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When solving multi-objective optimization problems subject to constraints in reliability-based design, it is desirable for the decision
maker to have a sufficient number of solutions available for selection. However, many existing approaches either combine multiple
objectives into a single objective or treat the objectives as penalties. This results in fewer optimal solutions than would be provided by
a multi-objective approach. For such cases, a niched Pareto Genetic Algorithm (GA) may be a viable alternative. Unfortunately, it is
often difficult to set penalty parameters that are required in these algorithms. In this paper, a multi-objective optimization algorithm is
proposed that combines a niched Pareto GA with a constraint handling method that does not need penalty parameters. The proposed
algorithm is based on Pareto tournament and equivalence sharing, and involves the following components: search for feasible solutions,
selection of non-dominated solutions and maintenance of diversified solutions. It deals with multiple objectives by incorporating the
concept of Pareto dominance in its selection operator while applying a niching pressure to spread the population along the Pareto
frontier. To demonstrate the performance of the proposed algorithm, a test problem is presented and the solution distributions in
three different generations of the algorithm are illustrated. The optimal solutions obtained with the proposed algorithm for a practical
reliability problem are compared with those obtained by a single-objective optimization method, a multi-objective GA method, and
a hybrid GA method.

Keywords: Reliability optimization, multi-objective optimization, genetic algorithms, Pareto solutions

1. Introduction

Reliability optimization is very important in system design.
Usually, a single-objective optimization model is formu-
lated. For example, system reliability may be maximized
subject to resource constraints, or cost may be minimized
subject to reliability requirements. To achieve the best sys-
tem design, it is often desirable to simultaneously maximize
system reliability and minimize resource consumption. In
this case, it is better to adopt a multi-objective approach
to system design (Kuo and Prasad, 2000). In solving multi-
objective optimization problems, the decision maker must
have a sufficient number of desirable optimal solutions to
choose from. However, multiple objectives and various con-
straints make it difficult to simultaneously solve this type
of problem.

Currently available approaches may combine multiple
objectives into a single objective, treat the objectives as
penalties, or apply interactive techniques to reduce the size

∗Corresponding author

of the optimization problem. Dhingra (1992) and Rao and
Dhingra (1992) studied a reliability and redundancy allo-
cation problem for a four-stage and a five-stage over-speed
protection system, using crisp and fuzzy multi-objective op-
timization approaches, respectively. Li (1996) proposed a
Genetic Algorithm (GA) approach for multi-objective reli-
ability design problems maximizing the reliability and min-
imizing the total cost of the system. Gen and Kim (1998,
1999a, 1999b) proposed a hybrid GA approach to han-
dle multi-objective reliability-redundancy allocation prob-
lems and compared it with the GA approach reported
by Li (1996). Huang et al. (2004) and Huang, Tian and
Zuo (2005) developed an interactive physical programming
approach and applied it to a reliability and redundancy
allocation problem. Huang (1997) also reported a fuzzy
multi-objective optimization decision-making method for
a series system. Salazar et al. (2006) solved constrained
multiple-objective reliability optimization problems by us-
ing a second-generation multiple-objective evolutionary
algorithm. Coit and Konak (2006) proposed a multiple
weighted objectives heuristic for a redundancy allocation
problem based on the transformation of a multiple objective
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288 Huang et al.

problem into a single-objective problem. For other related
papers see Huang, Wu and Liu (2005), Ha and Kuo (2006),
Huang et al. (2006), Liang and Chen (2007), Onishi et al.
(2007) and Yun et al. (2007). In this paper we introduce
a direct approach that uses GAs to solve multi-objective
optimization problems.

GAs can be viewed as a probabilistic approach based
on the principle of natural evolution. Their advantage over
other methods, such as exact algorithms and heuristic al-
gorithms, is that they can simultaneously manipulate the
entire population of solutions to the optimization prob-
lem. This property makes it possible to approximate the
whole Pareto frontier in a single optimization run for a
multi-objective optimization problem.

Fonseca and Fleming (1995) provided an overview of
GAs for multi-objective optimization. Deb et al. (2002) pro-
posed a fast and elitist multi-objective GA. Horn and Naf-
pliotis (1993) and Horn et al. (1994) proposed the niched
Pareto GA for multi-objective problems that is now used in
many areas. Erickson and Horn (2002) applied a niched
Pareto GA to simultaneously minimize remedial design
cost and contaminant mass. Zheng et al. (2005) applied the
Pareto ranking and niche formation to GA-based multi-
objective time-cost optimization.

Since GAs are appropriate for high-dimension stochas-
tic problems with many non-linearities or discontinuities,
they are suited to solving reliability-based design problems.
In this paper, we propose an algorithm that combines a
population-based constraint handling method and a niched
Pareto GA based on Pareto tournament and equivalence
sharing to solve optimal reliability-redundancy allocation
problems.

2. Problem statement

The reliability optimization model considered in this paper
is obtained by transforming the single-objective optimiza-
tion model of an over-speed protection system reported by
Dhingra (1992) into a multi-objective optimization model.
Its objective functions are maximizing system reliability and
minimizing system cost, subject to limits on weight and
volume.

Notation

Ri = reliability of a component at stage i;
ni = number of redundant components at stage i;
Rs = system reliability;
Cs = total system cost;
Ws = total system weight;
Vs = total system volume;
N = number of stages;
Wlim = upper limit on weight;
Vlim = upper limit on volume;
wi = the weight of each component in stage i;
vi = the volume of each component in stage i;

αi, βi = constants representing the physical characteristics
of each component at stage i;

T = operating time.

The model takes the following form:

max Rs =
N∏

i=1

[1 − (1 − Ri)ni ], (1)

min Cs =
N∑

i=1

αi ×
( −T

ln(Ri)

)βi

× [ni + exp(ni/4)], (2)

subject to

Ws =
N∑
i

wi × ni × exp(ni/4) ≤ Wlim, (3)

Vs =
N∑
i

vi × (ni)2 ≤ Vlim, (4)

1 ≤ ni ≤ nmax, Rmin ≤ Ri ≤ Rmax, i = 1, 2, . . . , N, (5)

where exp(ni/4) accounts for the interconnecting hard-
ware, nmax represents the maximum number of compo-
nents allowed at each stage and Rmin and Rmax the mini-
mum and maximum reliability limits of each component.
The parameters αi and βi provide flexibility in express-
ing the cost of the system as a function of the number
of components ni at each stage i, the mission time T and
the component reliability level Ri at stage i. The adopted
cost function form is as proposed by Dhingra (1992). It is
adopted here for ease of comparison of the proposed al-
gorithm with those used in Dhingra (1992). Our approach,
however, is more general. When applying our approach,
one should use a cost function appropriate to the specific
application.

3. Multi-objective GA

GAs have been widely used to solve multi-objective opti-
mization problems. Two factors that must be considered in
such cases are fitness assignment and fitness sharing.

Fitness assignment provides a criterion for assessing
the fitness of an individual solution. The Pareto ranking
method, which is usually applied for this purpose, relies on
the notion of dominance, that is, a better solution must have
better objective function values. The concept of Pareto op-
timality can be used here for ranking individual solutions.
A solution to a multi-objective optimization problem is
called Pareto optimal if no objective can be improved with-
out sacrificing another objective. A more formal definition
of Pareto optimality is as follows (Fonseca and Fleming,
1995).

Definition 1. Without loss of generality, consider the
maximization of n elements fk, k = 1, · · · , n, of vector
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Apportioning reliability and redundancy under multiple objectives 289

function (f) with vector variable (x) in a universe (u), where:

f(x) = (f1(x), . . . , fn(x)). (6)

Then, a decision vector, s ∈ u, for which g = f(s) =
(g1, . . . , gn), dominates another decision vector, t ∈ u, for
which h = f(t) = (h1, · · · , hn), if

∀i ∈ {1, . . . , n}, hi ≤ gi ∧ ∃i ∈ {1, · · · , n}| hi < gi. (7)

A decision vector is said to be Pareto optimal if it is
not dominated by any other decision vectors. The set of all
Pareto optimal decision vectors is called the admissible set
of the problem. The corresponding set of objective vectors
is called the non-dominated set.

By definition, the Pareto ranking method ranks all the
individuals and then assigns a fitness value to each of them.
The individuals that are non-dominated are assigned larger
fitness values, so they will be copied more than the others
in GA procedures.

The Pareto tournament method also uses the dominance
notion. It chooses two individuals from the population at
random, and then selects the better one to be included in
the next generation. It is different from the Pareto ranking
method in that it does not actually assign fitness values to
individuals, so it is less complicated. As the commonly used
pair-wise tournament method may generate more domi-
nated solutions in the final population, an improved Pareto
tournament method is used in this paper.

Other methods of fitness assignment include the weight-
based method, the compromise-based method and the goal
programming method (Gen and Cheng, 2000).

Fitness sharing refers to maintaining the diversity of the
Pareto optimal solutions. Fitness sharing aims to provide
Pareto optimal solutions over the entire non-dominated
frontier. It ensures a set of diversified Pareto solutions.

The sharing scheme is designed to spread the population
of individuals along the Pareto frontier by penalizing indi-
viduals that are already strongly represented in the popula-
tion. There are two types of sharing: sharing in the objective
space and sharing in the variable space. These approaches
provide diversity of Pareto solutions in the objective space
and the variable space, respectively. We calculate the follow-
ing indicator for individual i (Horn and Nafpliotis, 1993):

mi =
pop size∑

j=1

sh(dij), (8)

where mi is the niche count of individual i, which is an
estimate of how crowded the neighborhood (niche) of in-
dividual i is; dij, usually calculated by the pth order norm
(for example, p = 2), is the distance between individuals i
and j; and sh(·) represents the following sharing function:

sh(dij) =

1 −

(
dij

σshare

)2

if dij < σshare,

0 else,
(9)

where σshare is the radius of the niche, specified by the user
based on the minimal separation desired or expected among
the solutions. The definition and the calculation method for
σshare are provided by Horn and Nafpliotis (1993).

Sharing usually leads to the degradation of an individ-
ual’s objective fitness (fi) by means of dividing fi by the niche
count mi.

3.1. The niched Pareto GA

This section introduces the niched Pareto multi-objective
GA incorporating the Pareto tournament fitness assign-
ment and equivalence sharing proposed by Horn and Naf-
pliotis (1993) and Horn et al. (1994).

3.1.1. Pareto tournament fitness assignment
The tournament used here is a pair-wise tournament, and
the sampling is conducted as follows. Two candidates are
randomly selected from the population of solutions. A com-
parison set including tdom individuals is also selected ran-
domly from the population. Each of the two candidates
is then compared against each individual in the compari-
son set. This tournament adheres to criterion 1 as outlined
below.

Criterion 1:

1. If one candidate is dominated by any solution from the
comparison set and the other is not, the latter is selected
for reproduction.

2. If neither or both are dominated by any solution from
the comparison set, then the sharing scheme given below
will be used.

3.1.2. Equivalence class sharing
The niched Pareto GA applies a simpler method called
equivalence class sharing, which does not use the degra-
dation mechanism. The individual chosen from two candi-
dates is the one with a smaller niche count within a prede-
fined equivalence class region.

Figure 1 illustrates how this form of sharing works (Horn
and Nafpliotis, 1993). Compared with candidate 1, which
has a niche count of four, candidate 2 has a smaller niche
count of one and is therefore selected as the winner.

3.2. The constraint handling approach

The most common approach to handling constraints in
GAs is the use of penalties. Ideally, the penalty is kept as low
as possible. Although conceptually simple, this approach
is quite difficult to implement in practice because in most
problems the exact location of the boundary between the
feasible and infeasible regions is unknown a priori (Coello
and Carlos, 2002). This paper uses the GA’s population-
based approach (Deb, 2000), which is a penalty function
approach that does not require any penalty parameter for
choosing a better solution. It uses a tournament selection
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290 Huang et al.

Fig. 1. Equivalence class sharing (Horn and Nafpliotis, 1993).

operator, where two solutions are compared at a time, and
the tournament follows criterion 2.

Criterion 2:

1. A feasible solution is preferred to an infeasible solution.
2. Between two feasible solutions, the one having a better

objective function value is preferred.
3. Between two infeasible solutions, the one having less

constraint violation is preferred.

The extent of constraint violation for a solution may be
judged by the number of violated constraints. The larger
the number of violated constraints, the greater the number
of violations of a solution.

Since the niched Pareto GA and the constraint handling
approach have similar tournament-based properties, inte-
grating them is less complicated. We propose our algorithm
in the next section.

4. The proposed algorithm

The proposed algorithm uses the niched Pareto GA and
the constraint handling method described earlier. It is ob-
tained by integrating criterion 1 with criterion 2. The tasks
of searching for feasible solutions and maintaining diver-
sified Pareto solutions are simultaneously implemented in
each generation. Figure 2 illustrates the proposed proce-
dure.

In the flow chart shown in Fig. 2, P(t) and C(t) rep-
resent the parent population and the child population at
generation t , and max gen represents the maximum num-
ber of iterations allowed. Figure 3, which corresponds to
the segment in the dashed rectangle of Fig. 2, shows the
corresponding rules of criterion 3 where “Cand.” denotes
candidate, “Violat.” denotes violation and “comp. set” de-
notes the comparison set.

Fig. 2. Flow chart of the proposed algorithm.

Criterion 3:

1. If one candidate is infeasible and the other is feasible,
the latter is incorporated into “winnerpop,” where the
winners are stored.

2. If both candidates are infeasible, the one having less con-
straint violation is incorporated into winnerpop. Other-
wise, one is randomly incorporated into winnerpop.

3. If both candidates are feasible, one of five situations
will arise. The corresponding strategies for incorporat-
ing candidate(s) into winnerpop are as follows:

(i) if one candidate dominates the other, the dominat-
ing one is incorporated into winnerpop;
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Apportioning reliability and redundancy under multiple objectives 291

Fig. 3. Fragment in the dashed rectangle of Fig. 2.

(ii) if one of the two candidates is dominated by the
comparison set, the non-dominated one is incorpo-
rated into winnerpop;

(iii) if the niche counts of the two candidates are differ-
ent, the one with the smaller niche count is incor-
porated into winnerpop;

(iv) if both niche counts are equal to one, both are in-
corporated into winnerpop;

(v) if none of the above cases apply, one is randomly
incorporated into winnerpop.

To obtain a set of Pareto solutions, the “initial pop”
P(1) is generated at the beginning. The feasibility of in-
dividuals in the initial pop has a significant impact on the
final optimality; and a lack of sufficient feasible individ-
uals in the initial pop may cause the algorithm to fail. Of
course, we can avoid this situation by running the algorithm
many times. However, a more efficient method is to ensure

a sufficient number of feasible individuals exist in the initial
pop.

In this paper, the individuals are first randomly gener-
ated in a particular range as shown in Equation (5) and
those that satisfy the constraints are directly incorporated
into the initial pop. If the number of feasible individuals
reaches half of the pop size, the generation of the initial
pop is complete. Second, individuals in the population are
processed by genetic operators such as crossover and mu-
tation, and the child population obtained through this pro-
cess is denoted by C(t). The winning candidates, includ-
ing P(t) and C(t), are selected from the mixed population
according to criterion 3, and added to the winnerpop un-
til the size of the winnerpop equals a specified population
size. The winnerpop obtained at generation t is P(t + 1),
which is used in the next generation. Solutions are im-
proved as generations pass. After a certain number of gen-
erations specified by the user, a set of Pareto solutions is
generated.
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Fig. 4. (a) Objective functions of the test problem; (b) individual distribution improved by a binary tournament; (c) generation 5;
and (d) generation 100.

5. A test problem

We first test the proposed algorithm with a function used
by Horn and Nafpliotis (1993) and Horn et al. (1994) plus
our own constraints. This is a simple function, with a sin-
gle decision variable, the real-valued x, and two objective
functions, f1 and f2, to be minimized:

min f1 = x2, (10)
min f2 = (x − 2)2, (11)

subject to

g1 = x2 − 1 ≤ 0, (12)
g2 = (x − 1)2 − 1 ≤ 0. (13)

We use real-number encoding over the range of x ∈
[−10, 10], where the initial pop is generated. We plot f1
and f2 over this range in Fig. 4(a). It is clear that trade-offs
between the two objective functions occur on the Pareto
frontier. That is, for 0 ≤ x ≤ 2, one of the functions de-
creases toward its best value while the other increases away
from its best value. Because of the limits of the constraints,
the range of the final Pareto solutions is reduced to [0, 1].

We use the following parameters: population size
pop size = 30, max gen = 100, niche size σshare = 0.1 and
tournament size tdom = 4. The parameter selection princi-
ples, which are specified in Horn and Nafpliotis (1993) and
Horn et al. (1994), are not repeated here.

The individuals are generated in the range x ∈ [−10, 10]
to form the initial pop. Because of the limited number of fea-
sible solutions in this population, a simple binary tourna-
ment is used to search for the better solutions as illustrated
in Fig. 4(b). Apparently, there are still many infeasible solu-
tions but the number of feasible solutions is now adequate
for our next step. As generations pass, feasible solutions will
gradually occupy more positions in the population. As il-
lustrated in Fig. 4(c), there are only five infeasible solutions
left at generation 5. Figure 4(d) illustrates the population at
generation 100, and there is a fairly even spread of solutions
along the Pareto frontier.

Even though this test problem is an easy one, it serves to
show that the proposed algorithm is effective in searching
for feasible solutions and maintaining diversified Pareto
solutions.

6. A reliability optimization problem

In this section we solve the reliability-redundancy alloca-
tion problem presented in Section 2, with N = 4, nmax = 10,
Rmin = 0.5, Rmax = 1–10−6, and other parameters as spec-
ified in Table 1. We use real-number encoding in the form
of chromosomes [(R1, n1)(R2, n2)(R3, n3)(R4, n4)] and the
following parameter values: pop size = 30, max gen = 100,
σshare = 0.04, tdom = 4. We adopt arithmetic crossover in a
crossover operation with the parameter of Pc = 0.75, and
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Apportioning reliability and redundancy under multiple objectives 293

Table 1. Design data for the sample problem (Wlim = 500, Vlim

= 250, T = 1000)

Stage αj(×105) βj vj wj

1 1.0 1.5 1 6
2 2.3 1.5 2 6
3 0.3 1.5 3 8
4 2.3 1.5 2 7

boundary mutation in mutation operation where a “bound-
ary pop” is constructed consisting of two individuals having
the maximal Rs(Rs−max) and the minimal Cs(Cs−min) of the
previous population. The two members of the boundary
pop are updated when an individual having a smaller Cs or
a larger Rs than the old Rs−max or Cs−min, respectively, arises
in the current population. When mutation takes place, one
of the two solutions in the boundary pop is randomly se-
lected to replace the individual to be mutated. This pro-
cess proceeds until the procedure terminates. To utilize the
boundary pop, mutation should occur at least once during
the whole procedure. Based on our experience, we select the
mutation parameter Pm = 0.1.

Table 2 shows the two extreme solutions in each of the
eight independent runs of the proposed algorithm for the
optimization model given in Section 2, one extreme solu-
tion having the largest reliability value and the other having
the lowest cost. From Table 2 we can see that all Rs−max val-
ues are above 0.992 01 and all Cs−min values are less than
27.958. This shows that the proposed algorithm provides

Table 3. Initial boundary pop and extreme solutions

Initial boundary pop
Extreme solutions in

the final boundary pop

R1 0.9036 0.59893 0.88036 0.59893
n1 5 3 6 3
R2 0.8566 0.61483 0.85632 0.61483
n2 6 3 5 3
R3 0.9153 0.62044 0.91245 0.62044
n3 4 3 4 3
R4 0.7515 0.58951 0.85768 0.58951
n4 5 3 5 3

Rs−max Rs 0.9990 0.77613 0.99982 0.77613
Cs Cs−min 273.0169 26.54 299.61 26.54

Ws 475.20 171.48 475.20 171.48
Vs 195.00 72.00 195.00 72.00

consistently good end points of the Pareto frontier. In ad-
dition, the obtained system reliability ranges from 0.4002
to 0.9990, and the obtained system cost ranges from 17.454
to 266.17. This shows that the proposed algorithm provides
a very broad Pareto frontier. One possible reason why the
algorithm provides some solutions with very low system
reliability (as low as 0.4002) and very high system cost (as
high as 266.17) is that the model does not include a min-
imum reliability requirement or maximum budget for the
system design.

In Table 3 we present the initial boundary pop where the
members are selected from the randomly generated initial

Table 2. Solutions having maximal Rs and minimal Cs in eight independent runs

Number

1 2 3 4 5 6 7 8

Rs−max 0.99599 0.99203 0.99861 0.99519 0.99201 0.99846 0.99847 0.9990
Cs 130.03 100.73 149.36 266.17 94.408 206.19 144.00 177.46

R1 0.769 0.825 0.848 0.849 0.774 0.861 0.829 0.885
n1 5 4 5 4 5 6 5 4
R2 0.839 0.694 0.775 0.846 0.687 0.823 0.760 0.733
n2 4 5 5 7 5 5 6 6
R3 0.802 0.755 0.801 0.688 0.780 0.835 0.840 0.870
n3 4 4 5 5 4 4 4 4
R4 0.741 0.761 0.789 0.891 0.787 0.842 0.778 0.822
n4 5 5 5 3 4 4 5 5

Rs 0.4590 0.6252 0.4118 0.5321 0.4076 0.6590 0.5344 0.4002
Cs−min 20.462 25.195 18.743 19.657 20.557 27.958 17.454 20.98

R1 0.645 0.694 0.644 0.613 0.641 0.691 0.577 0.635
n1 2 2 2 2 2 2 3 2
R2 0.681 0.589 0.647 0.632 0.563 0.675 0.576 0.605
n2 1 2 1 2 2 2 2 2
R3 0.688 0.644 0.616 0.658 0.655 0.710 0.661 0.627
n3 2 2 2 2 1 2 2 1
R4 0.620 0.630 0.619 0.576 0.657 0.667 0.549 0.644
n4 2 3 2 2 2 2 2 2
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Table 4. The solutions obtained with the proposed algorithm

Number [(R1, n1) (R2, n2) (R3, n3) (R4, n4)] Rs Cs Ws Vs

1 [(0.880 36.6) (0.856 32.5) (0.912 45.4) (0.857 68.5)] 0.999 82 299.61 475.20 184
2 [(0.874 22.6) (0.851 09.5) (0.906 26.4) (0.851 72.5)] 0.999 77 279.30 475.20 184
3 [(0.865 18.6) (0.841 25.5) (0.895 16.4) (0.841 61.5)] 0.999 67 249.59 475.20 184
4 [(0.865 18.6) (0.841 25.5) (0.895 16.4) (0.841 61.5)] 0.999 63 239.98 475.20 184
5 [(0.857 26.6) (0.833 95.5) (0.886 55.4) (0.833 77.5)] 0.999 57 229.57 475.20 184
6 [0.854 82.6) (0.831 85.5) (0.884 00.4) (0.831 50.5)] 0.999 54 224.15 475.20 184
7 [(0.850 40.6) (0.828 01.5) (0.879 37.4) (0.827 36.5)] 0.999 47 214.81 475.20 184
8 [(0.837 88.6) (0.819 77.5) (0.869 37.4) (0.816 49.5)] 0.999 29 194.08 475.20 184
9 [(0.833 61.6) (0.813 67.5) (0.861 97.4) (0.812 12.5)] 0.999 16 184.82 475.20 184

10 [(0.827 74.6) (0.809 98.5) (0.857 33.4) (0.806 64.5)] 0.999 04 176.70 475.20 184
11 [(0.817 67.6) (0.801 81.5) (0.847 66.4) (0.797 47.5)] 0.998 78 163.03 475.20 184
12 [(0.816 89.6) (0.800 35.5) (0.845 76.4) (0.796 32.5)] 0.998 73 161.31 475.20 184
13 [(0.799 23.6) (0.785 60.5) (0.827 79.4) (0.780 11.5)] 0.998 09 140.99 475.20 184
14 [(0.791 27.5) (0.776 54.5) (0.817 98.4) (0.7711 4.5)] 0.997 32 125.94 418.57 173
15 [(0.781 52.5) (0.769 22.5) (0.808 13.4) (0.762 93.5)] 0.996 75 118.23 418.57 173
16 [(0.768 82.5) (0.758 36.5) (0.794 79.4) (0.750 29.5)] 0.995 77 108.17 418.57 173
17 [(0.724 97.5) (0.719 42.5) (0.748 10.4) (0.710 21.5)] 0.990 65 82.322 418.57 173
18 [(0.726 00.4) (0.721 80.4) (0.750 97.4) (0.709 96.4)] 0.977 61 66.464 293.57 128
19* [(0.749 15.4) (0.737 74.4) (0.770 44.3) (0.734 77.4)] 0.974 49 75.020 257.40 107
20* [(0.720 73.5) (0.719 59.4) (0.747 14.3) (0.705 17.4)] 0.968 71 66.964 296.87 116
21 [(0.692 84.5) (0.695 54.4) (0.718 44.3) (0.678 49.4)] 0.95630 57.194 296.87 116
22 [(0.669 12.4) (0.672 00.4) (0.690 53.3) (0.577 30.4)] 0.934 63 48.012 257.40 107
23 [(0.670 85.4) (0.676 83.3) (0.695 53.3) (0.657 53.3)] 0.890 68 39.612 198.61 79
24 [(0.666 18.4) (0.672 81.3) (0.690 67.3) (0.653 12.3)] 0.886 18 38.666 198.61 79
25 [(0.624 44.4) (0.637 09.3) (0.647 30.3) (0.613 22.3)] 0.840 68 31.444 198.61 79
26 [(0.637 18.3) (0.643 63.3) (0.655 25.3) (0.620 42.3)] 0.822 33 30.974 171.48 72
27 [(0.627 17.3) (0.639 58.3) (0.650 36.3) (0.616 07.3)] 0.816 19 30.293 171.48 72
28 [(0.608 21.3) (0.622 00.3) (0.630 20.3) (0.598 27.3)] 0.789 73 27.698 171.48 72
29 [(0.603 55.3) (0.618 88.3) (0.625 34.3) (0.593 86.3)] 0.782 97 27.109 171.48 72
30 [(0.598 93.3) (0.614 83.3) (0.620 44.3) (0.585 91.3)] 0.776 13 26.540 171.48 72

Note: “*” stands for dominated solutions.

population and the final boundary pop containing the two
extreme solutions that have the Rs−max and the Cs−min of the
final population, respectively. Table 3 shows that the indi-
vidual having Rs−max in the initial boundary pop is replaced
by one having a larger reliability value of 0.999 82 in the final
population; the one having Cs−min in the initial boundary
pop remains unchanged in the final population. Because of
the improvement in at least one of the two members of the
boundary pop, the proposed algorithm generates a wider
range of solutions in the final population.

Using the proposed algorithm, we have obtained 30 so-
lutions as shown in Table 4. From Table 4, we can see
that 28 out of the 30 solutions are non-dominated solu-
tions whereas the other two are dominated solutions. The
28 non-dominated solutions provide the Pareto frontier of
the multi-objective optimization problem. They are plotted
in Fig. 5 to show the obtained Pareto frontier.

To illustrate the performance of the proposed algorithm,
we firstly compare it with the single-objective optimiza-
tion method reported by Dhingra (1992). It consists of two
steps because there are integer variables in the optimization
problem to be solved. The first step is to use a non-linear

Fig. 5. Final solutions of the proposed algorithm in the objective
space.
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Table 5. Generating Rlim values for Dhingra’s approach

The proposed algorithm Dhingra’s approach
Number of
reliability

ranges
Upper
bound

Lower
bound

Number of
solutions

Upper
bound

Decremental
value

Number of
Rlim values

1 0.999 82 0.999 04 10 0.999 82 0.0000 91 10
2 0.998 78 0.998 09 3 0.998 99 0.0004 95 3
3 0.997 32 0.990 65 4 0.997 99 0.0026 63 4
4 0.977 61 0.934 63 5 0.989 90 0.0149 75 5
5 0.890 68 0.816 19 5 0.92 0.03 5
6 0.789 73 0.776 13 3 0.79 0.02 3

constrained optimization algorithm by ignoring the integer
requirements for the number of redundancies at each stage
of the reliability design problem. Once a continuous opti-
mal solution is obtained, a heuristic algorithm is used in
the second step to handle the integer requirements for the
number of redundancies. In our implementation of Dhin-
gra’s approach, we used the Matlab function “fmincon” in
the first step of the approach. This function uses a gradient-
based search algorithm. The heuristic algorithm in the sec-
ond step as documented in Dhingra (1992) was coded in
Matlab.

Since Dhingra’s approach is for single-objective opti-
mization problems, we need to convert one of the objective
functions given in Equations (1) and (2) into a constraint.
We have elected to convert the reliability objective given in
Equation (1) into a constraint. To generate the Pareto fron-
tier using Dhingra’s approach, we need to specify a range
of minimum system reliability values (Rlim) to minimize the
system cost. We need to specify 30 such values to get 30
solutions so that we can compare them with those obtained
with the proposed algorithm.

To specify 30 Rlim values in the series of single-objective
optimization problems to be solved by Dhingra’s approach,
we used the optimal system reliability values obtained with
the proposed algorithm as tabulated in Table 4 as a guide.
We first divided these obtained reliability values into six
ranges so that in each range there are at least three solutions
generated by the proposed algorithm. Within each range,
we specify a linear decrement amount in order to get the
same number of solutions from Dhingra’s approach as from
the proposed algorithm. This is illustrated in Table 5. Based
on Table 5, the specified 30 Rlim values are listed in the Rlim
column in Table 6.

Trial runs of our implementation of Dhingra’s approach
showed that the program often diverged, especially when
the specified Rlim value was high. We had to introduce a
loop to automatically change the starting point for the al-
gorithm to converge. In addition, this approach was unable
to limit the range of the acceptable objective function val-
ues. On the other hand, the proposed algorithm does not
have these disadvantages.

Using the sliding system reliability constraints, our im-
plementation of Dhingra’s approach generated the 30

solutions shown in Table 6. From Table 6, we can see that
only 16 of the 30 solutions are non-dominated solutions.

The relative merit of the proposed algorithm and Dhin-
gra’s approach can be compared in two dimensions, the
percentage of non-dominated solutions and the generated
Pareto frontier. We desire the solutions to a multi-objective
optimization problem to be non-dominated so that they
can form the Pareto frontier. Thus, the percentage of non-
dominated solutions is a good measure of the performance
of an approach to a multi-objective optimization problem.
Table 7 shows a comparison of the proposed algorithm
with our implementation of Dhingra’s approach. From
this table, we can see that the proposed algorithm gener-
ates a much higher percentage of non-dominated solutions
in comparison with our implementation of Dhingra’s ap-
proach (93% versus 53.3%).

The Pareto frontier is composed of all non-dominated
solutions obtained for a multi-objective optimization prob-
lem. The evenness of the solutions on the Pareto frontier is
an important measure of the performance of the solution
approach. Figure 6 displays the Pareto frontiers generated
by our implementation of Dhingra’s approach and the pro-
posed algorithm. The solution with a system cost of 3048.54
obtained with Dhingra’s approach is not displayed in Fig. 6,
because the cost is too high.

Based on Fig. 6, we have the following observations.

1. The proposed algorithm provided a much smoother
Pareto frontier than Dhingra’s approach.

2. The solutions provided by the proposed algorithm are
more evenly distributed on the Pareto frontier than
Dhingra’s approach.

3. When the system reliability is higher than 0.96, the
Pareto frontier provided by the proposed algorithm
dominates that provided by Dhingra’s approach.

4. When the system reliability is below 0.96, the solutions
provided by Dhingra’s approach were better than those
provided by the proposed algorithm. This shows that the
proposed algorithm needs some further improvement.

Next, we compare the proposed algorithm with the
multi-objective GA and the multi-objective hybrid GA ap-
proaches reported by Gen and Kim (1998, 1999a, 1999b).
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Table 6. The solutions obtained with Dhingra’s approach

Number [(R1, n1) (R2, n2) (R3, n3) (R4, n4)] Rlim Rs Cs Ws Vs

1 [(0.860 27.5) (0.959 64.3) (0.888 98.5) (0.850 47.6)] 0.999 82 0.999 85 627.93 470.66 190
2* [(0.907 11.4) (0.970 62.3) (0.984 36.3) (0.948 74.3)] 0.999 73 0.999 76 1345.1 198.60 79
3 [(0.904 91.6) (0.947 97.4) (0.924 01.6) (0.987 06.3)] 0.999 64 0.999 99 3048.5 486.16 194
4 [(0.805 54.6) (0.910 61.6) (0.984 52.2) (0.838 77.5)] 0.999 55 0.999 60 560.37 471.22 170
5* [(0.946 38.3) (0.968 10.3) (0.965 40.3) (0.976 51.3)] 0.999 46 0.999 76 1851.5 171.48 72
6 [(0.936 53.4) (0.883 80.4) (0.983 45.2) (0.879 40.5)] 0.999 37 0.999 50 533.68 279.01 110
7 [(0.843 09.5) (0.925 89.3) (0.907 87.4) (0.947 20.3)] 0.999 27 0.999 28 528.05 274.25 109
8* [(0.940 54.3) (0.837 64.5) (0.847 39.6) (0.986 12.2)] 0.999 18 0.999 76 1810.3 381.01 175
9* [(0.973 16.3) (0.630 47.8) (0.940 26.3) (0.961 48.3)] 0.999 09 0.999 36 905.94 488.04 182

10* [(0.972 02.3) (0.689 83.7) (0.935 37.4) (0.923 58.3)] 0.999 00 0.999 24 582.80 411.24 173
11 [(0.750 06.6) (0.901 99.4) (0.785 37.5) (0.882 80.4)] 0.998 99 0.999 02 286.78 442.31 175
12 [(0.847 21.5) (0.786 12.5) (0.882 51.4) (0.777 92.5)] 0.998 50 0.998 74 155.57 418.56 173
13* [(0.718 95.6) (0.984 85.2) (0.791 16.5) (0.811 22.5)] 0.998 00 0.998 64 1510.4 442.90 169
14* [(0.990 75.2) (0.989 00.2) (0.966 59.6) (0.885 03.6)] 0.997 99 0.999 79 3907.8 442.92 192
15* [(0.753 19.6) (0.954 28.2) (0.759 91.6) (0.980 99.2)] 0.995 33 0.997 13 1289.1 429.32 160
16* [(0.609 40.7) (0.828 61.4) (0.773 42.5) (0.917 39.3)] 0.992 66 0.996 59 224.70 491.00 174
17* [(0.625 26.6) (0.634 93.6) (0.929 57.3) (0.983 47.2)] 0.990 00 0.994 25 1282.4 396.57 143
18* [(0.609 37.6) (0.971 11.2) (0.921 79.5) (0.772 71.4)] 0.980 00 0.992 96 610.28 396.85 151
19 [(0.704 65.5) (0.977 45.3) (0.580 55.6) (0.654 09.4)] 0.967 50 0.976 31 111.84 434.04 183
20* [(0.953 03.2) (0.612 95.5) (0.750 00.4) (0.750 00.3)] 0.955 00 0.969 87 155.64 255.93 120
21 [(0.750 00.4) (0.500 00.6) (0.789 41.3) (0.500 00.6)] 0.942 50 0.956 19 44.64 465.61 187
22 [(0.506 44.6) (0.500 00.6) (0.874 99.3) (0.500 00.5)] 0.93 0.938 03 44.41 495.65 185
23 [(0.749 99.3) (0.500 00.5) (0.796 87.4) (0.500 00.5)] 0.92 0.922 24 39.77 351.96 157
24 [(0.500 00.5) (0.500 00.5) (0.750 00.3) (0.500 00.5)] 0.89 0.894 94 29.25 382.39 152
25 [(0.500 00.5) (0.500 00.4) (0.749 99.3) (0.500 00.5)] 0.86 0.866 07 26.97 342.91 134
26 [(0.500 00.5) (0.500 00.4) (0.500 00.6) (0.500 00.4)] 0.83 0.838 14 23.31 461.18 197
27* [(0.500 00.4) (0.500 00.4) (0.500 00.6) (0.500 00.4)] 0.80 0.811 10 22.33 421.71 188
28 [(0.500 00.4) (0.500 00.4) (0.500 00.6) (0.500 00.4)] 0.79 0.811 10 22.33 421.71 188
29* [(0.500 00.4) (0.500 00.3) (0.521 00.6) (0.500 00.5)] 0.77 0.785 08 22.72 440.62 192
30 [(0.500 00.4) (0.500 00.4) (0.513 24.6) (0.500 00.3)] 0.75 0.758 82 20.42 390.06 174

Note: “*” stands for dominated solutions.

These two methods will be referred to as GA and hybrid
GA for simplicity. The performances of GA and hybrid
GA are also shown in Table 7. From this table, we can see
that the proposed algorithm provides a higher percentage
of non-dominated solutions than GA and hybrid GA (93%
versus 90%). Second, for the objective of system reliabil-
ity maximization, we find that 12 of the 30 solutions in
the final population by the proposed approach as shown
in Table 4 are better than the best ones provided by hy-
brid GA (0.9984) and 17 of the 30 solutions from the pro-
posed approach are better than the best ones provided by

GA (0.9882). Third, the solutions from the proposed algo-
rithm are distributed in a wider range of system reliability,
namely [0.7761, 0.999 82]. The corresponding system relia-
bility range for GA is [0.8813, 0.988 20] and for hybrid GA
is [0.8667, 0.998 40]. These results lead us to believe that
the proposed algorithm possesses a more powerful ability
to search for non-dominated solutions in terms of the distri-
bution range of the Pareto frontier. Even more significantly,
such good results are realized in only 100 generations, as
compared with the 2000 generations required by GA and
hybrid GA.

Table 7. Performance comparisons

Algorithms

The number
of obtained

solutions (A)

The number
of non-dominated

solutions (B)

Ratio
(B/A)

(%) Generation Rs−m Rs−min

Dhingra’s approach 30 16 53.3 — 0.999 85 0.7588
GA 30 27 90 2000 0.988 20 0.8813
Hybrid GA 40 36 90 2000 0.998 40 0.8667
The proposed algorithm 30 28 93 100 0.999 82 0.7761
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Fig. 6. Pareto frontiers from Dhingra’s approach and the proposed algorithm.

7. Conclusions

In this paper, we propose a multi-objective optimization
algorithm that integrates a niched Pareto GA with a
population-based constraint handling approach. Our aim is
to apply the algorithm in system reliability multi-objective
optimization, and to obtain a population of Pareto solu-
tions spread along the Pareto frontier. We first apply the
proposed algorithm to a test problem and discover that
it effectively finds and maintains the diversity of Pareto
solutions. Then we use the proposed algorithm to solve a
practical multi-objective optimization problem of allocat-
ing component reliability and redundancy for a four-stage
series-parallel system. The optimal results are compared
with those obtained through a single-objective optimization
approach, multi-objective GA and multi-objective hybrid
GA. We find that the proposed algorithm more effectively
solves the practical multi-objective optimization problem.
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