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A Hierarchical Statistical
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Multilevel Systems With Shared
Variables

Statistical sensitivity analysis (SSA) is an effective methodology to examine the impact of
variations in model inputs on the variations in model outputs at either a prior or poste-
rior design stage. A hierarchical statistical sensitivity analysis (HSSA) method has been
proposed in literature to incorporate SSA in designing complex engineering systems with
a hierarchical structure. However, the original HSSA method only deals with hierarchical
systems with independent subsystems. For engineering systems with dependent subsystem
responses and shared variables, an extended HSSA method with shared variables (named
HSSA-SV) is developed in this work. A top-down strategy, the same as in the original
HSSA method, is employed to direct SSA from the top level to lower levels. To overcome
the limitation of the original HSSA method, the concept of a subset SSA is utilized to
group a set of dependent responses from the lower level submodels in the upper level SSA
and the covariance of dependent responses is decomposed into the contributions from
individual shared variables. An extended aggregation formulation is developed to inte-
grate local submodel SSA results to estimate the global impact of lower level inputs on
the top level response. The effectiveness of the proposed HSSA-SV method is illustrated
via a mathematical example and a multiscale design problem. [DOI: 10.1115/1.4001211]

1 Introduction

A complex design problem often involves a large number of
design variables and multidisciplinary analyses with excessive
cost. The “all-in-one” (AIO) method in which the whole system
analysis is treated as a black box, is usually not practical or even
prohibitive due to the system’s complexity, limited communica-
tions between subsystems belonging to various disciplines, and
the associated high computational expense. To relieve the compu-
tational burden and manage the complexity in design processes, a
complex system is often decomposed into several subsystems in
either a hierarchical or nonhierarchical manner [1,2]. Hierarchical
modeling is widely used to decompose a complex system into
multilevel submodels according to their functional attributes [3,4],
physical structures [5,6], or scale magnitudes [7], etc. A typical
hierarchical system with a bilevel structure is illustrated in Fig. 1.
Each submodel has only one “parent” submodel at a higher level
but multiple “children” submodels at a lower level [2]. The infor-
mation flow in the hierarchical structure follows a one way direc-
tion from the bottom level to the top level. Following the same
terminology in multidisciplinary design optimization, we denote
local input variables of each submodel as X,Xy,...,Xy and
shared variables that exist as a common set of input variables to
“sibling” submodels as Xg. As shown in Fig. 1, the existence of
shared variables creates the functional dependence of the re-
sponses from the sibling submodels (e.g., ¥; and Y, in Fig. 1). In
multidisciplinary design, shared variables are common design (de-
cision) variables shared by multiple subsystem designs. As design
variables are frequently independent, it is assumed in this work
that all input variables are independent. For designing hierarchical
engineering systems, deterministic design methods have been de-
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veloped in literature [1,3,8—10] with extensions to multilevel op-
timization formulations considering uncertainties [2,4,11].

Statistical sensitivity analysis (SSA) is the study of how the
variation in the output of a model can be apportioned, qualita-
tively or quantitatively, to different sources of variation from input
variables through statistical means [12]. By applying SSA, the
importance of input variables can be identified and the engineer-
ing system can be simplified by fixing those unimportant variables
[13-15]. A hierarchical statistical sensitivity analysis (HSSA)
method was developed in our earlier research [11] to facilitate the
application of SSA in complex multilevel engineering systems.
The original HSSA method contains three features: (1) SSA is first
applied to the top level model and a top-down analysis is executed
level-by-level. (2) Instead of performing SSA in the all-in-one
manner, SSA is separately applied to the critical submodels at
each level. (3) The global statistical sensitivity index (GSSI) of
any input variables with respect to the global system performance
is derived from aggregating the local statistical sensitivity index
(LSSI) of relevant submodels. The effectiveness and efficiency of
the original HSSA method has been demonstrated by examples in
Ref. [11].

However, the original HSSA method has a critical deficiency in
that it can only be used for designing multilevel systems with
independent submodel responses, i.e., no shared variables as in-
puts to multiple sibling submodels. Although previous literatures
address SSA with correlated input variables [16-18], these meth-
ods do not concern the cases with multilevel submodels and there-
fore cannot be directly performed on a complex system with a
hierarchical structure. To overcome the aforementioned limita-
tions, an extended hierarchical statistical sensitivity analysis
method, named hierarchical statistical sensitivity analysis with
shared variables (HSSA-SV), is proposed in this work. The pro-
posed method examines the importance of a local subset that con-
tains dependent responses from lower levels. A top-down strategy,
same as in Ref. [11], is invoked to direct SSA of submodels at
different levels. An extended GSSI aggregation formulation is
proposed to evaluate the GSSI of input variables in the multilevel
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Fig. 1 A bilevel hierarchical structure with shared input
variables

system by integrating the local subset SSIs and the decomposed
covariance across multiple levels. The proposed HSSA-SV
method has a broader application of SSA to complex engineering
design problems compared with the original HSSA method.

The remainder of the paper is organized as follows: A technical
background of SSA including the variance-based SSA and subset
SSA is introduced in Sec. 2. The details of the HSSA-SV method
are introduced in Sec. 3. Our proposed method is demonstrated
and verified in Sec. 4 via a mathematical problem and SSA of a
multiscale design system. The benefits of the proposed method are
discussed in Sec. 5 followed by conclusions in Sec. 6.

2 Technical Background

2.1 Variance-Based Statistical Sensitivity Analysis. The
variance-based SSA, a popular category among the global sensi-
tivity analysis (GSA) methods, evaluates the statistical sensitivi-
ties based on the decomposition of the variance of the model
outputs in accordance with the variation sources from the inputs
[19,20]. In literature, a number of variance-based methods, includ-
ing Sobol’s methods [19,21], Fourier amplitude sensitivity test
(FAST) [20], important measures [22], McKay’s method [23],
etc., were developed and applied in a variety of fields such as
chemistry [22,24], environmental science [25-27], and mechani-
cal engineering [13]. Among these existing methods, Sobol’s
method has been widely employed to rank the input variables
based on their contributions to the total variance of the model
output [19,21], and is adopted in this paper.

In the variance-based SSA methods, the total variance of an
output Y=£(X) is decomposed into the summation of 2"—1 vari-
ance terms, representing the various sources from input variables

X=[X;,X,...,X,] in a similar fashion as in an analysis of vari-
ance (ANOVA):

VY= EVY+EV§X+

i<j

-+ V));l,...,xn (1)

where V¥ is the total variance of the output and V% is the first-
order term that represents the partial variance in VY due to the
individual effect of a random variable X;. The superscript Y rep-
resents the model output of interest and the subscript denotes the
index of an input variable. The higher-order terms such as VX X;
and so on denote the effects from the interaction of two or more
random variables. To measure the importance of an input variable
with respect to an output variable, the SSI of X; is defined by the
ratio of the partial variance contributed by X; to the total variance
of the output Y

1=i=n (2)

Equation (2) calculates the main effect of X; on the variance of Y.
A higher-order SSI is formulated as
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Y X s, . .
SSI_x =y 1= =n (3)
1 J
which represents the interaction effect between random variables
Xis- X to the variance of the model output Y. The total statis-

tical sens1t1v1ty index (TSSI) of X;, measures the contributions of
X;, including its main effect as well as its interaction effects with
other input variables and it is defined as

SSIy, = SSIy +SSI, ¢ )

where SSI
input Varlable X; and at least one other input variable from
X1 X1 Xy - X )

To calculate the SSI under the condition that all the random
variables are independent, Sobol’s method [19,21] introduces a
decomposition of the model function Y=f£(X) into an ANOVA
formulation as

fX)= fo+2 S (X)+ 2 by x, (X; X)) + .

i1<ip

X ) (5)

5. is the sum of all the higher-order SSIs involving the

+ ¢X,-],..A,Xi (Xi,,

where f is the mean of f(X) and other terms are formulated as
[13,19,21]:

oy (X) = | O] [puXax,]- fo (6)

k#i

X.X)

f XTI [exax
k#ip,. . i

X)~fo (D)

—E 2 by,

(Xkl’ cee
I=1 Ky kye iy i) !

In Egs. (6) and (7), pi(X;) is the probability density function
(PDF) of variable X;. As proposed in Sobol’s methods [19,21], the
total variance of Y and the partial variance terms in Eq. (1) are
calculated through integration of each term in Eq. (5)

2.2 Subset Decomposition and Statistical Sensitivity
Analysis. Based on the principle of variance-based SSA presented
in Sec. 2.1, Sobol’s method further introduces an SSI definition
for studying the impact of a grouped, subset of input variables
[21], [28]. It considers an arbitrary set of m random variables as a
group and evaluates the partial variance contributed by the varia-
tion in the grouped variables over the total variance of the output
Y [13]. With the subset decomposition, n input random variables
in Y=£(X) are divided into N mutually disjoint subsets denoted as
U,,...,Uy, where U,-:{Xl-], .,X,-k}, k=1, and 1=<i|,...,i;y=n
Under the condition that subsets are statistically independent, the
ANOVA decomposition of ¥=f(X) can be expressed as

fX) = fo+2 PuU)+ 2 by, v, Uy Up) + .

i)1<iy

+éy, v Ui, ....U;) (8)

0Ty
where X; , X in the original univariant ANOVA decomposi-

tion, see Eq (5) are replaced by subsets U , ..., U,,_. The variance

of Y can be decomposed into a summanon of partial variances
from the subsets

EVY+EVUU+

i<j

-t V{JIUT“.,UN 9)
Therefore, the main effect of each subset is defined by
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Fig. 2 Flowchart of the HSSA-SV method with dependent
lower level responses

VI,
SSI{/,;?YI’ 1=i=N (10)
and the higher-order SSI of the subsets is formulated as
V{/ b U
55151.1,,..,11,./_=#"', 1=i,....i;=N (11)

The partial variance Vé, . 1s calculated as:
1]' o 1/

J
Vi, 0 = f 0,0, Uy - U L Ipy, (U)dU, ] (12)
1 j 1 J k=1

where py (U ik) represents the joint probability density function of
Ik

the subset variables U,

3 HSSA-SV

The HSSA-SV method developed in this paper follows a simi-
lar framework of the original HSSA method introduced in Sec. 1
[11] but with revised formulations to account for dependent sub-
model responses. The flowchart of the HSSA-SV method for a
two-level model is shown in Fig. 2. In the first step of the pro-
posed top-down strategy, SSA is applied to the upper level model.
Because the exact information of the dependent responses from
the lower level is not available at this stage, a prior joint distribu-
tion of the dependent responses is assigned for performing local
subset SSA on the upper level system model. According to the
rank of the TSSIs at the upper level, critical responses from the
lower level can be identified and SSA is further applied to the
lower level submodels with critical responses. Once the real in-
formation of the lower level responses is available and after ap-
plying SSA to the lower level submodels, a posterior local subset
SSI of the upper level model can be computed. In this process, to
account for the impact of shared variables, the covariance of the
dependent responses is decomposed into the contributions from
individual variation sources (see details in Sec. 3.1). The local
subset SSA is used to evaluate the local subset SSI of the depen-
dent responses and the importance sampling technique is em-
ployed for obtaining the posterior SSIs by reusing the existing
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sampling data from the prior stage of the upper level (see details
in Sec. 3.2). The aggregation formulation used in the original
HSSA method is then extended and the main effects of local in-
dependent input variables and shared variables can be assessed via
integrating the posterior local subset SSIs of the upper level
model, the LSSIs of lower level submodels, as well as the decom-
posed covariance of dependent responses (see details in Sec. 3.3).

3.1 Decomposition of Covariance. The idea of the covari-
ance decomposition is to decompose the total covariance of two
dependent outputs due to the shared variables into separate items.
In this subsection, two outputs, Y| and Y,, from the models Y,
=/1(X,,X) and Y,=1»(X,,X,), respectively, are used to demon-
strate the decomposition of covariance. X is a vector of Ng inde-
pendent shared input variables {X,... ,XSNS}, Xi={X1,...,
Xin s and Xp={X;;, ..., Xoy,} are two vectors with N; and N,
independent local input variables for the two models, respectively.
Y, and Y, are functionally and statistically dependent because of
the existence of the shared variables X.

Similar to the ANOVA method, the covariance of Y; and Y, are
decomposed into 2¥s—1 contribution items as

Cov|Y,,Y,|= Covi’2 4 Covi'2 4+ . 4+ Covhi2
[¥1.72]= 2 Covy!l*+ X, Covyly
13

SN
i<j :
(13)
where Cov§1 Y 2 is the first-order covariance contribution from the

st
shared variable X; and Cov?gg‘ denotes the second-order covari-
SUS,

ance contribution due to the interaction of the shared variables Xii
and Xj;, and so on.

PROPOSITION. The partial covariance contribution in Eq. (13) is
calculated as

Covy"2=Covl ¢y (X,).0x (X)], 1=i=Ng (14)

for 1=iy,...

Y,Y.
Covy!'2
Xjpo e X

= Cov[qﬂxsil,, . ,,X“._(Xsil, ...
J

where ¢X (Xél) and ¢X . X -(Xsil b ’Xsi]-) are the ANOVA de-
St Sl]"”Y S y
composed terms of the function Y,=f1(Xs,X}), as shown in Eq.
(3), and ¢y (X,;) and @y x ,(Xs,-l,...,XS,-j) are the ANOVA
st Sll""’ St

decomposed terms of function Y,= f>(Xs,X,). See Appendix A
for the proof of Egs. (14) and (15).

The first-order covariance term in the covariance decomposi-
tion is derived as (see details in Appendix A)

COV;;I_YZ = COV[E(fl |Xsl) 7E(fZ|XSi)]

,ij=Nyg and

’Xsij)v (pXSiI,..,,XS (Xsil’ s ’Xsij)] (15)

g

(16)

and the higher-order covariance decomposition term is derived as
(see details in Appendix A)

COV?;:.Z.H,XS[ = COV[E(fl |Xsil’ ce ’Xsij)’E(fZ|Xsi]7 s ?Xsij)]
j

Jj-1
) E 2 COV));';_].Y,Z. X (17)

k=1 i€ iy i) !

It can be concluded that, the covariance of Y; and Y, is equal to
the covariance of their conditional expectations with respect to
their shared variables, i.e.,

CovlYy, 5] = CovE(f1[X,), E(f>1X,)]
The proof is shown in Appendix A.

(18)

3.2 Local Subset SSA. Due to the dependency shown in Fig.
1, local statistical sensitivity analysis (LSSA) cannot be directly
applied to the lower level responses Y, and Y, [17,28]. We pro-
pose to use the subset SSA approach to evaluate the local subset
SSIs for dependent responses. These dependent responses are re-
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garded as a subset denoted by Uy,y, and the subset becomes in-
dependent of the other submodel responses Y;,3=i=N. A prior
joint distribution of the dependent responses, i.e., the subset
Uy,y, is assigned, based on the designer’s knowledge, before ap-
plying the local subset SSA. If a designer does not have any
knowledge to assign a prior joint distribution, a joint uniform
distribution with a large range that encompasses as much of the
real performance as possible should be assigned. Based on the
empirical study in our earlier work [11], we found such treatment
can improve the posterior estimation when applying the impor-
tance sampling method in the correction step. Based on the result-
ing local subset SSIs, the LSSA is next performed on critical
submodels at the lower level.

If a subset of dependent responses has a high LSSI, the LSSA
needs to be performed on the submodels related to all the depen-
dent responses in this subset. By sampling simultaneously the
outputs from dependent submodels with shared and local input
variables, the real joint distribution of the dependent outputs Y
and Y,, as well as the LSSIs of the local input variables and
shared variables for each submodel, can be determined.

Using the importance sampling strategy as described in Ref.
[11], posterior local subset SSIs of the upper level models and
statistical indices (e.g., variance) can be recalculated without ad-
ditional samples, reducing the computational cost significantly.
For example, in the upper level model SSA, if the lower level
responses Y1, ...,Y,, acting as inputs to the upper level model, are

dependent, the integral of an arbitrary function f(Y,,...,Y,) with
a posterior joint PDF of dependent responses Y;,...,Y, can be
written in terms of a prior joint PDF as
ff(Yl, ’Yn)Pf/Sl[,u..Y,,dYI’ ....dy,
JYt
"Y rr
Jf(Yl, p’f,]w_,ynle, ...,dy,
,...,yn
1 PIM Y
~ —Ef(Y’;, )T" (19)
M2 oYy

1 n

where p’{, y and p’y are the posterior and prior joint PDFs

of dependent submodel responses respectively, (v* 1ree Yk) are
pairs of samples subject to a prior joint distribution. M is the
number of sampling points. In SSA of the upper level model, the
posterior p}’ Y, is the real joint PDF of the dependent responses

Yl,...,Yn.

3.3 Extended Aggregation Approach. An extended aggrega-
tion approach is proposed to estimate the GSSIs of lower level
input variables, including the shared input variables. Since the
aggregations of interaction effects and total effects are mathemati-
cally difficult and the main effects are usually the most dominat-
ing effects in typical engineering systems [11], the proposed
method focuses on the evaluation of the GSSIs of input variables
for main effects.

For demonstration purpose, we start with a bilevel system as
shown in Fig. 1 in which only two submodels (g; and g;) have the
shared variables X. When the upper level model function is linear
with respect to ¥; and Y}, 1(Xy,Y) can be written as

h(X,Y) = S(Xo, Y7) + T(X, Y)Y, + Ti(X, Y)Y, (20)

where Y73, which excludes Y; and Y}, is the vector of independent
responses from the lower level submodels 5(X9.Y7), Ti(Xo. Y75,
and T;(Xy,Y7) are any integrable functions in terms of Xy and
Y7 The GSSIs for the main effects of the local input variables X;;

and Xy are expressed as

031006-4 / Vol. 132, MARCH 2010

Z

VX T‘Z . VY,-
4 ik 7 Y;
SSIXik = F = SSIUYin . SSIXik . "/%J s Xik e Xi (21)
Yy,
V)Z( T2 VY
SSI)Z( =—2=Ss1Z, ssr,g —1—, XpeX; (22)
V vy, VU
Yy

The GSSIs for the main effects of the shared variables Xj; € X
can be calculated as

Vi .V VY
SSIZ =——ssr{, (ssrfg c—— 4+ SSIy - ——
sk V YY sk V sk
Uy,yj Uy,yj
2-T,-T,-Covhi
1 J XS

+ Tk (23)
where  T;=[T(Xy,Y7)px,p vzdXodYy;  and T;=[T;(X,.

; j) pxopy~dX0dY 7 V¥iand Vi represent the variance of submod-

els outputs ¥; and Y;, respectively. VU is the first-order term

that denotes the partlal variance contrlbuted by the subset U vy, to
the total variance of the upper level output Z. VZ is the total
variance of Z. Cov i is the first-order term from the covariance
decomposition. The proofs of Egs. (21)—(23) are given in Appen-
dix B.

The approach can be extended to a general case with n depen-
dent lower level responses Yy, ...,Y,. When the upper level func-
tion h(Xy,Y) is linear with respect to all the dependent responses,
the following relationship holds:

n

h(Xe,Y) = SXo, YT ) + 2 Ti(Xo, YT )Y,

i=1

(24)

where Y], is the vector of independent responses from the
lower level submodels excluding Yq,...,Y,.
The formulation of the GSSI for the main effects of the local

input variable X;;, € X; is written as
7z

VXik SSIZ i
vz IUyl, Y,

TQ Vi
Z _ . L R
SSI = SSIY, 7 (25)

Y,

peeoty

The GSSIs for the main effects of the shared variable X|; € X are
expressed as

Vi ! 2.V
zZ _ _Tsk _ Z Y; M
SSI, =7 =SSIg, - El ssiy Vv

YooY,

n n-l
2 2 T, ;- Covy (26)
i=1 j<i
where T;=[T; (Xo. YT, _)px Py dXodY

Oftentimes the upper level model functlon is not linear with
respect to the dependent responses from the lower level, the GSSI
formulations (Egs. (25) and (26)) no longer hold for providing
accurate SSA results. To overcome this limitation and estimate the
GSSI in a nonlinear situation, a multivariable weighted linear re-
gression [29] is employed to capture the global linear trend of the
upper level function.

hu, (Uy,..x)= J h(Xo.Y)px dXopy;—dY7 =~ A

+ 2 B;-Y; (27)
i=1

where A is constant and B; is the linear coefficient for each de-
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Fig. 3 System structure for the mathematical example

pendent response Y, The coefficient values can be obtained
through the weighted linear regression based on the upper level
SSA samples collected at the prior stage and the posterior joint
distribution of the lower level responses. The multivariable
weighted linear regression is written as

B=(EWH 'EWL (28)
where B=[A,B;,...,B,|"; &=[1,Y,,...,Y,] is a matrix com-
posed of a column vector of unity and all the samples of depen-
dent responses from the lower level submodels with prior joint
probability density function. Each component in the weight diag-
onal matrix W is set as the probabilities of the sampled dependent
responses based on the posterior joint probability density function.
The introduction of weights in the linear regression is to capture
the linear trend of the upper level model based on the lower sub-
model responses. Hence, the GSSI for the main effects of X;; can
be approximated as

Y,

i

2
Y; i
SSIy = SSI%,YIYMYY” - SSIy - e XieX; (29)
Y.,

n

For a shared variable X, its GSSI for the main effect is approxi-
mated as (see the proof in Appendix C).

7 _oQiZ . Y; BI'Z'VY'
SSIZ =SST%, > [ ssty =
sk Vit 40 kv
Y.y,
2 n n-1
+ 7 > > BB Covy!s (30)
i=1 j<i

4 Case Studies

Two example problems are used to demonstrate and verify our
proposed HSSA-SV formulations. The first problem is a math-
ematical example with explicit functions defined. The purpose is
to help readers understand how our method works and to illustrate
the impact of the nonlinearity and dependency on the accuracy of
the proposed method. The second example is associated with a
multiscale bracket system, where the functions are implicit. The
purpose is to illustrate the use of HSSA-SV in a highly correlated
multiscale system to identify critical subscale inputs and re-
sponses with respect to their impact on performance at the coarse
scale. The AIO SSA are presented in both case studies to verify
the accuracy of the proposed HSSA-SV formulations in capturing
the correlation of dependent responses but not as a competing
method to HSSA.

4.1 Mathematical Example. A mathematical example of a
bilevel hierarchical system is shown in Fig. 3. All the input vari-
ables X; are assumed to be independent with uniform distributions
over the range of [0,1]. Submodels 1 and 2 have two shared vari-
ables X3 and X,. To study the impact of the nonlinearity and
dependency on the accuracy of the proposed method, different
values are assigned to « and [ that control the functional nonlin-
earity. Changing « from O to 4 increases the nonlinearity between
the lower level responses and the upper level outputs while chang-
ing B from O to 2 provides an increasing interaction effect of the
local variables in submodel 1. Since the function is cheap to com-
pute in this example, 1.0 X 103 Monte Carlo samples are generated
for calculating the integrals in Eq. (12). Following the proposed

o=0, =0 o=4, =0
0.9 08
08 | TAIO ~ R TAIO B
07 H BHSSA-SV - 07 W HSSA-SV [
o6 L O HSSA | s OHSSA
05 1 0.5
0.4 - 04
0.3 03
02 L 02
0.1 1_‘ 0.1 m
0+ } f I } { 0 - -
@ xi X2 X3 X4 © xi X2 X3 X4
o=0, p=2 o=4, =2
0.9 0.9
0.8 T AIO i 0.8 D AIO =
0.7 1 B HSSA-SV — 0.7 EHSSA-SV |
06 O HSSA 06 OHSSA
05 - 05
0.4 - 0.4
03 - 03
0.2 - 02
0.1 - 0.1 m
0 - | —— 0 : : 1
b0 x1 X2 X3 X4 @ xi X2 X3 X4

Fig. 4 The GSSI for the main effects of the input variables in different

scenarios
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Table 1 Comparison of variance estimations of top level performance Z using HSSA, HSSA-
SV, and AIO methods

Vz (a) (b) (c) (d)

AIO 1.46 1.07 1.98 X 105 0.98 X 106

HSSA 1.33(8.90%) 0.90(15.9%) 6.29 X105 (217.7%) 1.07 X 105 (89.1%)
HSSA-SV 1.45(0.7%) 1.06(0.9%) 2.05X% 105 (3.5%) 1.02X 106 (4.1%)

method, local subset SSA is performed first at level 0. The two
dependent responses Y; and Y, are regarded as a subset Uy,
with prior joint uniform distributions as

1/14, 05=Y, =45, 0=Y,=35

0, otherwise

le,Yz(Yl’Y2) = {

31)

Figure 4 illustrates the GSSIs for the main effect of the four
input variables using the HSSA-SV method and the AIO method.
When a=0 (see cases (a) and (b)), both the AIO and the proposed
method provide identical GSSI values. This is because the depen-
dent responses passed from level 1 are linear with respect to Z and
the proposed method is able to provide accurate GSSI as dis-
cussed in Sec. 3.3. When « is increased from O to 4, the nonlin-
earity of the upper level model becomes higher. The formulation
in Eq. (27) is applied to capture the linear trend of the level 0
model in terms of the dependent responses Y; and Y,. The ranking
of GSSIs for the main effects changes for different values of «
(see cases (c) and (d)). The GSSIs obtained from the proposed
method differs slightly from the one using the AIO methods. The
difference can be attributed to the approximation of the global
nonlinearity trend at the upper level. Another observation from (a)
versus (b) is that the magnitudes of the GSSIs for main effects
change when 3 changes. The same observation can be found in (c)
versus (d). It is because B controls the nonlinearity of the lower
level model functions. A large 8 magnifies the interactions be-
tween local input variables and reduces the main effects. How-
ever, it shows that in all the cases, the proposed method provides
the same ranking compared with the one using the AIO method.

To verify the improvement, the GSSI results obtained from the
HSSA-SV are also compared with those from the original HSSA
in Fig. 4. It is observed that, in most instances, the GSSI estima-
tions using HSSA-SV are more accurate than the ones using the
original HSSA in which the impact of covariance is not taken into
account. Ignoring the dependency of shared variables with the
original HSSA method has introduced a large estimation error in
the variance of an upper level output. Table 1 lists the top level
performance variance estimations from AIO, the original HSSA
and the HSSA-SV method. Here the results of the AIO method are
as references to calculate the relative errors (presented in paren-
theses) from the original HSSA and the HSSA-SV method. As
observed from Table 1 with increasing nonlinearity from cases (a)
to (d), the error in the variance estimations of an upper level
output Z when using HSSA become larger compared with the
reference solution. Additionally from Table 1, using the HSSA-SV
method provides a good estimation of the variance.

4.2 Multiscale Bracket System Problem. Designing multi-
scale systems based on the advancements of multiscale modeling
theories and techniques is an emerging research topic in engineer-
ing design [30-32]. To simplify complex multiscale systems, SSA
can be applied in a multiscale design process to identify critical
variables and subscale analyses with respect to their impact on
performance at the coarse scale. Figure 5 illustrates the framework
of the multiscale system, which contains two material models at
scale 2 and one product model at scale 1. At scale 2, representa-
tive volume element (RVE) material models are employed to con-
struct the microstructure-constitutive property relation of an alu-
minum alloy material. Silicon particle volume fraction (PVF) and
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particle density (PD) quantitatively characterize the material mi-
crostructure, and are considered as shared material design vari-
ables at scale 2. The two submodel responses, strength index (k)
and strain hardening index (n) are two interrelated responses. To-
gether, they represent the material constitutive properties, which
are passed to scale 1 as inputs. As shown in Fig. 5, there are three
product design variables (C,,C,,R location and radius of the hole)
as local input variables of the top level bracket model. Due to the
high computational cost in RVE simulations, the Kriging meta-
models of material property parameters (k and n) are constructed
in terms of PVF and PD while the maximum stress is expressed
in terms of C,, Cy, R, k, and n [33].

The HSSA-SV is applied to rank the importance of local model
inputs at two different scales, including the three product design
variables (C,,Cy,R) and the two material design variables (PVF
and PD). Without knowing the optimal solutions of the five de-
sign variables at a prior design stage, uniform distributions are
assigned to each design variable to show that the optimal solution
could be anywhere in the design domain with equal possibility. In
this example, C, €[40,80], C, €[-100,-50], R €[20,35], PVF
€[0.03,0.11] and PD €[3,7]. Due to the statistical dependency,
k and n are regarded as a subset Uy,={k,n}, and a prior joint
uniform distribution is assigned to the subset Uy,.

The HSSA-SV results shown in Table 2, at scale 1, indicate that
both the local input variable R and the subset U, have a large
impact (the normalized TSSIs are 43.75% and 55.44%, respec-
tively) on the total variance of the maximum stress S,,,,. Hence,
SSA is further applied to the material model at scale 2 and the
SSA results are listed in Table 2. Once the true joint distribution of
k and n are available, the LSSIs and TSSIs at the product scale
can be updated at the posterior stage. As shown in Table 2, the
posterior LSSI and TSSI are slightly different from the SSA re-
sults at the prior stage but the ranking of R and subset Uy, remains
the same as at the prior stage.

To apply the proposed aggregation approach, the approximate
linear regression function of S, with respect to k and n is cal-
culated as

hy, (Uyy) = Bik+ Byn + A = 170,760.8k — 205,857.9n
+273,091,883 (32)

which is illustrated in Fig. 6. The decomposition of the covariance
of k and n is written as

Ag

max :
Product Scale |

— —C, :
bracket simulation model || —C Geometric

- s » parameters
S, =model’(C,,C ,R,k,n <«R

strain hardening index

Max stress

strengthindex | & »

Material Scale }
material model 2 :
n=model"(PVF,PD)| !

‘ i material model 1

' |k =model*(PVF,PD)

article volume i i
p aor PVF | PD particle density

Fig. 5 Framework of the two-scale system (scale 1 is product
scale and scale 2 is material scale)
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Table 2

Updating process of the HSSA-SV method in multiscale design problem

Prior stage

Posterior stage

Scale Input LSSI Local TSSI LSSI Local TSSI
Product scale C, 0.0020 0.0021(0.18%) 0.0014 0.0027 (0.23%)
C, 0.0054 0.0073(0.63%) 0.0010 0.0074 (0.64%)
R 0.3469 0.5104(43.75%) 0.3399 0.5005 (43.18%)
Uin 0.4836 0.6467(55.44%) 0.4960 0.6486 (55.95%)
Material scale
Material model 1 for k
PVF 0.7307 0.7858(74.34%) / /
PD 0.2118 0.2712(25.66%) / /
Material model 2 for n
PVF 0.9134 0.9265(91.21%) / /
PD 0.0720 0.0893(8.79%) / /

n

Cov[k,n] = Covk ..+ Covi, + Covht . o= (10.1 + 1.26 + 0.44)
X104=11.8x 107 (33)

It is observed that the first-order covariance terms COV’IZ"VF and
Covh) are two major sources of total covariance.

The final GSSIs for the main effects of three product design and
two material design variables are plotted in Fig. 7, which illus-
trates that the diameter R at the product scale and PVF at the
material scale are two dominant input variables on the variation in
the maximum stress. In this case, the summation of the GSSI for
main effects of R and PVF is greater than 0.75 and it means the
main effects are sufficient enough to rank the importance of vari-
ables without considering the interaction effects. Comparing the
results from the AIO method, the proposed method provides iden-
tical ranking results.

5 Benefits and Limitations of the HSSA-SV Method

While the two example problems in Sec. 4 illustrate the im-
proved accuracy of the HSSA-SV method for capturing dependent
responses through comparisons with the original HSSA and the
AIO approach, its advantages and limitations over the AIO ap-
proach are summarized in this section. Similar to the benefits of
the HSSA method, the first benefit of the HSSA-SV method is its
ability to concurrently execute the SSA across all levels and sub-
models, thus saving computation time compared with the AIO
method, which has to follow a sequential, bottom-up procedure.

27302
273_|

27298 |

max stress

27206 |
27294 .-

27292
017

The GSSIs are obtained via aggregating the LSSIs of submodels
without adding additional samples. This feature of “concurrency”
is highly desired in a concurrent multidisciplinary product design
environment. For the two examples presented, the computations
of integral calculations for updating posterior distributions and the
analytical aggregation of submodel LSSIs are negligible com-
pared with those used for local submodel SSAs. Since no submod-
els are eliminated during the HSSA process, the computational
efficiency between using HSSA-SV and AIO would be the same if
no concurrent computation is considered for levels 1 and 2 local
SSAs. If concurrent computation is considered, the HSSA-SV
method will be almost twice as efficient as the AIO method be-
cause the two levels of the system are analyzed simultaneously.

The second benefit is the ability of applying the SSA only to
critical submodels by following the top-down strategy, thus im-
proving the efficiency of sensitivity analysis compared with the
AIO method. More importantly, as SSA is intended to gain knowl-
edge in a design process, the method can better manage the design
complexity by fixing the variables from insignificant submodels
(see the multilevel suspension design example in our paper pre-
senting the original HSSA method [11]). This benefit of reducing
design complexity in a multidisciplinary design environment is
not directly illustrated in our examples but is an important moti-
vation of our research.

The third inherited advantage is that the top-down strategy used
in the HSSA methods matches better with a typical design pro-

Fig. 6 Weighted linear regression of two dependent responses {k, n}
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cess, where exact details of lower level submodels may not be
completely known in an early design stage. The HSSA methods
have the capability of executing from the top level and then
gradually going down to the lower level when more details are
explored as design is being further developed. The AIO method,
on the other hand, can only be applied when the whole system is
exactly known, which is against the purpose of applying SSA to
manage the complexity in a design process.

Although the HSSA methods have the aforementioned advan-
tages, designers should be aware of the risk of eliminating “unim-
portant” submodel responses and analyses using upper level SSA
results based on the prior distributions of responses without pos-
terior verifications using the lower level SSA results. It is recom-
mended that designers should cautiously select the threshold for
eliminating unimportant submodels. While our empirical study
shows that using a large range for a prior distribution encompass-
ing as much of the real performance as possible can improve the
posterior estimation, tests with different distribution ranges are
highly recommended.

6 Conclusion and Future Work

In this paper, an HSSA-SV method is proposed to handle the
dependency caused by shared variables in a hierarchical system
and to overcome the limitation of the original HSSA method.
Following the top-down strategy proposed in the original HSSA
method, the concept of local subset SSA is applied in which the
dependent responses from lower submodels are considered as a
subset. Critical responses from the lower level can be identified
according to the rank of the TSSIs at the upper level and SSA is
further applied to the lower level submodels with critical re-
sponses. With the assistance of the importance sampling tech-
nique, LSSI at the upper level is then updated without additional
samples after the more accurate posterior joint distributions are
available. An extended aggregation approach is introduced to for-
mulate the GSSI for main effects of the input variables at different
levels of hierarchy. With the proposed formulation, an accurate
GSSI can be achieved when the upper model function is linear
with respect to the dependent responses from the lower submod-
els. A multivariable weighted linear regression approach is em-
ployed to capture the trend of the nonlinear effect of the upper
level function. As illustrated in the numerical and multiscale de-
sign problems, the proposed HSSA-SV method provides suffi-
ciently accurate GSSI compared with the AIO method and impor-
tance rankings of all the input variables are exactly identical.

There are still some important issues in HSSA and HSSA-SV
requiring further explorations. First, both the HSSA and the
HSSA-SV methods only focus on estimating the main effects with
an assumption that the main effect of an input is sufficient to
represent its importance. Assessing the global TSSI in the
HSSA-SV method needs to be explored even though it is antici-
pated that it may become computationally intractable. Second,
although the proposed HSSA-SV method provides accurate im-
portance rankings, there are several facts that impact the estima-

031006-8 / Vol. 132, MARCH 2010

tion error of the GSSI magnitudes: the nonlinearity of the upper
level model with respect to the dependent lower level responses;
the simplification of such nonlinearity by using a linear regres-
sion; and the error propagation across multiple levels. These fac-
tors need to be addressed in order to improve the estimation ac-
curacy in future work.
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Nomenclatur

VY = variance of model output ¥

V)Y([ = partial variance of output Y contributed by in-
dividual input variable X;
Y
VXI-,» X;, = partial variance of output ¥ due to the interac-
tion effects between input variables X; , ..., X, i
SSI}? = SSI of X; with respect to Y
Y
SSIXi] X; = SSI of input variables X; ,...,X; with respect
i 1 J
toY
Y
SSITx, = TSSI of input variable X; with respect to Y
Y
SSIX[;[ = sum of all higher-order SSI involving the input
variables X;
SSI{/i = SSI of a variable subset U; with respect to Y
Y
SSIy, Ul-/ = SSI of variable subsets U,-] e ,U,-j with re-
spect to Y
COV)}?? = partial covariance of ¥; and Y; contributed by
the shared input variable Xj;
Covliti . . .
sip=--Xsi, = partial covariance of Y; and Y; due to the inter-
action effect between shared input variables
XS,-I,...,XS,-j
¢x(X;) = first effect term in ANOVA
¢Xl-],,,Xl-
(Xi,,....X; ) = interaction effect term in ANOVA
pi(Xy) = PDF of variable X,

P Uik(Uik) = joint PDF of the subset variables U;

Px,..x, = joint PDF of random variables X, ..., X,
E(-) = expectation operator

Var[-] = variance operator

Cov[-] = covariance operator

Appendix A: Proof of the Proposition

To make the expressions more concise, vectors X;=1{Xg, X}
and X};={X,,X,} are used to represent input variables vectors

{Xsl yeen !XXNS’XII’ e ’XlNl} and {Xsl R 7XSNS’X21 R 7X2N2} of
functions f, and f,, then Xi:{X{l,...,X;NS,X;NSH,...X{NSJrNI}
={XS] s ’XSNS’X117 . ’XlNl} and Xéz{X£| g e 7X£NS’X£NS+1’ -

XéNS+N2}={XS1 yoen ’XSNS’X2| 9eee ’XZNZ}'
According to the ANOVA decomposition, the dependent out-
puts Y, and Y, can be expressed as

Y1 =fi(Xp) =fio+ E ¢x;i(X{i) + E ¢X{i1X{i7(X{il’XI’i2) + ..
i i\<iy 2

+dx . x (A1)

,
liy liy v,

Kfiooe Xl )

iy,
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Y,=f(X3) = f20+2 ®x;, (X21)+ E x5, %, X )+
11<12
+ <pX2’il,A.A,XéiNﬁNz(XZiw ,XzzNS+NZ) (A2)

Because of the orthogonal property of each term in Egs. (A1) and
(A2), one has

Cov[Y,,Y,]= COV{(flo"‘E b (X15) + E éx1. X, (an Xii,)

.+ ¢X' X’

Lips llN 4N

! ’
(XUI, ’XUN;NI))’

<f20+ E x;, (le) + E ®x;, x (Xz,l X2’z) + ...

i1<ip

COV[d’X{iI,AH X]’im(XUI’ [RX) ’lem)’ (pXéjl,A .. Xz'j“(XZjl’ e ’X2j”)]
COV[d’x;. ,.,.,Xi.(X{ilv s X1 ex ,.,.,X’.(Xéi e
— i i i 2i; 2i; 1
0
The nonzero expression in Eq. (A5) can be written as
COV[(Z)X\_I-(X.\'I')’ (PX”.(X.W')]s I=si= N\‘ (A7)
and it can be simplified into
Cov[E(fi[X).E(fo|X)],  1=i=N, (A8)

while the nonzero expression in Eq. (A6) can be written as

COV[‘Z&XS[I,“. (th P st) (PX (XsiI’ 7Xsi/)]

o 5 ’

1=ip,....i;=N, (A9)
and it is equal to
COV[E(fl|Xsil7 . XSI) E(f2‘ Sips v ’Xsi/-)]
j-1
k=1 jy...jre(iy.. t)
XCOVE(fi|X,,. - Xy ) ElX g oo X)),
1=i,....i;;= N (A10)

By summing Egs. (A8) and (A10) recursively, one has

CoV[Y,.¥5] = CoV[E(fi X1, .. Xy ) E(folXis .. Xoy)]

(A11)

Appendix B: Proof of Eqgs. (21)-(23)

Given the linear upper model function with respect to depen-
dent responses Y; and Y; from lower level submodels as Z
=h(Xy,Y)=5(Xp, YY) +Ti(Xo, Y)Y+ T;(Xy, Y)Y, there are two
dependent responses, Y; and Y and they are regarded as a subset
Uy,y,={Y;,Y}}. The main effect for the subset is calculated accord-
ing ' the subset SSA method, and thus, the mean of the upper level
output is given as
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+ GDxéll é,N (A3)

! !
LA ’szxwz))]
Expanding the covariance expression through a mutual multiply-
ing operation and following orthogonal property of decomposed
terms, one may obtain

Cov[fio, <Px2'l.],u.,xéi (Xéil’ ’Xéim)]
= COV[¢X{’.I,...,X;[. (X{ils ’Xiim)’fZ()] =0 (A4)
COV[¢x;[(X;i)s QDxé/.(Xéj)]
) Covlgy (Xidsewy (X5)] - if i=ji 1=i, j=Nq
0 if i#j
(AS)
ng,‘.)] if m=n;, =j, 1=l=m;, 1=j=N
7 1=Ji J S (A6)
otherwise
[
hy= f [S(Xo, Y7) + Ti(Xo, Y)Y, + Tj(Xo, Y)Y lpx pydXodY = S
+T;-E(Y)+T;- E(Y) (B1)
where §=/S(Xo. Yi)px,py;dXod Y7, T;=JT(X,,

Yi)px,pydXodY; and T;=[T;(Xy,Y7)px, pyAXodYj. Let pyy,
be the joint probability density function. Then

du,, (Uy,.y/.) = f [S(Xo, Y7) + Ti(Xp. Y)Y,
;) .
+T,(X,Y7) Yj]PXOPY;dXOdYE— hy=S+T;-Y;
+T;-Y;=hy=T, Y;+T;- Y; = T;- E(Y))
~T;-E(Y)) (B2)

and the first-order partial variance of subset Uy y is equal to
L

= f ¢%j” (Uyy)pyydYdY;= TV TV
it

+2-T;- T Cov[Y, Y] (B3)

Let h(Xo, Y77, X, X, X) =8(X, Y5) + Ti(Xo, Y7) Y+ T;(X,
)Y S(XO’Y )+T(X0’Yt]) g(XlaXS)+T(X0’ l]) g]( S)

and Xix € X, Xjx € Xj, and X € X;. The decomposed ﬁrst-order

term of ANOVA for function h with respect to local input variable

X in the ith submodel at the lower level is given as

éx, (Xi) =f (S(Xo, Y75) + Ti(Xo, Y7) - 8:(X;, Xs)
+T5(Xo, Y) - 8,(X;, X)) px @Xopy-dYpx dX;px dXs

X H pXideim —hy

m#k
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=T (f g(Xl’Xs)deX H pX Xmm E(Y)) (84)

m#k

Thus, the global main effect contributed by local input variable
X, belonging to the ith submodel on the total variance of output Z
is equal to

Vi =f ¢)2<ik(Xik)Px,.kdXik= Tt2 ’ V;Yék (B5)

Thus, GSSI for main effect of Xj; is expressed as

7 IR (R R ¢ Z
SSE - & B T Vy, _ Ti-Vy, . 4L VUy/y,
X — VZ - VZ - VYi VZ VZ
UY,-Yj
TZ- VYi
= ssriw ssr i (B6)
UY Y

When considering the decomposed first-order term of ANOVA for
function f with respect to shared variable X, at the lower level,
the term can be written as

ox (Xa) = f (S(Xo, Y7) + Ti(X, Y7) - 8:(X;. X)
+ Tj(Xo, Y5) - 8,(X;: X)) px dXopy:dYipx dXipx dX;

X H medxsm —hg

m#k

=T (fg,(xl,x oxdXi [ [ px_dx

m#*k

o)

+T;- ( f 8;(X;: X,)px dX; I1 px,, dXg—E(Y ,-))

m#k
(B7)

and then, the global main effect contributed by the shared variable
X, at the lower level on the total variance of output Z is equal to

V)Z(k f¢x( k)PX dX;k—Tz V +T2 VXI

T, T, COVY’Y/ (B8)

Thus, the GSSI for main effect of the shared variable X, is ex-
pressed as

Vi T VY +T;-Vy +2-T,-T; Covy”
A sm r \m
SSIf =—2=

vz VZ
v Vi
=SSI% .| ssIy - +SSIy - ——
Y; f sm VU sm VU
Yy, vy,
2. ~,- ~j -Covyi
+ (B9)

VZ
These formulations can be easily extended to the case with
more than two dependent responses from lower level submodels.

Appendix C: Proof of Egs. (29) and (30)

Based on the subset decomposition and LSSA at the upper
level, the variance of upper level output Z can be decomposed as

031006-10 / Vol. 132, MARCH 2010

Z _ /% z Z
V - Vil,...,n + VUY]*--“Y * Vil.....nUY]..... n (Cl)
where ﬁl,. 2=1{Xo, YT .} represents all the input variables of

the upper level model excludmg the subset of dependent re-
sponses from the lower level submodels. According to the ap-
proximation shown in Eq. (27), the main effect of subset Uy, _ y,
on the total variance of the upper level output Z is formulated as

V%le....,Y =f (hUYIT___yy (UYI,A.A,Yn) - ho)zpyl,.“,yndyrs ~dYy,

n n
= Var|:A + > B;- Yi] = > BV
i=1

i=1
n n-1

+2- > > B;-B;- Cov[Y,,Y)]

=1 j<i

(C2)

where B; is a linear coefficient of the linearized function. Based on
the lower level LSSA and VYi can be further decomposed as

Y _ Y. Y. Y,
Vii= E Vx;m + E Vx:m + E Viioh
m m

(C3)

where the higher-order contributions of the partial variance are
represented by Vhlgh The covariance is also decomposed accord-
ing to the proposed covariance decomposition method for the
shared variables, and is formulated as

Cov[Y;.Y;]=Cov[E(Y; [X,), E(Y; [X,)]= 2 Cov 'Y1+2 Cov}):i”;{

m

(C4)

where X, € X, and Con‘ J represent the main effect contributed

by the shared variable X, on the covariance of Yiand Y;; ; Cov) 1, o)
stands for the higher-order contributions of partial covariance 14
can be expressed as

Z _ )2
V B VUYI* o . 1UY

n
_ 2 Y,

n n-l1

+Evf +2Vhlgh]+2 > > Bi-B;-

=1 j<i

-

Y.Y,

Cov,i'J

[ o
m

+ Ve (C5)

* E COVhlg}{:| §l...r,n §l....,nUY s

1 "Y/r
Thus, the main contribution of local input variable X;; belonging
to the ith submodel on the variance of Z is given as
z 208,

Vx,=Bi VXik (Co)
It can be observed from Eq. (C5), the main (first-order) contribu-
tion of a shared variable to its upper level model variance can be
regarded as a combination of its contributions to the variance and
covariance of the dependent responses at the lower level submod-
els. Thus, the main contribution of the shared variable X; on the
variance of Z is

n n—=1

Vi, —EBZV +2-2 DB Bj- Covy

=1 j<i

(€7

Given the GSSI in form of aggregation of LSSI, the Egs. (C6) and
(C7) are expressed as

Transactions of the ASME

Downloaded 12 Oct 2012 to 142.244.211.62. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2v/Y; 2v/Y; Z
,  BiVx, BiVy, v VUY,,...
S="y7 =Ty vz

eaiZ
=SSIf, (C8)
and

n n n-1
2 BIVY +2- 2 2 B;- By Covy

i=1 * i=1 j<i ’

VZ

SSI =

L2 | SIY,

S|

B Vi
=SSl ——
o Vi,

Yi...Y,
n n-1

2- 2 2 B, B;- Covys

i=1 j<i

7 (C9)
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