum of probabilities of all combinations of discrete

MARCH 2009, Vol. 131 / 031006-3
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andom variables and parameters. First, all fuzzy variables and
arameters �continuous and discrete� �X f ,P f� are transformed into
he standard fuzzy ones �V f ,VP f� �V f = �Vfc ,Vfd�, and VP f

�VPfc ,VPfd�� in the V-space using Eq. �2�. Equation �9� can be
ritten as

� f � sup
vf,vp f


min	max
xrd,prd


�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc�
� �

t=1

N

�FXrd
�xrd

t � � FPrd
�prd

t ��,1 − �v f,vp f��
� �10�

f the right part of Eq. �10� is not larger than �t, then � f ��t.
ased on Eq. �10�, two ways can be utilized to check the feasi-
ility of � f ��t at a design point.

The first way, whose computational price is too expensive to
fford, directly calculates the value of the right part of Eq. �10�
nd then compares the result with �t. If the result is not larger than
t, the current design point is feasible; otherwise infeasible.
The second one is PMA, which is based on this: given a design

oint dc ,dd ,Xc
M ,Xd

M, the probability distributions of random vari-
bles and parameters, and the membership functions of fuzzy vari-
bles and parameters are obtained. Among all points which satisfy
�dc ,dd ,Xc ,Xd ,Pc ,Pd��0, there are still three cases similar to

hose in approach 1 for uncertainty analysis.

�1� 1− �v f ,vp f����t
�2� 1− �v f ,vp f��=�t
�3� 1− �v f ,vp f����t

When the fuzzy parts satisfy cases �1� and �2�, the value of

min	maxxrd,prd
�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc�
� �t=1

N
�FXrd

�xrd
t � � FPrd

�prd
t ��,1 − �v f,vp f��


ill be not larger than �t. These two cases do not affect the final
esult of � f ��t. If the value

maxxrd,prd
�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc�
� �t=1

N
�FXrd

�xrd
t � � FPrd

�prd
t ��

s not larger than �t whenever the fuzzy part satisfies case �3�,
hen � f ��t. Transform all continuous random variables and pa-
ameters �Xrc ,Prc� into the standard normal ones �Urc ,UPrc� in
-space using Rosenblatt transformation. Given the fuzzy part

hat satisfies 1− �v f ,vp f����t, whether or not

max
xrd,prd


�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc� � �t=1

N
�FXrd

�xrd
t �

� FPrd
�prd

t �� � �t

an be checked by following optimization:

max G�dc,dd,Xrd,Urc,vfd,vfc,Prd,UPrc,vpfd,vpfc� �11�

uch that

��Urc,UPrc��2 � − 
−1� �t

�
t=1

N

�FXrd
�xrd

t � � FPrd
�prd

t ���
f the maximal value G�dc ,dd ,Xrd

� ,Urc
� ,vfd ,vfc ,Prd

� ,UPrc
� ,

� � � �
pfd ,vpfc��0 at the solution Xrd ,Urc ,Prd ,UPrc, the value

31006-4 / Vol. 131, MARCH 2009
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max
xrd,prd


�
xrc,prc:G�·��0

fXrc
�xrc�fPrc

�prc�dxrcdprc�
� �

t=1

N

�FXrd
�xrd

t � � FPrd
�prd

t �� � �t

Whether or not � f ��t at the current design point
�dc ,dd ,Xc

M ,Xd
M�, an optimization can be used to check as

max G�dc,dd,Xrd,Urc,Vfd,Vfc,Prd,UPrc,VPfd,VPfc� �12�
such that

��Urc,UPrc��2 � − 
−1� �t

�
t=1

N

�FXrd
�xrd

t � � FPrd
�prd

t ���
��Vfd,Vfc,VPfd,VPfc��� � 1 − �t

where Xrd ,Prd vary in all possible combined modes. The solutions
are the MPPP �Xrd

� ,Urc
� ,Vfd

� ,Vfc
� ,Prd

� ,UPrc
� ,VPfd

� ,VPfc
� � and

G�dc ,dd ,Xrd
� ,Urc

� ,Vfd
� ,Vfc

� ,Prd
� ,UPrc

� ,VPfd
� ,VPfc

� �, which is the
value of the performance measure at the MPPP. If
G�dc ,dd ,Xrd

� ,Urc
� ,Vfd

� ,Vfc
� ,Prd

� ,UPrc
� ,VPfd

� ,VPfc
� ��0, the current

design point dc ,dd ,Xc
M ,Xd

M is not feasible and vice versa. The
MPPP �Xrd

� ,Xrc
� ,Xfd

� ,Xfc
� ,Prd

� ,Prc
� ,Pfd

� ,Pfc
� � in X-space can be ob-

tained by the inverse Rosenblatt transformation and Eq. �2�.
There are double loops in solving the RFCDV-DO problems.

The outer loop is to minimize the value of objective function
while executing uncertainty analysis in the inner loop. To effi-
ciently solve RFCDV-DO problems, RFSORA is proposed in Sec.
4.

4 Random/Fuzzy Sequential Optimization and Reli-
ability Assessment

In this section, to efficiently deal with RFCDV-DO problems,
RFSORA is developed based on the idea of SORA.

4.1 Strategy of RFSORA. To reduce the computational cost,
two critical technologies are adopted:

�1� Performance measure approach. In RBDO, PMA is more
efficient than directly calculating the probability of failure
�9�; PMA is also found very efficient for PBDO �2,14–16�.
Hence, Eqs. �8� and �12� are utilized in uncertainty analy-
sis.

�2� Sequential optimization and reliability assessment. Within
the SORA, the original optimization is decoupled into se-
quential deterministic optimization and reliability analysis
�9�. This idea is adopted in solving RFCDV-DO problems.

From Eqs. �8� and �12�, to satisfy the probability/possibility
constraint ��G�i��·��0���t, the value of performance measure at
the MPPP must be not larger than zero G�i��dc ,dd ,Xrd

� ,Xrc
� ,Xfd

� ,
Xfc

� ,Prd
� ,Prc

� ,Pfd
� ,Pfc

� ��0.
An example is utilized to demonstrate how a probability/

possibility constraint is converted into a deterministic constraint in
Fig. 1 similar to Ref. �9�. In this example, only two variables no
matter random or fuzzy variables are considered. Two coordinate
systems are plotted in Fig. 1. One is the design space composed
by X1

M ,X2
M, another is the uncertainty space composed by X1 ,X2.

If no uncertainty is considered, probability/possibility constraint
becomes deterministic constraint G�X1

M ,X2
M��0 with the con-

straint boundary G�X1
M ,X2

M�=0 as plotted in Fig. 1. From the dis-
cussion before, to satisfy a probability/possibility constraint, the
value of performance measure at the MPPP �X1

� ,X2
�� must satisfy

G�X1
� ,X2

���0. This indicates that the MPPP must be within the
M M
deterministic feasible area �G�X1 ,X2 ��0� or at least on the de-
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erministic constraint boundary G�X1
M ,X2

M�=0 as plotted in Fig. 1.
Therefore, Eq. �1� can be written as

min
�dc,dd,Xc

M,Xd
M�

f�dc,dd,Xc
M,Xd

M,Pc
M,Pd

M�

uch that

G�i��dc,dd,Xc
�,�i�,Xd

�,�i�,Pc
�,�i�,Pd

�,�i�� � 0

g�j��dc,dd,Xc
M,Xd

M,Pc
M,Pd

M� � 0

dc
L � dc � dc

U, dd
L � dd � dd

U �13�

Xc
M,L � Xc

M � Xc
M,U,Xd

M,L � Xd
M � Xd

M,U

i = 1,2, . . . ,nG, j = 1,2, . . . ,ng

here Xc
�,�i�= �Xrc

�,�i� ,Xfc
�,�i�� ,Xd

�,�i�= �Xrd
�,�i� ,Xfd

�,�i�� ,Pc
�,�i�= �Prc

�,�i� ,

fc
�,�i�� ,Pd

�,�i�= �Prd
�,�i� ,Pfd

�,�i�� is the MPPP of Xc ,Xd ,Pc ,Pd corre-
ponding to the ith probability/possibility constraint.
�i��dc ,dd ,Xc

�,�i� ,Xd
�,�i� ,Pc

�,�i� ,Pd
�,�i�� is the constraint value at the

PPP and G�i��dc ,dd ,Xc
�,�i� ,Xd

�,�i� ,Pc
�,�i� ,Pd

�,�i���0 is equivalent to
he probability/possibility constraint in Eq. �1� based on Eqs. �8�
nd �12�.

4.2 Procedure of RFSORA. In this section, the procedure of
FSORA is provided step by step as follows:

Step 1. Set initial values for dc
�0� ,dd

�0� ,Xc
M,�0� ,Xd

M,�0� ; k=1
Step 2. Solve the deterministic optimization. This step is to
obtain values of dc

k ,dd
k ,Xc

M,k ,Xd
M,k. Since there is no informa-

tion about the MPPPs in the first cycle, the MPPPs are set to be
equal to Xc

M,�0� ,Xd
M,�0� ,Pc

M ,Pd
M. From the second cycle, the

MPPPs obtained from the previous cycle are used to reconstruct
deterministic constraints until the value of objective function
converges and requirements of probability/possibility con-
straints are all satisfied.

• Step 3. Perform probability/possibility analysis. The
probability/possibility analysis is carried out to check the
feasibility of each probability/possibility constraint at the
current design point. The results are MPPP and value of
performance measure at the MPPP corresponding to each
probability/possibility constraint.

Step 4. Check convergence. If requirements of probability/
possibility constraints are all satisfied and the value of the ob-
jective function is stable �G�i��0, i=1�nG ; �f�k�− f�k−1��
��� where � is an arbitrary small positive constant, stop the
solving process; otherwise set k=k+1 and go to Step 2 with the

ig. 1 Conversion of a probability/possibility constraint into
eterministic constraint
MPPPs obtained in Step 3.
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If the requirement of probability/possibility constraint
���G�i��·��0���t� is not satisfied in the �k−1�th cycle, the
MPPP Xc

�,�i�,�k−1� ,Xd
�,�i�,�k−1� ,Pc

�,�i�,�k−1� ,Pd
�,�i�,�k−1� obtained from

cycle k−1 will be used to modify the constraint in the kth deter-
ministic optimization formulation. To ensure the feasibility of
probability/possibility constraint, the MPPP of the kth cycle
should fall into the deterministic feasible region.

Let S be a shift vector. The shift is based on the idea of SORA
as that used in Ref. �9�.

S�i�,k = �Sc
�i�,k,Sd

�i�,k�

Sc
�i�,k = Xc

M,�k−1� − Xc
�,�i�,�k−1�

Sd
�i�,k = Xd

M,�k−1� − Xd
�,�i�,�k−1�

where S�i�,k is the shift vector for the ith probability/possibility
constraint in the kth cycle. Sc

�i�,k indicates the shifts of continuous
random and fuzzy variables, while Sd

�i�,k stands for the shifts of
discrete random and fuzzy variables. Xc

M,�k−1� ,Xd
M,�k−1� are the

mean values or the maximal grade points of variables with uncer-
tainties obtained in the �k−1�th cycle.

Because there is no means to control the random and fuzzy
parameters, the same shift strategy is not used. But from Eq. �13�,
the deterministic constraint function must satisfy
G�i��dc ,dd ,Xc

� ,Xd
� ,Pc

� ,Pd
���0 to achieve the possibility require-

ment. So the MPPP Pc
�,�i�,�k−1� ,Pd

�,�i�,�k−1� obtained in the previous
cycle is used in constructing a deterministic model.

The deterministic constraint in the kth cycle is modified as

G�i��dc
k,dd

k,Xc
M,k − Sc

�i�,k,Xd
M,k − Sd

�i�,k,Pc
�,�i�,�k−1�,Pd

�,�i�,�k−1�� � 0

The example in Sec. 4.1 is used to illustrate the above shift
strategy in Fig. 2. In the first cycle, there is no information about
the MPPP because probability/possibility analysis has not been
performed. In the deterministic optimization, the constraint is
G�X1

M ,X2
M��0. The worst case is that the design point is on the

boundary of the constraint. As one can expect, the MPPP must fall
into the area of G�X1

M ,X2
M��0 after uncertainty analysis. To sat-

isfy the probability/possibility constraint, the MPPP should be
within the deterministic feasible region. When constructing the
equivalent deterministic formulation in cycle 2, the constraint
should be modified to shift the MPPP at least onto the determin-
istic boundary to make sure the feasibility of probability/
possibility constraint. The shifted constraint is plotted in Fig. 2 as
dashed line. The feasibility of the violated probability/possibility
constraint will be improved remarkably using this shift strategy.

4.3 Formulations of Deterministic Optimization and
Probability/Possibility Analysis of the kth Cycle

4.3.1 Deterministic Optimization of the kth Cycle. The deter-

Fig. 2 Shifted constraint
ministic optimization of the kth cycle is given as
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min
�dc

k,dd
k,Xc

M,k,Xd
M,k�

f�dc
k,dd

k,Xc
M,k,Xd

M,k,Pc
M,Pd

M�

uch that

G�i��dc
k,dd

k,Xc
M,k − Sc

�i�,k,Xd
M,k − Sd

�i�,k,Pc
�,�i�,�k−1�,Pd

�,�i�,�k−1�� � 0

g�j��dc
k,dd

k,Xc
M,k,Xd

M,k,Pc
M,Pd

M� � 0

dc
L � dc

k � dc
U, dd

L � dd
k � dd

U

XM,L � XM,k � XM,U, XM,L � XM,k � XM,U

c c c d d d

he superscript �i� indicates that the variables and parameters cor-

To deal with the discrete-continuous optimization in Eqs.
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i = 1,2, . . . ,nG; j = 1,2, . . . ,ng �14�

where dc
k ,dd

k ,Xc
M,k ,Xd

M,k are design variables in the kth cycle. Su-
perscript k indicates cycle k. P�,�i�,�k−1� denote the MPPPs of P
corresponding to the ith probability/possibility constraint obtained
in the �k−1�th cycle.

4.3.2 Probability/Possibility Analysis in the kth Cycle. First of
all, transformations should be done according to each approach in
Sec. 3. Formulation of approach 1 for uncertainty analysis in the

kth cycle is given as
max

�Urc
�i�,k,Vfrd

�i�,k,Vfc
�i�,k,Vfd

�i�,k,

UPrc
�i�,k,VPfrd

�i�,k,VPfc
�i�,k,VPfd

�i�,k �
G�i��dc

k,dd
k,Urc

�i�,k,Vfrd
�i�,k,Vfc

�i�,k,Vfd
�i�,k,UPrc

�i�,k,VPfrd
�i�,k,VPfc

�i�,k,VPfd
�i�,k�

uch that

��Urc
�i�,k,UPrc

�i�,k��2 � �t

��Vfrd
�i�,k,Vfc

�i�,k,Vfd
�i�,k,VPfrd

�i�,k,VPfc
�i�,k,VPfd

�i�,k��� � 1 − �t �15�

i = 1,2, . . . ,nG
here dc
k ,dd

k are optimal values of deterministic design variables
btained from the kth deterministic optimization. �t is equal to

−1��t�. The symbols U and UP indicate the standard normal
ariable and parameter in U-space, respectively. V and VP denote
tandard fuzzy variable and parameter in V-space, respectively.
respond to the ith probability/possibility constraint because each
probability/possibility constraint has its own MPPP.

The solutions are MPPPs �Urc
�,�i�,k ,Vfrd

�,�i�,k ,Vfc
�,�i�,k ,Vfd

�,�i�,k ,
UPrc

�,�i�,k ,VPfrd
�,�i�,k ,VPfc

�,�i�,k ,VPfd
�,�i�,k� �i=1�nG� and values of per-

formance measure at MPPPs.

Formulation of approach 2 for uncertainty analysis is given as
max

�Urc
�i�,k,Xrd

�i�,k,Vfc
�i�,k,Vfd

�i�,k

UPrc
�i�,k,Prd

�i�,k,VPfc
�i�,k,VPfd

�i�,k �
G�i��dc

k,dd
k,Urc

�i�,k,Xrd
�i�,k,Vfc

�i�,k,Vfd
�i�,k,UPrc

�i�,k,Prd
�i�,k,VPfc

�i�,k,VPfd
�i�,k�

uch that

��Urc
�i�,k,UPrc

�i�,k��2 � �t�

��Vfc
�i�,k,Vfd

�i�,k,VPfc
�i�,k,VPfd

�i�,k��� � 1 − �t �16�

i = 1,2, . . . ,nG
here �t� is equal to −
−1��t /�t=1
N �FXrd

�xrd
t ��FPrd

�prd
t ���.

rd
�i� ,Prd

�i� are discrete random variables and parameters of X ,P,
espectively.

The solutions are MPPPs �Urc
�,�i�,k ,Xrd

�,�i�,k ,Vfc
�,�i�,k ,Vfd

�,�i�,k ,

Prc
�,�i�,k ,Prd

�,�i�,k ,VPfc
�,�i�,k ,VPfd

�,�i�,k� �i=1�nG� and values of per-
ormance measure at the MPPPs.

Then the MPPPs in X-space Xrc
�,�i�,k ,Xrd

�,�i�,k ,Xfc
�,�i�,k ,

fd
�,�i�,k ,Prc

�,�i�,k ,Prd
�,�i�,k ,Pfc

�,�i�,k ,Pfd
�,�i�,k can be obtained using the in-

erse Rosenblatt transformation and Eq. �2�. The constraints in the
eterministic optimization will be modified using the MPPPs
hen requirements of probability/possibility constraints are not all

atisfied. Figure 3 shows the flowchart of RFSORA. The details of
FSORA have been given above.
�14�–�16�, the algorithm MDOP in Ref. �23� is utilized. But dif-
ferent from the methods used to find a feasible discrete point in
MDOP such as genetic algorithm and random test method and so
on, the method of “TRANS” in MDOD �23� is utilized, where the
unit vector of the feature vector is used directly for rounding.
During one-dimension searching and adjacent point-checking in
the discrete unit area, when a new point is obtained, the point is
first compared with those saved. If there exists a same point, set
the values of objective function and constraints the same as those
saved; otherwise save the point, calculate, and save its values of
objective function and constraints. Finally, starting from the opti-
mal solution obtained by MDOP, the original optimization prob-
lem is solved using algorithms for continuous optimization while
fixing the discrete part at relevant values of that optimal solution.
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Example
The example of pressure vessel design is derived from Ref.

24�. Design variables are radius �R�, length �L�, and thickness
T�. There are two design parameters: internal pressure �P� and
llowable tensile strength of the material �St�. The objective is to
aximize the internal volume while minimizing weight. In this

aper, this problem is modified to be a RFCDV-DO problem.
In this paper, T and R are continuous random variables while L

s a discrete random variable. Table 1 shows the uncertainty de-
criptions of design variables and parameters.

Due to the manufacturing practice, mean values of T, R are
nteger multiples of 0.01. When the mean value of T is obtained as
M, the practical dimension is subjected to N�TM ,0.01�. The case
f R is similar as T. The length L is discretely distributed accord-
ng to the following probability:

Fig. 3 Flowchart of RFSORA

able 1 Uncertainty descriptions of design variables and
arameters

ariables or
arameters

Mean
value

Standard
deviation Distribution

Lower
bound

of mean
value

Upper
bound

of mean
value

0.01 Normal 0.1 36
0.01 Normal 0.5 6.0

0.1 140

t 40 4 Normal

Maximal
grade point Deviation

Membership
function

3.89 1.167
Triangular: �3.89−1.167,

3.89, 3.89+1.167�

Table 2 Results of

TM RM LM

Approach 1 6.0000 33.2300 71.3000 −2.0
Approach 2 6.0000 33.2300 71.3000 −2.0
ournal of Mechanical Design
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Pr��L = 
� = �0.1 
 = LM + 0.1

0.8 
 = LM

0.1 
 = LM − 0.1
�

where LM is integer multiple of 0.1.
The probability/possibility constraints are as follows:

��G1 = 5T − R � 0� � �t

��G2 = T + R − 40 � 0� � �t

�	G3 =
PR

T
− St � 0
 � �t

��G4 = L + 2R + 2T − 150 � 0� � �t

The objective function is defined as follows:

v = v1 − v2

v1 =
4

3
��TM + RM�3 + ��TM + RM�2LM − 
4

3
��RM�3 + ��RM�2LM�

v2 =
4

3
��RM�3 + ��RM�2LM

The target possibility of failure is �t=1−0.9987=0.0013. In the
optimization process, the optimum points obtained from the pre-
vious cycle are used as the starting points for the current cycle.
The optimum results are showed in Table 2. Although the optimal
designs obtained with different approaches for uncertainty analy-
sis are the same, the numbers of function evaluations are different.
RFSORA solves this problem with three cycles listed in column
nine in Table 2. Table 3 lists the values of performance measure of
each probability/possibility constraint at the relevant MPPP. From
Table 3, all values of performance measure at MPPPs are less than
zeros, which indicates that probability/possibility constraints are
all satisfied at each optimum point.

6 Conclusions
This paper proposes a formulation of RFCDV-DO, two differ-

ent approaches for uncertainty analysis, and a method �RFSORA�
based on the idea of SORA. Due to the presence of both types of
uncertainties �AU and EU� as well as the existence of both con-
tinuous and discrete design variables and parameters, the cost of
direct calculation of possibility of failure is huge and very expen-
sive. Based on the concept of conditional possibility of failure,
two approaches for uncertainty analysis are developed to reduce
the computational cost.

In the method of RFSORA, based on the ideas of SORA the
solving process of a RFCDV-DO problem is decoupled into de-
terministic optimization and probability/possibility analysis,
which are carried out sequentially instead of nested. Constraints in
the deterministic optimization model are shifted to make sure

ssure vessel design

v1 v2 NFE k

�105 1.9658�105 4.0105�105 612 3
�105 1.9658�105 4.0105�105 617 3

Table 3 Value of performance measure at MPPP

G1 G2 G3 G4

Approach 1 �3.0770 �0.7276 −2.0724�10−4 �0.0551
Approach 2 �3.0770 �0.7276 −2.0724�10−4 �0.0551
pre

v

447
447
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PPPs falling into the deterministic feasible region. In the first
ycle, the values of MPPPs are set to be equal to the mean values
r maximal grade points of variables and parameters with uncer-
ainties. From the second cycle, the MPPPs obtained from the
revious cycle are used to reconstruct constraints in the determin-
stic optimization model to improve the feasibility of design. As
emonstrated by example, the RFSORA can efficiently solve
FCDV-DO problem in a few cycles.
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