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The coupling relations between multi-quality characteristics (MQCs) and design parameters (DPs) are
analysed. To improve the robustness of product quality, the coupled design is decoupled approximately
by utilizing the non-linear relations between MQCs and DPs, and an approximate decoupling criterion
is proposed. Based on the fundamental principle of fuzzy-robust design and axiomatic design theory, the
methods for fuzzy-robust design are studied in the case of uncoupled design, decoupled design and coupled
design. Three different models of fuzzy-robust optimization design with MQCs are established, and three
different optimization strategies are proposed correspondingly. A back-propagation neural network is used
as a substitute for non-linear stochastic functions in the established models to improve the computational
efficiency. With the genetic algorithm combined with stochastic simulation and neural network, a hybrid
intelligent optimization algorithm is developed for solving the established models. An example of fuzzy-
robust design of a plastic part is presented.

Keywords: multi-quality characteristics; axiomatic design theory; fuzzy-robust optimization design;
hybrid intelligent optimization algorithm

1. Introduction

Robust design under uncertainty has recently attracted a lot of attention. Uncertainties are usually
modelled using probability theory. Taguchi’s quality loss function and signal-to-noise ratio (S/N)
are usually used as a measuring index of robustness (Chen et al. 2007, Joseph 2007, Kuo et al.
2008). However, recent researches show that the fuzzy factor is one of the influencing factors
similar to random factors causing variations of quality characteristics of a product, and a fuzzy-
robust design method was proposed (Guo 2002, 2004). This expands the study of uncertainty from
probability in conventional robust design to fuzzy probability, and upgrades the robustness under
stochastic uncertainty to the robustness under stochastic uncertainties and fuzzy uncertainties.
The robust criteria used in fuzzy-robust design method, via fuzzy probability (Zadeh 1999), are
entirely different from the robust criteria of conventional robust design. Recently, some scholars
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88 Huixin Guo et al.

have discussed and improved the approach of fuzzy-robust design. Under the conditions of fuzzy
objective and fuzzy design constraints, the percentile formulation design rules for fuzzy-robust
design, which takes both the robustness of quality characteristic and the feasibility robustness
of design constraints into account, were proposed by Liu et al. (2005) when the product quality
possesses nominal-the-best or larger-the-better or smaller-the-better characteristics. Huang et al.
(2005) developed a design method for high quality products using a fuzzy-robust design and
bi-objective optimization model. The bi-objective functions are the tolerance of performance
and the probability of high quality, and the bi-objective optimization model was solved using
physical programming. Based on fuzzy Q-analysis, Chi and Teng (2008) proposed a fuzzy Taguchi
method to solve the parameter design with multi-quality characteristics. Currently, fuzzy-robust
design theory is still under development. Especially, the fuzzy-robust design with multi-quality
characteristics (MQCs) is rarely discussed, and many issues need to be investigated. In this article,
the optimization design principles and modelling methods of fuzzy-robust design with MQCs are
discussed based on the principle of fuzzy-robust design (Guo 2002, 2004) and the design axioms
(Suh 1990, 2001). A hybrid intelligent optimization algorithm is developed to solve the model of
fuzzy-robust design with MQCs. As an example, the fuzzy-robust design optimization of a plastic
part is presented.

2. The fundamentals of fuzzy-robust design

The quality characteristic index y of a product is a function of controllable-factor vector XC, such
as random design variables and their tolerances, and random noise-factor vector Z. This function
can be denoted as y = y(XC, Z). Suppose that the probability density function of y is f (y). In
Figure 1, y0 is the expected value of quality index y, its tolerance is ±�y. y possesses nominal-the-
best characteristic. Whether a design solution of quality characteristic y is a high-quality solution
or not should be a fuzzy subset in the value region of y, and it can be expressed as a real fuzzy
number denoted as Ã. Suppose that the fuzzy distributing function of y is μÃ(y) which expresses
the subjecting degree of y to the expected design. Obviously, μÃ(y0) = 1. When |y − y0| ≥ �y,
μÃ(y) = 0. When |y − y0| < �y, μÃ(y) ∈ (0, 1), and this indicates that the quality index y is a
high-quality index to some extent or is close to the expected target value y0 to some extent. The
value of μÃ(y) can be defined according to the influence of the offset of y from the target value y0

on the product performance. Using different μÃ(y), a designer can embody his/her desirability
on the fuzzy distributing function of y. In Figure 1, a trapezoidal distributing function is defined as
the membership function of Ã. When |y − y0| ≥ �y, μÃ(y) = 0. When y ∈ [a, b], μÃ(y) = 1,
and this expresses that the design quality y can be regarded as satisfying. Therefore, [a, b] can
be considered as a high-quality interval of y. The μÃ(y) in the fuzzy transition region can be
regarded as a linear function. The echelon distributing function of μÃ(y) is

μÃ(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0; (a ≤ y ≤ b)

y − y0 + �y

�y
; (y0 − �y ≤ y < a)

y0 + �y − y

�y
; (b < y ≤ y0 + �y)

0; (else)

As shown in Figure 1, the more the bell-shaped curve of f (y) is embedded into the high-quality
interval [a, b], the larger the area enclosed between f (y) and the y-axis falling into [a, b] is, and
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Engineering Optimization 89

Figure 1. The membership function of Ã and the distributing density function of y.

then the better the robustness of product quality is. Therefore, the robustness of y can be described
by using the fuzzy probability of Ã, denoted as P(Ã). The basic criterion on fuzzy-robust design
can be formulated as

P(Ã) =
∫ +∞

−∞
μÃ(y)f (y)dy =

∫ y0+�y

y0−�y

μÃ(y)f (y)dy −→ max (1)

or

P(Ã) ≥ β. (2)

Here, P (·) is an operator of probability calculation, and β is a scheduled level for controlling the
robustness of a product. (β ∈ [0, 1]). ‘→’ expresses ‘approach’. P(Ã) is the fuzzy probability
of Ã, and it is called the fuzzy high-quality level. This robust design criterion based on fuzzy
probability is called the fuzzy-robust design criterion (Guo 2002, 2004).

By using the fuzzy-robust design criterion, designers can felicitously deal with the fuzzy infor-
mation contained in robust design about quality characteristics. Specifically, P(Ã) has a maximum
when the mean of y is equal to the expected value y0 and P(Ã) is a decreasing function of the stan-
dard deviation of y (Guo 2002, 2004). Therefore, Equation (1) has two effects onf (y): on the one
hand, it enables the mean value of y to approach the center of the high-quality interval [a, b]; on
the other hand, it effectively reduces σ 2

y which is the variance of y caused by controllable factors
and random noise factors. Therefore, the controlling effect of the fuzzy-robust design criterion on
the mean and variance of quality characteristic is similar to the effect of Taguchi’s signal-to-noise
ratio and quality loss function. For a quality index with a larger-the-better characteristic or a
smaller-the-better characteristic, the criterion of fuzzy-robust design is similar to Equation (1).
When modelling a fuzzy-robust optimization, some constraints of product performance and man-
ufacturing cost should be taken into account. According to the design requirements of a product,
Equation (1) is usually used as an objective to be optimized, and Equation (2) is usually used as
a constraint of robustness.

3. Coupling and decoupling of multi-quality characteristics

P(Ã) is a measure of the information contained in design solution of a product. The larger the
P(Ã) is, the less the information contained in a design solution is. Therefore, using Equation (1)
as a criterion of fuzzy-robust design is consistent with the second design axiom (Suh 1990, 2001),
namely the Information Axiom. By using Equation (1), the mean and variance of the quality
characteristic y can be efficiently controlled, and then the expected fuzzy high-quality level P(Ã)

can be achieved. However, Equation (1) is a basic criterion only suitable for the robust design
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90 Huixin Guo et al.

with single quality characteristic index. When modelling the fuzzy-robust optimization with multi-
quality characteristics, the coupling relationships between the functional requirements of a product
must be taken into account. Every one of quality characteristics can be considered as a functional
requirement (FR) of a product. Sometimes, the FR of a product is more than one in engineering
design. Suppose the vector of multi-quality characteristics, namely FRs (functional requirements),
is Y = [y1, y2, . . . , ym]T; and the vector of design parameters (DPs), namely controllable factors
that are defined by designer in physical domain, is X = [X1, X2, . . . , Xm]T. Then, Suh’s design
equation (Suh 1990, 2001) in the case of design with no redundancy of design parameters is

Y = [A] · X.

Here

[A] =

⎡
⎢⎢⎢⎣

A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 · · · Amm

⎤
⎥⎥⎥⎦

[A] is called a design matrix with elements Aij = ∂yi/∂Xj , (i, j = 1, 2, . . . , m), and the noise
factors Zk are impliedly contained in Aij . If [A] is a diagonal matrix, the design solution is defined
as an uncoupled design; if [A] is a triangular matrix, the design solution is defined as a decoupled
design; if [A] is a general matrix, the design solution is defined as a coupled design.

At the stage of conceptual design of a product, designers establish a mapping from the functional
domain to the physical domain. They attempt to reduce or eliminate the coupling of the functional
requirements through a reasonable design of the physical parts of a product. This design method of
decoupling the functional requirements of a product is called ‘hardware-based decoupling’. If the
cost of ‘hardware-based decoupling’ is too large to be acceptable or ‘hardware-based decoupling’
cannot be achieved, the nonlinear functional relationships between MQCs and DPs can be used for
the optimization of [A]. Through optimization, the values of the off-diagonal elements of design
matrix [A] are made to be close to zero or far less than the values of the diagonal elements of [A],
and then a design solution with approximate non-coupling or decoupling can be achieved. This
design method for reducing the coupling of product functional requirements is called ‘numerical
decoupling’ or ‘soft decoupling’. After testing and studying, a scalar quantity CD is proposed to
measure the coupling degree between MQCs and DPs. According to design matrix [A], CD is
defined as

CD =
(

m∏
i=1

|Aii |∑m
j=1 |Aij |

)
·
( ∑m

i=1 A2
ii∑m

i=1

∑m
j=i |AijAji |

)
.

Here, | • | is an operator for calculating absolute value.
If CD is equal to 1.0, the design is uncoupled. As CD is close to 1.0, the values of the off-

diagonal elements of design matrix [A] decrease, and an approximately uncoupled design can
be achieved. The smaller the value of CD is, the stronger the coupling degree between MQCs
and DPs is (or the weaker the independence of MQCs is). To reduce the variations of product
quality propagated between MQCs and improve the robustness of a design solution, a criterion
for ‘numerical decoupling’ is proposed as

CD −→ max . (3)

Here, CD ≤ 1.0 and possesses a goal value of 1.0. CD is different from R (re-angularity) and S

(semi-angularity) proposed by Suh (1990, 2001), and its advantage is that its calculation is simpler
than the calculations of R and S.
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Engineering Optimization 91

4. Fuzzy-robust optimization design with multi-quality characteristics

According to Suh’s first axiom (Suh 1990, 2001), namely the Independence Axiom, the functional
requirements (FRs) of a product should be unattached. Therefore, the robust design of a product
should begin at the stage of its conceptual design. At this stage, designers should make the design
matrix [A] a diagonal or triangular matrix; that is to say, designers should decouple the MQCs
and DPs of a product in the conceptual design stage. Since the elements Aij of [A] are determined
by the physical parts of a product, the elementary transformations of matrix are not suitable for
[A]. Sometimes, the decoupling between the MQCs and DPs may results in the increase of the
manufacturing cost or structural complexity of a product, or the decoupling cannot be carried out
because of the restriction of product structure. It is obvious that the Independence Axiom is too
strict to be satisfied in some engineering designs. Therefore, after conceptual design of a product,
the fuzzy-robust optimization of a product quality should be modelled according to the different
expressions of the design matrix [A].

4.1. Fuzzy-robust optimization modelling in the case of uncoupled design

For a product with m quality characteristics, the design equation in the case of uncoupled design is

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

ym

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 0 . . . 0

0 A22 . . . 0

...
...

. . .
...

0 0 · · · Amm

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

X1

X2

...

Xm

⎤
⎥⎥⎥⎥⎥⎥⎦

= [A] · X. (4)

For the kth quality characteristic index (k = 1, 2, . . ., m, yk = AkkXk), the criterion of fuzzy-
robust design is

P(Ãk) =
∫ +∞

−∞
μÃk

(yk)fk(yk)dyk =
∫ y0k

+�yk

y0k−�yk

μỹ0k
(yk)fk(yk)dyk −→ max . (5)

Here, P(Ãk) is the fuzzy high-quality level of yk . The definitions of the fuzzy membership
function μÃk

(yk) of Ãk and the probability density function fk(yk) of yk are similar to those
of single quality characteristic as shown in Section 2. Let �k be the fuzzy-robust feasible
domain of design parameters subjected to some constraints such as the performance, cost, as
well as the geometric boundary of a product. Then, the optimization design for robustness can be
modelled as ⎧⎨

⎩
max P(Ãk)

s.t. Xk ∈ �k (k = 1, 2, . . . , m)
(6)

Due to the non-coupling of the m quality characteristics yk , Equation (6) expresses m unattached
optimization design models aiming at the design robustness of yk . These models can be solved by
using any existing optimization algorithm, and the fuzzy-robust design parameters, namely DPs,
can be obtained.
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92 Huixin Guo et al.

4.2. Fuzzy-robust optimization modelling in the case of decoupled design

For a product with m quality characteristics, the design equation in the case of decoupled design is

Y =

⎡
⎢⎢⎢⎣

y1

y2
...

ym

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A11 0 . . . 0
A21 A22 . . . 0
...

...
. . .

...

Am1 Am2 · · · Amm

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

X1

X2
...

Xm

⎤
⎥⎥⎥⎦ = [A] · X. (7)

For the kth quality characteristic index (k = 1, 2, . . . , m), yk = Ak1X1 + Ak2X2 + · · · +
AkkXk . Because each quality index, except y1, is not completely unattached, the fuzzy-robust opti-
mization of this product should be modelled gradually from y1 to ym, according to the sequence
of yk . Hence, the fuzzy-robust design model of a decoupled design is a hierarchy optimization
model. For example, the optimization design model, when m = 3, is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max P(Ã3)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X3 ∈ �3

(X2, X1) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max P(Ã2)

s.t.

⎧⎪⎨
⎪⎩

X2 ∈ �2

X1 ∈
{

max P(Ã1)

s.t. X1 ∈ �1

(8)

This model can be solved by using a strategy of step-by-step optimization from y1 to
ym. When solving the kth optimization sub-model (k = 2, . . . , m), the design parameters
(X1, X2, . . . , Xk−1), determined in the former (k − 1) steps, should be considered as noise factors.
When all sub-models are solved gradually, the optimal design parameters (DPs) are obtained. It
is easy to see that the variations of the design parameters (X1, X2, . . . , Xk−1) solved in the for-
mer steps will directly propagate to yk . Therefore, a decoupled design will be inferior to an
uncoupled design in the quality robustness under the same manufacturing conditions and using
circumstances.

4.3. Fuzzy-robust optimization modelling in the case of coupled design

For a product with m quality characteristics, the design equation in the case of coupled design is

Y =

⎡
⎢⎢⎢⎣

y1

y2
...

ym

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 · · · Amm

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

X1

X2
...

Xm

⎤
⎥⎥⎥⎦ = [A] · X. (9)

Here, [A] is a general matrix.
For the kth quality characteristic index (k = 1, 2, . . . , m), yk = Ak1X1 + Ak2X2 + · · · +

AkkXk + · · · + AkmXm, the criterion of fuzzy-robust design is

P(Ãk) −→ max (k = 1, 2, . . . , m). (10)

Here, the definition and calculation of P(Ãk) are similar to Equation (5).
Since the quality characteristic index yk is coupled with other quality characteristics, its proba-

bility density function fk(yk) will be associated with all elements of the design parameter vector
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Engineering Optimization 93

X. That is to say, m quality characteristics are not unattached. Hence, the fuzzy-robust design
model is different from the model of uncoupled or decoupled design discussed previously. With
Equation (3) and (10) synthesized, a multi-objective design optimization for the robustness of a
coupled design can be modelled as

max [P(Ã1), P (Ã2), . . . , P (Ãm), CD]T

s.t. [X1, X2, . . . , Xm]T ∈ � (11)

Here, � is the fuzzy-robust feasible domain of design parameters subjected to constraints such
as the performance, cost, as well as the geometric boundary of design parameters.

Equation (11) is a multi-objective optimization problem with complex correlations between
objectives and design parameters. Generally, a compromise solution can be only obtained. In order
to solve this problem, any existing method of multi-objective optimization, such as the method of
goal programming (Igzino 1985, Tanino et al. 2003), the method of physical programming (Chen
2000), etc., can be used.

5. Hybrid intelligent optimization algorithm for the fuzzy-robust design with
multi-quality characteristics

According to Equation (6), (8) and (11), it is obvious that those models are fuzzy-random optimiza-
tion problems. In Section 4, three modelling methods for robustness of product quality have been
presented. However, no numerical optimization algorithms were discussed. Because the product
quality index yk (k = 1, 2, . . . , m) is a nonlinear function of design parameters and noise factors,
it is difficult to formulate the probability density function fk(yk) of yk , and then the nonlinear
functions such as fuzzy probability P(Ãk) will not be derived analytically. As a result, the statistic
values such as fuzzy probability P(Ãk) cannot be calculated directly. Theoretically, it is possible
to calculate these values by means of stochastic simulations, but sometimes the computational
efficiency of simulations is too low to be acceptable. Hence, it is necessary to find more efficient
substituting models for simulations. Thus, a back-propagation neural network (BPNN) (Zakarian
et al. 1999) is used as a substituting model of non-linear functions such as fuzzy probability P(Ãk).
Then, based on the genetic algorithm (GA) (Goldberg 1989, Guo 2006) combined with stochastic
simulation and neural network, a hybrid intelligent optimization algorithm is developed for the
fuzzy-robust design with multi-quality characteristics. The GA is used as the optimizer since it
has better global convergence than gradient-based methods. The procedure of this algorithm is as
follows.

Step 1: Make the conceptual design and structure design of a product to be optimized.
Step 2: Analyse the relations of MQCs and DPs, and establish the design equation Y = [A] · X.
Step 3: Distinguish the type of [A]. If [A] is a diagonal matrix, establish the mathematical
model of fuzzy-robust design according to Equation (6). If [A] is a triangular matrix, establish the
mathematical model of fuzzy-robust design according to Equation (8). If [A] is a general matrix,
establish the mathematical model of fuzzy-robust design according to Equation (11).
Step 4: According to the type of the established model, choose a strategy for solving the model.
Step 5: According to the probability density functions of design parameters and noise factors,
calculate the statistic values of fuzzy probability P(Ãk) by means of stochastic simulations or
fuzzy-stochastic simulations, and then establish a learning sample matrix and a testing sample
matrix for BPNN.
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94 Huixin Guo et al.

Step 6: Design a BPNN as the substituting model for fuzzy probability P(Ãk). Determine
the architecture of the BPNN, including the numbers of hidden layer, input node and output
node, etc.
Step 7: Train the BPNN by using the learning sample matrix established.
Step 8: Check whether the simulation accuracy of the BPNN is satisfactory or not by using the
testing sample matrix. If yes, then do next. If no, then go to Step 7.
Step 9: Use the checked BPNN as the substituting model for fuzzy probability P(Ãk) and solve
the established mathematical model by using GA.
Step 10: Check whether the feasibility and the accuracy of the fuzzy-robust design solution
obtained in previous step are satisfactory or not by using stochastic simulations or fuzzy-stochastic
simulations. If yes, do next. If no, then increase the evolution generations of GA and go to Step 9.
Step 11: Output the design parameters of fuzzy-robust design optimization and terminate the
optimization procedure.

When the developed optimization algorithm is used, three issues should be emphasized. Firstly,
the BPNN should be well trained and have extensive ability to approximate the substituted models
such as P(Ãk). Therefore, the learning samples should be representative and sufficient for training
BPNN. Secondly, approximation errors exist consequentially because of substituting BPNN for
stochastic simulations or fuzzy-stochastic simulations, and then the checkout of feasibility and
the accuracy of the obtained solution, in Step 10, are necessary. Thirdly, the developed algorithm,
from Step 1 to Step 11, is open to many algorithms for fuzzy-robust optimization. Any effective
optimization algorithm, such as ant colony algorithm, can be use as a substitute for the GA in
Step 9.

6. Example

6.1. The formulation of multi-objective optimization for fuzzy-robust design

For the purpose of comparison, a plastic part which was discussed by Chen (1999) is taken as
an example of fuzzy-robust design. The part has two quality characteristics, the first is the ability
to resist impact pressure, denoted as g1 (MPa), and the second is the fluidity of plastic, denoted
as g2(g/10 minutes). The unit of fluidity (g/10 minutes) expresses the gram mass injected in
10 minutes by a special plastic injector for experiment. Through experiments (Chen 1999), it is
validated that g1 and g2 are the functions of the rotating speed of injector’s screw n(r/min) and
the technical temperature t(◦C). It is expected to find out the optimal parameters n and t subjected
to g1 ≥ 21.3 (MPa) and g2 ≥ 52.4 (g/10 minutes). After factorial experiment (Chen 1999), two
response surface models have been established as follows:

g1(x) = 21.531 + 0.612x1 + 0.626x2 − 1.142x2
1 − 1.492x2

2 + 0.049x1x2 (12)

g2(x) = 52.030 + 0.021x1 + 1.329x2 − 0.500x2
1 − 0.300x2

2 + 0.098x1x2 (13)

where, x1 = n − 270/28; x2 = t − 250/14; 242(r/ min) ≤ n ≤ 298(r/ min); 236(◦C) ≤ t ≤
264(◦C).

The parameters n and t are random variables distributed normally, and have deviations �n and
�t respectively (�n = ±0.05 · n, �t = ±0.05 · t). Since n and t can be adjusted independently,
n and t are statistically independent. Obviously, g1 and g2 have a larger-the-better characteristic.
According to the theories of fuzzy-robust design (Guo 2002, 2004), two fuzzy subsets Ã1 and
Ã2 are defined, and their membership functions are graphically defined as shown in Figure 2.
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Figure 2. The membership functions of Ã1 and Ã2.

In Figure 2(a), the satisfying value of g1 is 21.3 (MPa) and its acceptable lower limit is 21 (MPa).
In Figure 2(b), the satisfying value of g2 is 52.4 (g/10 minutes) and its acceptable lower limit is
52 (g/10 minutes).

The fuzzy high-quality levels of quality indexes g1 and g2 can be calculated by the following
equations:

P(Ã1) =
∫ +∞

20
μ(Ã1)f1(g1)dg1

P(Ã2) =
∫ +∞

50
μ(Ã2)f2(g2)dg2

Here, f1(g1) and f2(g2) are the probability density functions of g1 and g2 respectively, and their
mathematical expressions are not known. The goals of P(Ã1) and P(Ã2) are all 1.0.

Because g1(x) and g2(x) are coupled by design variables x1 and x2, the decoupling of g1 and
g2 cannot be achieved. Therefore, the formulation of fuzzy-robust design should be modelled as
a multi-objective optimization problem according to the method presented in Section 4.3. The
compromise decision support problem (DSP) method is an effective method to deal with multi-
objective optimization proposed by Bras and Mistree (1993). Now, this method is used to formulate
this multi-objective problem as shown in Figure 3. In this figure, two different objectives under
the keyword ‘minimize’ are defined and will be optimized. The first objective is the deviation
function D1, and the second objective is the deviation function D2. d−

i and d+
i are the deviation

variables of the goals (i = 1, 2, 3), which are the measures for the achievement of the goals.
For the deviation function D1, the multi-objective scenario for fuzzy-robust design is modelled

using pre-emptive formulation of the deviation variables. Here, ri(i = 1, 2, 3) are the priority
levels which is determined according to the importance of the quality characteristics. Since the
ability to resist impact pressure (g1) determines the mechanical performance of the plastic part,
g1 is the principal quality characteristic to be optimized. The fluidity of plastic (g2) is considered
as a subsidiary quality characteristic since it does not determine the mechanical property of the
plastic part and is only an influencing factor on the injecting performance of plastic. Moreover,
the ‘numerical decoupling’ of g1 and g2 is wished to be achieved approximately for reducing the
coupling of functional requirements. Therefore, the priority of r1 is higher than that of r2 and the
priority of r2 is higher than that of r3. For the deviation function D2, the multi-objective scenario
for fuzzy-robust design is modelled by using the weighted summation of the deviation variables
and the three deviation variables are considered to be comparably important. Here, wi(i = 1, 2, 3)
are the weighted coefficients and let be equivalent.

6.2. Numerical results and discussion of results

The hybrid intelligent optimization algorithm developed in Section 5 is used to solve the
optimization problem. Since n and t are normal variables, x1 and x2 are also normal random
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96 Huixin Guo et al.

Figure 3. The compromise DSP formulation of the design example.

variables. According to the method for determining the parameters of BPNN discussed by
Funahsshi (1989), a BPNN is designed with two hidden layers, two input nodes and two out-
put nodes. This neural network is used as the substitute for P(Ã1) and P(Ã2). The sample matrix
[X]S is created by repeatedly using stochastic simulations of x1 and x2. By means of repeated
stochastic simulations of P(Ã1) and P(Ã2), the sample matrix [P]S is established. By using [X]S

and [P]S as the learning samples, the designed BPNN is trained. After checking the simulation
accuracy of the trained BPNN, the trained BPNN is placed into the optimization problem shown
as in Figure 3 to substitute for P(Ã1) and P(Ã2). When the deviation function D1 is used as an
objective, the compromise DSP can be solved by using the method of lexicographic goal pro-
gramming (Igzino 1985, Tanino et al. 2003). According to the priority levels, the lexicographic
minimum of the deviation function D1 is achieved by using the hybrid GA (Guo 2006) which
deals with constraints by using the penalty function method, and the first solution of fuzzy-robust
design is obtained. When the deviation function D2 is used as an objective, the compromise DSP
is solved directly by using the hybrid GA (Guo 2006), and the second solution of fuzzy-robust
design is also obtained accordingly. Two solutions of fuzzy-robust design are shown in Table 1.

In Table 1, the former solution, which was determined experientially and was used previously
in manufacture, and the first solution of robust design was presented by Chen (1999). The sec-
ond solution of robust design was presented by Zhang et al. (2006). The nominal values of the
ability to resist impact pressure (g1) and the fluidity of colophony (g2) are directly calculated by
using Equation (12) or (13), but their means and variances are obtained through 106 stochastic
simulations. The mean and variance of the second solution of robust design (Zhang et al. 2006) are
different from the values in Table 1 since those (Zhang et al. 2006) are approximately calculated
using the first-order Taylor expansion by considering the standard deviation of n as �n/3 and the
standard deviation of t as �t/3.

For the first solution of fuzzy-robust design as shown in Table 1, the variance of the ability
to resist impact pressure (g1), which is the principal quality characteristic to be optimized, has
been reduced significantly, and the mean of g1 is larger than 21.3 (MPa); but for the old solutions,
the means of g1 are less than 21.3 (MPa) and are not satisfactory. Therefore, the robustness of
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Table 1. Comparison between the fuzzy-robust solutions and the old solutions of discussed example.

Old solutions

Former First solution of Second solution First solution of Second solution of
solution robust design of robust design fuzzy-robust design fuzzy-robust design

Design n/(r/min) 250 277 274.3128 271.1382 268.5116
variables t/(◦C) 240 257 256.2634 252.8502 253.5163

Ability to Nominal
resist value 19.5878 21.3767 21.4201 21.5459 21.4663

impact Mean 19.4319 21.2048 21.2543 21.3819 21.300
pressure
(MPa) Variance 0.5997 0.1798 0.1479 0.0551 0.0746

Fluidity of Nominal
plastic value 50.7076 52.6057 52.5627 52.2890 52.3410

(g/10 Mean 50.6644 52.5654 52.5185 52.2497 52.3000
minutes) Variance 0.2443 0.1302 0.1295 0.13301 0.127

CD 0.2883 0.0364 0.0364 0.6062 0.5430

principal quality characteristic (g1) has been obviously improved. For the quality characteristic
g2, its robustness has not be improved distinctly since the priority level r3 about g2 in Figure 3 is
the lowest, and its mean is less than 52.4 (g/10 minutes), but it is larger than its acceptable lower
limit. Because g2 is only a subsidiary quality characteristic and does not determine the mechanical
property of the plastic part, this new solution about g2 can be considered acceptable. Especially,
the design matrix of the first solution of robust design [A]old, as an example of old solutions, and
the new design matrix of the first fuzzy-robust design solution [A]new are

[A]old =
[

0.0655 −1.2177
−0.1800 1.0535

]

[A]new =
[

0.5291 −0.3435
3.014 × 10−4 1.2108

]
≈

[
0.5291 −0.3435

0 1.2108

]

Obviously, the absolute values of diagonal elements of [A]new are larger than those of [A]old, and
the absolute values of off-diagonal elements of [A]new are less than those of [A]old. At the same
time, the coupling measurement CD of new solution is larger than CD of old solutions, which
means that the coupling degree of two quality characteristics has been reduced effectively and
the independence between g1 and g2 is maximized. By using fuzzy-robust design optimization,
[A]new has been made approximately be a diagonal matrix and the ‘numerical decoupling’ of g1

and g2 is achieved approximately. The advantage of the ‘numerical decoupling’ is that the desired
quality characteristics can be easily achieved by adjusting the values of n and t respectively.
Therefore, the first fuzzy-robust solution matches with the design axioms documented by Suh
and its robustness is better than that of old solutions.

For the second solution of fuzzy-robust design as shown in Table 1, the variances of g1 and
g2 are smaller than the variances of old solutions; the mean of g1, which is the principal qual-
ity characteristic, is larger than 21.3 (MPa). Therefore, the robustness of g1 and g2 have been
effectively improved. Since D2, the objective of this solution, is modelled using the weighted
summation of the deviation variables, the CD of this solution is different from the CD of the first
solution of fuzzy-robust design, which shows that the ‘numerical decoupling’ of g1 and g2 is not
achieved entirely; however, since the CD of this solution is larger than the CD of old solutions,
the independence between g1 and g2 has been effectively enhanced.
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According to the above discussion, it can be seen that the design robustness and the indepen-
dence between g1 and g2 of the first or the second solution of fuzzy-robust design are superior to
that of old solutions as shown in Table 1. Hence, every one of the two new solutions of fuzzy-
robust design can be used in the manufacture of the plastic part discussed. Furthermore, since the
BPNN is used as a substitute for P(Ã1) and P(Ã2), the computational efficiency is improved. In
this example, the CPU time to calculate the P(Ã1) or P(Ã2) by using BPNN is only one fifth of
that of 105 stochastic simulations used.

7. Closure

In engineering design, the study of fuzzy-robust design with multi-quality characteristics is impor-
tant, and the fuzzy-robust design of single quality characteristic is just its special example. The
modelling methods, discussed in the case of uncoupled, decoupled and coupled design, are three
typical cases. Those methods accord with the fundamental principles of fuzzy-robust design and
the axiomatic design theory (Suh 1990, 2001). For the fuzzy-robust design of multi-quality charac-
teristics with redundancy of design parameters, its fuzzy-robust design model can be transformed
into one of the three typical cases discussed previously by predefining some design parameters.
The presented example of the fuzzy-robust design with multi-quality characteristics shows that
the proposed modelling methods and optimization algorithm are effective and practical. In sum-
mary, in our opinion, the methodology proposed in this article appears to have several advantages.
Firstly, by using the fuzzy-robust design criterion as shown in Section 2, designers can felicitously
deal with the fuzzy information about design robustness of quality characteristics when the mean
and variance of quality characteristics are controlled effectively. Secondly, by using the mod-
elling methods proposed in Section 4, the independence between multi-quality characteristics can
be enhanced while the variances of quality characteristics decrease, and then the design robust-
ness can be distinctly improved. Thirdly, the computational efficiency of the fuzzy-robust design
optimization with multi-quality characteristics can be improved by using the hybrid intelligent
optimization algorithm developed in Section 5, and the ability for the fuzzy-robust design method
to solve complex engineering problems is improved.
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