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A Hierarchical Statistical
Sensitivity Analysis Method for
Multilevel Systems With Shared
Variables
Statistical sensitivity analysis (SSA) is an effective methodology to examine the impact of
variations in model inputs on the variations in model outputs at either a prior or poste-
rior design stage. A hierarchical statistical sensitivity analysis (HSSA) method has been
proposed in literature to incorporate SSA in designing complex engineering systems with
a hierarchical structure. However, the original HSSA method only deals with hierarchical
systems with independent subsystems. For engineering systems with dependent subsystem
responses and shared variables, an extended HSSA method with shared variables (named
HSSA-SV) is developed in this work. A top-down strategy, the same as in the original
HSSA method, is employed to direct SSA from the top level to lower levels. To overcome
the limitation of the original HSSA method, the concept of a subset SSA is utilized to
group a set of dependent responses from the lower level submodels in the upper level SSA
and the covariance of dependent responses is decomposed into the contributions from
individual shared variables. An extended aggregation formulation is developed to inte-
grate local submodel SSA results to estimate the global impact of lower level inputs on
the top level response. The effectiveness of the proposed HSSA-SV method is illustrated
via a mathematical example and a multiscale design problem. �DOI: 10.1115/1.4001211�
Introduction
A complex design problem often involves a large number of

esign variables and multidisciplinary analyses with excessive
ost. The “all-in-one” �AIO� method in which the whole system
nalysis is treated as a black box, is usually not practical or even
rohibitive due to the system’s complexity, limited communica-
ions between subsystems belonging to various disciplines, and
he associated high computational expense. To relieve the compu-
ational burden and manage the complexity in design processes, a
omplex system is often decomposed into several subsystems in
ither a hierarchical or nonhierarchical manner �1,2�. Hierarchical
odeling is widely used to decompose a complex system into
ultilevel submodels according to their functional attributes �3,4�,

hysical structures �5,6�, or scale magnitudes �7�, etc. A typical
ierarchical system with a bilevel structure is illustrated in Fig. 1.
ach submodel has only one “parent” submodel at a higher level
ut multiple “children” submodels at a lower level �2�. The infor-
ation flow in the hierarchical structure follows a one way direc-

ion from the bottom level to the top level. Following the same
erminology in multidisciplinary design optimization, we denote
ocal input variables of each submodel as X0 ,X1 , . . . ,XN and
hared variables that exist as a common set of input variables to
sibling” submodels as Xs. As shown in Fig. 1, the existence of
hared variables creates the functional dependence of the re-
ponses from the sibling submodels �e.g., Y1 and Y2 in Fig. 1�. In
ultidisciplinary design, shared variables are common design �de-

ision� variables shared by multiple subsystem designs. As design
ariables are frequently independent, it is assumed in this work
hat all input variables are independent. For designing hierarchical
ngineering systems, deterministic design methods have been de-
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veloped in literature �1,3,8–10� with extensions to multilevel op-
timization formulations considering uncertainties �2,4,11�.

Statistical sensitivity analysis �SSA� is the study of how the
variation in the output of a model can be apportioned, qualita-
tively or quantitatively, to different sources of variation from input
variables through statistical means �12�. By applying SSA, the
importance of input variables can be identified and the engineer-
ing system can be simplified by fixing those unimportant variables
�13–15�. A hierarchical statistical sensitivity analysis �HSSA�
method was developed in our earlier research �11� to facilitate the
application of SSA in complex multilevel engineering systems.
The original HSSA method contains three features: �1� SSA is first
applied to the top level model and a top-down analysis is executed
level-by-level. �2� Instead of performing SSA in the all-in-one
manner, SSA is separately applied to the critical submodels at
each level. �3� The global statistical sensitivity index �GSSI� of
any input variables with respect to the global system performance
is derived from aggregating the local statistical sensitivity index
�LSSI� of relevant submodels. The effectiveness and efficiency of
the original HSSA method has been demonstrated by examples in
Ref. �11�.

However, the original HSSA method has a critical deficiency in
that it can only be used for designing multilevel systems with
independent submodel responses, i.e., no shared variables as in-
puts to multiple sibling submodels. Although previous literatures
address SSA with correlated input variables �16–18�, these meth-
ods do not concern the cases with multilevel submodels and there-
fore cannot be directly performed on a complex system with a
hierarchical structure. To overcome the aforementioned limita-
tions, an extended hierarchical statistical sensitivity analysis
method, named hierarchical statistical sensitivity analysis with
shared variables �HSSA-SV�, is proposed in this work. The pro-
posed method examines the importance of a local subset that con-
tains dependent responses from lower levels. A top-down strategy,
same as in Ref. �11�, is invoked to direct SSA of submodels at
different levels. An extended GSSI aggregation formulation is

proposed to evaluate the GSSI of input variables in the multilevel
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ystem by integrating the local subset SSIs and the decomposed
ovariance across multiple levels. The proposed HSSA-SV
ethod has a broader application of SSA to complex engineering

esign problems compared with the original HSSA method.
The remainder of the paper is organized as follows: A technical

ackground of SSA including the variance-based SSA and subset
SA is introduced in Sec. 2. The details of the HSSA-SV method
re introduced in Sec. 3. Our proposed method is demonstrated
nd verified in Sec. 4 via a mathematical problem and SSA of a
ultiscale design system. The benefits of the proposed method are

iscussed in Sec. 5 followed by conclusions in Sec. 6.

Technical Background

2.1 Variance-Based Statistical Sensitivity Analysis. The
ariance-based SSA, a popular category among the global sensi-
ivity analysis �GSA� methods, evaluates the statistical sensitivi-
ies based on the decomposition of the variance of the model
utputs in accordance with the variation sources from the inputs
19,20�. In literature, a number of variance-based methods, includ-
ng Sobol’s methods �19,21�, Fourier amplitude sensitivity test
FAST� �20�, important measures �22�, McKay’s method �23�,
tc., were developed and applied in a variety of fields such as
hemistry �22,24�, environmental science �25–27�, and mechani-
al engineering �13�. Among these existing methods, Sobol’s
ethod has been widely employed to rank the input variables

ased on their contributions to the total variance of the model
utput �19,21�, and is adopted in this paper.

In the variance-based SSA methods, the total variance of an
utput Y = f�X� is decomposed into the summation of 2n−1 vari-
nce terms, representing the various sources from input variables
= �X1 ,X2 , . . . ,Xn� in a similar fashion as in an analysis of vari-

nce �ANOVA�:

VY = �
i

VXi

Y + �
i�j

VXiXj

Y + . . . + VX1,. . .,Xn

Y �1�

here VY is the total variance of the output and VXi

Y is the first-
rder term that represents the partial variance in VY due to the
ndividual effect of a random variable Xi. The superscript Y rep-
esents the model output of interest and the subscript denotes the
ndex of an input variable. The higher-order terms such as VXiXj

Y

nd so on denote the effects from the interaction of two or more
andom variables. To measure the importance of an input variable
ith respect to an output variable, the SSI of Xi is defined by the

atio of the partial variance contributed by Xi to the total variance
f the output Y

SSIXi

Y =
VXi

Y

VY , 1 � i � n �2�

quation �2� calculates the main effect of Xi on the variance of Y.

ig. 1 A bilevel hierarchical structure with shared input
ariables
higher-order SSI is formulated as
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SSIXi1
,. . .,Xij

Y =
VXi1

,. . .,Xij

Y

VY , 1 � i1, . . . ,ij � n �3�

which represents the interaction effect between random variables
Xi1

, . . . ,Xij
to the variance of the model output Y. The total statis-

tical sensitivity index �TSSI� of Xi, measures the contributions of
Xi, including its main effect as well as its interaction effects with
other input variables and it is defined as

SSITXi

Y = SSIXi

Y + SSI
XiX̃i

Y �4�

where SSI
XiX̃i

Y
is the sum of all the higher-order SSIs involving the

input variable Xi and at least one other input variable from
�X1 , . . . ,Xi−1 ,Xi+1 , . . . ,Xn�.

To calculate the SSI under the condition that all the random
variables are independent, Sobol’s method �19,21� introduces a
decomposition of the model function Y = f�X� into an ANOVA
formulation as

f�X� = f0 + �
i

�Xi
�Xi� + �

i1�i2

�Xi1
Xi2

�Xi1
,Xi2

� + . . .

+ �Xi1
,. . .,Xin

�Xi1
, . . . ,Xin

� �5�

where f0 is the mean of f�X� and other terms are formulated as
�13,19,21�:

�Xi
�Xi� =� f�X�	

k�i

��k�Xk�dXk� − f0 �6�

�Xi1
,. . .,Xij

�Xi1
, . . . ,Xij

�

=� f�X� 	
k�i1,. . .,ij

��k�Xk�dXk�

− �
l=1

j−1

�
k1,. . .,kl��i1,. . .,ij�

�Xk1
,. . .,Xkl

�Xk1
, . . . ,Xkl

� − f0 �7�

In Eqs. �6� and �7�, �k�Xk� is the probability density function
�PDF� of variable Xk. As proposed in Sobol’s methods �19,21�, the
total variance of Y and the partial variance terms in Eq. �1� are
calculated through integration of each term in Eq. �5�

2.2 Subset Decomposition and Statistical Sensitivity
Analysis. Based on the principle of variance-based SSA presented
in Sec. 2.1, Sobol’s method further introduces an SSI definition
for studying the impact of a grouped, subset of input variables
�21�, �28�. It considers an arbitrary set of m random variables as a
group and evaluates the partial variance contributed by the varia-
tion in the grouped variables over the total variance of the output
Y �13�. With the subset decomposition, n input random variables
in Y = f�X� are divided into N mutually disjoint subsets denoted as
U1 , . . . ,UN, where Ui= �Xi1

, . . . ,Xik
�, k�1, and 1� i1 , . . . , ik�n.

Under the condition that subsets are statistically independent, the
ANOVA decomposition of Y = f�X� can be expressed as

f�X� = f0 + �
i=1

�Ui
�Ui� + �

i1�i2

�Ui1
Ui2

�Ui1
,Ui2

� + . . .

+ �Ui1
,. . .,UiN

�Ui1
, . . . ,UiN

� �8�

where Xi1
, . . . ,Xij

in the original univariant ANOVA decomposi-
tion, see Eq. �5�, are replaced by subsets Ui1

, . . . ,Uij
. The variance

of Y can be decomposed into a summation of partial variances
from the subsets

VY = �
i

VUi

Y + �
i�j

VUiUj

Y + . . . + VU1U2,. . .,UN

Y �9�
Therefore, the main effect of each subset is defined by
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SSIUi

Y =
VUi

Y

VY , 1 � i � N �10�

nd the higher-order SSI of the subsets is formulated as

SSIUi1
,. . .,Uij

Y =
VUi1

,. . .,Uij

Y

VY , 1 � i1, . . . ,ij � N �11�

he partial variance VUi1
. . .Uij

Y is calculated as:

VUi1
,. . .,Uij

Y =� �Ui1
,. . .,Uij

2 �Ui1
, . . . ,Uij

�	
k=1

j

��Uik
�Uik

�dUik
� �12�

here �Uik
�Uik

� represents the joint probability density function of

he subset variables Uik
.

HSSA-SV
The HSSA-SV method developed in this paper follows a simi-

ar framework of the original HSSA method introduced in Sec. 1
11� but with revised formulations to account for dependent sub-
odel responses. The flowchart of the HSSA-SV method for a

wo-level model is shown in Fig. 2. In the first step of the pro-
osed top-down strategy, SSA is applied to the upper level model.
ecause the exact information of the dependent responses from

he lower level is not available at this stage, a prior joint distribu-
ion of the dependent responses is assigned for performing local
ubset SSA on the upper level system model. According to the
ank of the TSSIs at the upper level, critical responses from the
ower level can be identified and SSA is further applied to the
ower level submodels with critical responses. Once the real in-
ormation of the lower level responses is available and after ap-
lying SSA to the lower level submodels, a posterior local subset
SI of the upper level model can be computed. In this process, to
ccount for the impact of shared variables, the covariance of the
ependent responses is decomposed into the contributions from
ndividual variation sources �see details in Sec. 3.1�. The local
ubset SSA is used to evaluate the local subset SSI of the depen-
ent responses and the importance sampling technique is em-

ig. 2 Flowchart of the HSSA-SV method with dependent
ower level responses
loyed for obtaining the posterior SSIs by reusing the existing

ournal of Mechanical Design
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sampling data from the prior stage of the upper level �see details
in Sec. 3.2�. The aggregation formulation used in the original
HSSA method is then extended and the main effects of local in-
dependent input variables and shared variables can be assessed via
integrating the posterior local subset SSIs of the upper level
model, the LSSIs of lower level submodels, as well as the decom-
posed covariance of dependent responses �see details in Sec. 3.3�.

3.1 Decomposition of Covariance. The idea of the covari-
ance decomposition is to decompose the total covariance of two
dependent outputs due to the shared variables into separate items.
In this subsection, two outputs, Y1 and Y2, from the models Y1
= f1�Xs ,X1� and Y2= f2�Xs ,X2�, respectively, are used to demon-
strate the decomposition of covariance. Xs is a vector of NS inde-
pendent shared input variables �Xs1 , . . . ,XsNS

�, X1= �X11, . . . ,
X1N1

�, and X2= �X21, . . . ,X2N2
� are two vectors with N1 and N2

independent local input variables for the two models, respectively.
Y1 and Y2 are functionally and statistically dependent because of
the existence of the shared variables Xs.

Similar to the ANOVA method, the covariance of Y1 and Y2 are
decomposed into 2NS −1 contribution items as

Cov�Y1,Y2� = �
i

CovXsi

Y1Y2 + �
i�j

CovXsiXsj

Y1Y2 + . . . + CovXs1,. . .,XsNs

Y1Y2

�13�

where CovXsi

Y1Y2 is the first-order covariance contribution from the

shared variable Xsi and CovXsiXsj

Y1Y2 denotes the second-order covari-
ance contribution due to the interaction of the shared variables Xsi
and Xsj, and so on.

PROPOSITION. The partial covariance contribution in Eq. �13� is
calculated as

CovXsi

Y1Y2 = Cov��Xsi
�Xsi�,�Xsi

�Xsi��, 1 � i � NS �14�

for 1� i1 , . . . , ij �NS and

CovXsi1
,. . .,Xsij

Y1Y2

= Cov��Xsi1
,. . .,Xsij

�Xsi1
, . . . ,Xsij

�,�Xsi1
,. . .,Xsij

�Xsi1
, . . . ,Xsij

�� �15�

where �Xsi
�Xsi� and �Xsi1

,. . .,Xsij
�Xsi1

, . . . ,Xsij
� are the ANOVA de-

composed terms of the function Y1= f1�Xs ,X1�, as shown in Eq.
�5�, and �Xsi

�Xsi� and �Xsi1
,. . .,Xsij

�Xsi1
, . . . ,Xsij

� are the ANOVA

decomposed terms of function Y2= f2�Xs ,X2�. See Appendix A
for the proof of Eqs. �14� and �15�.

The first-order covariance term in the covariance decomposi-
tion is derived as �see details in Appendix A�

CovXsi

Y1Y2 = Cov�E�f1
Xsi�,E�f2
Xsi�� �16�

and the higher-order covariance decomposition term is derived as
�see details in Appendix A�

CovXsi1
,. . .,Xsij

Y1Y2 = Cov�E�f1
Xsi1
, . . . ,Xsij

�,E�f2
Xsi1
, . . . ,Xsij

��

− �
k=1

j−1

�
j1,. . .,jk��i1,. . .,ij�

CovXsj1
,. . .,Xsjk

Y1Y2 �17�

It can be concluded that, the covariance of Y1 and Y2 is equal to
the covariance of their conditional expectations with respect to
their shared variables, i.e.,

Cov�Y1,Y2� = Cov�E�f1
Xs�,E�f2
Xs�� �18�

The proof is shown in Appendix A.

3.2 Local Subset SSA. Due to the dependency shown in Fig.
1, local statistical sensitivity analysis �LSSA� cannot be directly
applied to the lower level responses Y1 and Y2 �17,28�. We pro-
pose to use the subset SSA approach to evaluate the local subset

SSIs for dependent responses. These dependent responses are re-
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arded as a subset denoted by UY1Y2
and the subset becomes in-

ependent of the other submodel responses Yi ,3� i�N. A prior
oint distribution of the dependent responses, i.e., the subset

Y1Y2
, is assigned, based on the designer’s knowledge, before ap-

lying the local subset SSA. If a designer does not have any
nowledge to assign a prior joint distribution, a joint uniform
istribution with a large range that encompasses as much of the
eal performance as possible should be assigned. Based on the
mpirical study in our earlier work �11�, we found such treatment
an improve the posterior estimation when applying the impor-
ance sampling method in the correction step. Based on the result-
ng local subset SSIs, the LSSA is next performed on critical
ubmodels at the lower level.

If a subset of dependent responses has a high LSSI, the LSSA
eeds to be performed on the submodels related to all the depen-
ent responses in this subset. By sampling simultaneously the
utputs from dependent submodels with shared and local input
ariables, the real joint distribution of the dependent outputs Y1
nd Y2, as well as the LSSIs of the local input variables and
hared variables for each submodel, can be determined.

Using the importance sampling strategy as described in Ref.
11�, posterior local subset SSIs of the upper level models and
tatistical indices �e.g., variance� can be recalculated without ad-
itional samples, reducing the computational cost significantly.
or example, in the upper level model SSA, if the lower level
esponses Y1 , . . . ,Yn, acting as inputs to the upper level model, are
ependent, the integral of an arbitrary function f�Y1 , . . . ,Yn� with
posterior joint PDF of dependent responses Y1 , . . . ,Yn can be
ritten in terms of a prior joint PDF as

� f�Y1, . . . ,Yn��Y1,. . .,Yn

pst dY1, . . . ,dYn

=� f�Y1, . . . ,Yn�
�Y1,. . .,Yn

pst

�Y1,. . .,Yn

prr �Y1,. . .,Yn

prr dY1, . . . ,dYn

�
1

M �
k=1

M

f�Y1
k, . . . ,Yn

k�
�Y1,. . .,Yn

pst

�Y1,. . .,Yn

prr �19�

here �Y1,. . .,Yn

pst and �Y1,. . .,Yn

prr are the posterior and prior joint PDFs

f dependent submodel responses, respectively, �Y1
k , . . . ,Yn

k� are
airs of samples subject to a prior joint distribution. M is the
umber of sampling points. In SSA of the upper level model, the
osterior �Y1,. . .,Yn

pst is the real joint PDF of the dependent responses

1 , . . . ,Yn.

3.3 Extended Aggregation Approach. An extended aggrega-
ion approach is proposed to estimate the GSSIs of lower level
nput variables, including the shared input variables. Since the
ggregations of interaction effects and total effects are mathemati-
ally difficult and the main effects are usually the most dominat-
ng effects in typical engineering systems �11�, the proposed

ethod focuses on the evaluation of the GSSIs of input variables
or main effects.

For demonstration purpose, we start with a bilevel system as
hown in Fig. 1 in which only two submodels �gi and gj� have the
hared variables Xs. When the upper level model function is linear
ith respect to Yi and Y j, h�X0 ,Y� can be written as

h�X0,Y� = S�X0,Yĩ j̃� + Ti�X0,Yĩ j̃�Yi + Tj�X0,Yĩ j̃�Y j �20�

here Yĩ j̃, which excludes Yi and Y j, is the vector of independent
esponses from the lower level submodels. S�X0 ,Yĩ j̃�, Ti�X0 ,Yĩ j̃�,
nd Tj�X0 ,Yĩ j̃� are any integrable functions in terms of X0 and

ĩ j̃. The GSSIs for the main effects of the local input variables Xik

nd Xjk are expressed as

31006-4 / Vol. 132, MARCH 2010
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SSIXik

Z =
VXik

Z

VZ = SSIUYiY j

Z · SSIXik

Yi ·
T̃i

2 · VYi

VUYiY j

Z , Xik � Xi �21�

SSIXjk

Z =
VXjk

Z

VZ = SSIUYiY j

Z · SSIXjk

Y j ·
T̃j

2 · VY j

VUYiY j

Z , Xjk � Xj �22�

The GSSIs for the main effects of the shared variables Xsk�Xs
can be calculated as

SSIXsk

Z =
VXsk

Z

VZ = SSIUYiY j

Z · �SSIXsk

Yi ·
T̃i

2 · VYi

VUYiY j

Z + SSIXsk

Y j ·
T̃j

2 · VY j

VUYiY j

Z 

+

2 · T̃i · T̃j · CovXsk

YiY j

VZ �23�

where T̃i=�Ti�X0 ,Yĩ j̃��X0
�Yĩ j̃

dX0dYĩ j̃ and T̃j =�Tj�X0 ,

Yĩ j̃��X0
�Yĩ j̃

dX0dYĩ j̃. VYi and VYj represent the variance of submod-

els outputs Yi and Y j, respectively. VUYiY j

Z is the first-order term

that denotes the partial variance contributed by the subset UYiY j
to

the total variance of the upper level output Z. VZ is the total
variance of Z. CovXsk

YiY j is the first-order term from the covariance
decomposition. The proofs of Eqs. �21�–�23� are given in Appen-
dix B.

The approach can be extended to a general case with n depen-
dent lower level responses Y1 , . . . ,Yn. When the upper level func-
tion h�X0 ,Y� is linear with respect to all the dependent responses,
the following relationship holds:

h�X0,Y� = S�X0,Y1, . . . ,n˜� + �
i=1

n

Ti�X0,Y1, . . . ,n˜�Yi �24�

where Y1 . . . n˜ is the vector of independent responses from the
lower level submodels excluding Y1 , . . . ,Yn.

The formulation of the GSSI for the main effects of the local
input variable Xik�Xi is written as

SSIXik

Z =
VXik

Z

VZ = SSIUY1,. . .,Yn

Z · SSIXik

Yi ·
T̃i

2 · VYi

VUY1,. . .,Yn

Z �25�

The GSSIs for the main effects of the shared variable Xsk�Xs are
expressed as

SSIXsk

Z =
VXsk

Z

VZ = SSIUY1,. . .,Yn

Z · �
i=1

n �SSIXsk

Yi ·
T̃i

2 · VYi

VUY1,. . .,Yn

Z 

+

2

VZ�
i=1

n

�
j�i

n−1

T̃i · T̃j · CovXsk

YiY j �26�

where T̃i=�Ti�X0 ,Y1 , . . . , n˜��X0
�Y1 , . . . , n˜

dX0dY1 , . . . , n˜.
Oftentimes the upper level model function is not linear with

respect to the dependent responses from the lower level, the GSSI
formulations �Eqs. �25� and �26�� no longer hold for providing
accurate SSA results. To overcome this limitation and estimate the
GSSI in a nonlinear situation, a multivariable weighted linear re-
gression �29� is employed to capture the global linear trend of the
upper level function.

hUY1,. . .,Yn
�UY1,. . .,Yn

� =� h�X0,Y��X0
dX0�Y1, . . . ,n˜

dY1, . . . ,n˜ � A

+ �
i=1

n

Bi · Yi �27�
where A is constant and Bi is the linear coefficient for each de-
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endent response Yi. The coefficient values can be obtained
hrough the weighted linear regression based on the upper level
SA samples collected at the prior stage and the posterior joint
istribution of the lower level responses. The multivariable
eighted linear regression is written as

� = ��TW��−1�TWZ �28�

here �= �A ,B1 , . . . ,Bn�T; �= �1 ,Y1 , . . . ,Yn� is a matrix com-
osed of a column vector of unity and all the samples of depen-
ent responses from the lower level submodels with prior joint
robability density function. Each component in the weight diag-
nal matrix W is set as the probabilities of the sampled dependent
esponses based on the posterior joint probability density function.
he introduction of weights in the linear regression is to capture

he linear trend of the upper level model based on the lower sub-
odel responses. Hence, the GSSI for the main effects of Xik can

e approximated as

SSIXik

Z = SSIUY1,. . .,Yn

Z · SSIXik

Yi ·
Bi

2 · VYi

VUY1,. . .,Yn

Z , Xik � Xi �29�

or a shared variable Xsk, its GSSI for the main effect is approxi-
ated as �see the proof in Appendix C�.

Fig. 3 System structure for the mathematical example

Fig. 4 The GSSI for the main effe

scenarios
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SSIXsk

Z = SSIUY1,. . .,Yn

Z · �
i=1

n �SSIXsk

Yi ·
Bi

2 · VYi

VUY1,. . .,Yn

Z 

+

2

VZ · �
i=1

n

�
j�i

n−1

Bi · Bj · CovXsk

YiY j �30�

4 Case Studies
Two example problems are used to demonstrate and verify our

proposed HSSA-SV formulations. The first problem is a math-
ematical example with explicit functions defined. The purpose is
to help readers understand how our method works and to illustrate
the impact of the nonlinearity and dependency on the accuracy of
the proposed method. The second example is associated with a
multiscale bracket system, where the functions are implicit. The
purpose is to illustrate the use of HSSA-SV in a highly correlated
multiscale system to identify critical subscale inputs and re-
sponses with respect to their impact on performance at the coarse
scale. The AIO SSA are presented in both case studies to verify
the accuracy of the proposed HSSA-SV formulations in capturing
the correlation of dependent responses but not as a competing
method to HSSA.

4.1 Mathematical Example. A mathematical example of a
bilevel hierarchical system is shown in Fig. 3. All the input vari-
ables Xi are assumed to be independent with uniform distributions
over the range of �0,1�. Submodels 1 and 2 have two shared vari-
ables X3 and X4. To study the impact of the nonlinearity and
dependency on the accuracy of the proposed method, different
values are assigned to � and � that control the functional nonlin-
earity. Changing � from 0 to 4 increases the nonlinearity between
the lower level responses and the upper level outputs while chang-
ing � from 0 to 2 provides an increasing interaction effect of the
local variables in submodel 1. Since the function is cheap to com-
pute in this example, 1.0	105 Monte Carlo samples are generated
for calculating the integrals in Eq. �12�. Following the proposed

of the input variables in different
cts
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ethod, local subset SSA is performed first at level 0. The two
ependent responses Y1 and Y2 are regarded as a subset UY1Y2
ith prior joint uniform distributions as

fY1,Y2
�Y1,Y2� = �1/14, 0.5 � Y1 � 4.5, 0 � Y2 � 3.5

0, otherwise
�

�31�
Figure 4 illustrates the GSSIs for the main effect of the four

nput variables using the HSSA-SV method and the AIO method.
hen �=0 �see cases �a� and �b��, both the AIO and the proposed
ethod provide identical GSSI values. This is because the depen-

ent responses passed from level 1 are linear with respect to Z and
he proposed method is able to provide accurate GSSI as dis-
ussed in Sec. 3.3. When � is increased from 0 to 4, the nonlin-
arity of the upper level model becomes higher. The formulation
n Eq. �27� is applied to capture the linear trend of the level 0

odel in terms of the dependent responses Y1 and Y2. The ranking
f GSSIs for the main effects changes for different values of �
see cases �c� and �d��. The GSSIs obtained from the proposed
ethod differs slightly from the one using the AIO methods. The

ifference can be attributed to the approximation of the global
onlinearity trend at the upper level. Another observation from �a�
ersus �b� is that the magnitudes of the GSSIs for main effects
hange when � changes. The same observation can be found in �c�
ersus �d�. It is because � controls the nonlinearity of the lower
evel model functions. A large � magnifies the interactions be-
ween local input variables and reduces the main effects. How-
ver, it shows that in all the cases, the proposed method provides
he same ranking compared with the one using the AIO method.

To verify the improvement, the GSSI results obtained from the
SSA-SV are also compared with those from the original HSSA

n Fig. 4. It is observed that, in most instances, the GSSI estima-
ions using HSSA-SV are more accurate than the ones using the
riginal HSSA in which the impact of covariance is not taken into
ccount. Ignoring the dependency of shared variables with the
riginal HSSA method has introduced a large estimation error in
he variance of an upper level output. Table 1 lists the top level
erformance variance estimations from AIO, the original HSSA
nd the HSSA-SV method. Here the results of the AIO method are
s references to calculate the relative errors �presented in paren-
heses� from the original HSSA and the HSSA-SV method. As
bserved from Table 1 with increasing nonlinearity from cases �a�
o �d�, the error in the variance estimations of an upper level
utput Z when using HSSA become larger compared with the
eference solution. Additionally from Table 1, using the HSSA-SV
ethod provides a good estimation of the variance.

4.2 Multiscale Bracket System Problem. Designing multi-
cale systems based on the advancements of multiscale modeling
heories and techniques is an emerging research topic in engineer-
ng design �30–32�. To simplify complex multiscale systems, SSA
an be applied in a multiscale design process to identify critical
ariables and subscale analyses with respect to their impact on
erformance at the coarse scale. Figure 5 illustrates the framework
f the multiscale system, which contains two material models at
cale 2 and one product model at scale 1. At scale 2, representa-
ive volume element �RVE� material models are employed to con-
truct the microstructure-constitutive property relation of an alu-

Table 1 Comparison of variance estimations
SV, and AIO methods

VZ �a� �b�

AIO 1.46 1.07
HSSA 1.33�8.90%� 0.90�15.9%�
HSSA-SV 1.45�0.7%� 1.06�0.9%�
inum alloy material. Silicon particle volume fraction �PVF� and

31006-6 / Vol. 132, MARCH 2010

nloaded 12 Oct 2012 to 142.244.211.62. Redistribution subject to ASM
particle density �PD� quantitatively characterize the material mi-
crostructure, and are considered as shared material design vari-
ables at scale 2. The two submodel responses, strength index �k�
and strain hardening index �n� are two interrelated responses. To-
gether, they represent the material constitutive properties, which
are passed to scale 1 as inputs. As shown in Fig. 5, there are three
product design variables �Cx ,Cy ,R location and radius of the hole�
as local input variables of the top level bracket model. Due to the
high computational cost in RVE simulations, the Kriging meta-
models of material property parameters �k and n� are constructed
in terms of PVF and PD while the maximum stress is expressed
in terms of Cx, Cy, R, k, and n �33�.

The HSSA-SV is applied to rank the importance of local model
inputs at two different scales, including the three product design
variables �Cx ,Cy ,R� and the two material design variables �PVF
and PD�. Without knowing the optimal solutions of the five de-
sign variables at a prior design stage, uniform distributions are
assigned to each design variable to show that the optimal solution
could be anywhere in the design domain with equal possibility. In
this example, Cx� �40,80�, Cy � �−100,−50�, R� �20,35�, PVF
� �0.03,0.11� and PD� �3,7�. Due to the statistical dependency,
k and n are regarded as a subset Ukn= �k ,n�, and a prior joint
uniform distribution is assigned to the subset Ukn.

The HSSA-SV results shown in Table 2, at scale 1, indicate that
both the local input variable R and the subset Ukn have a large
impact �the normalized TSSIs are 43.75% and 55.44%, respec-
tively� on the total variance of the maximum stress Smax. Hence,
SSA is further applied to the material model at scale 2 and the
SSA results are listed in Table 2. Once the true joint distribution of
k and n are available, the LSSIs and TSSIs at the product scale
can be updated at the posterior stage. As shown in Table 2, the
posterior LSSI and TSSI are slightly different from the SSA re-
sults at the prior stage but the ranking of R and subset Ukn remains
the same as at the prior stage.

To apply the proposed aggregation approach, the approximate
linear regression function of Smax with respect to k and n is cal-
culated as

hUkn
�Ukn� � B1k + B2n + A = 170,760.8k − 205,857.9n

+ 273,091,883 �32�
which is illustrated in Fig. 6. The decomposition of the covariance
of k and n is written as

top level performance Z using HSSA, HSSA-

�c� �d�

1.98	105 0.98	106
6.29	105 �217.7%� 1.07	105 �89.1%�

2.05	105 �3.5%� 1.02	106 �4.1%�

Fig. 5 Framework of the two-scale system „scale 1 is product
of
scale and scale 2 is material scale…
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Cov�k,n� = CovPVF
kn + CovPD

kn + CovPVF PD
kn = �10.1 + 1.26 + 0.44�

	 10−4 = 11.8 	 10−4 �33�

t is observed that the first-order covariance terms CovPVF
kn and

ovPD
kn are two major sources of total covariance.

The final GSSIs for the main effects of three product design and
wo material design variables are plotted in Fig. 7, which illus-
rates that the diameter R at the product scale and PVF at the

aterial scale are two dominant input variables on the variation in
he maximum stress. In this case, the summation of the GSSI for

ain effects of R and PVF is greater than 0.75 and it means the
ain effects are sufficient enough to rank the importance of vari-

bles without considering the interaction effects. Comparing the
esults from the AIO method, the proposed method provides iden-
ical ranking results.

Benefits and Limitations of the HSSA-SV Method
While the two example problems in Sec. 4 illustrate the im-

roved accuracy of the HSSA-SV method for capturing dependent
esponses through comparisons with the original HSSA and the
IO approach, its advantages and limitations over the AIO ap-
roach are summarized in this section. Similar to the benefits of
he HSSA method, the first benefit of the HSSA-SV method is its
bility to concurrently execute the SSA across all levels and sub-
odels, thus saving computation time compared with the AIO
ethod, which has to follow a sequential, bottom-up procedure.

Table 2 Updating process of the HSSA

Scale Input

Prior

LSSI

Product scale Cx 0.0020 0
Cy 0.0054 0
R 0.3469 0

Ukn 0.4836 0
Material scale

PVF 0.7307 0
PD 0.2118 0

PVF 0.9134 0
PD 0.0720 0
Fig. 6 Weighted linear regression o
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The GSSIs are obtained via aggregating the LSSIs of submodels
without adding additional samples. This feature of “concurrency”
is highly desired in a concurrent multidisciplinary product design
environment. For the two examples presented, the computations
of integral calculations for updating posterior distributions and the
analytical aggregation of submodel LSSIs are negligible com-
pared with those used for local submodel SSAs. Since no submod-
els are eliminated during the HSSA process, the computational
efficiency between using HSSA-SV and AIO would be the same if
no concurrent computation is considered for levels 1 and 2 local
SSAs. If concurrent computation is considered, the HSSA-SV
method will be almost twice as efficient as the AIO method be-
cause the two levels of the system are analyzed simultaneously.

The second benefit is the ability of applying the SSA only to
critical submodels by following the top-down strategy, thus im-
proving the efficiency of sensitivity analysis compared with the
AIO method. More importantly, as SSA is intended to gain knowl-
edge in a design process, the method can better manage the design
complexity by fixing the variables from insignificant submodels
�see the multilevel suspension design example in our paper pre-
senting the original HSSA method �11��. This benefit of reducing
design complexity in a multidisciplinary design environment is
not directly illustrated in our examples but is an important moti-
vation of our research.

The third inherited advantage is that the top-down strategy used
in the HSSA methods matches better with a typical design pro-

method in multiscale design problem

e Posterior stage

cal TSSI LSSI Local TSSI

1�0.18%� 0.0014 0.0027 �0.23%�
3�0.63%� 0.0010 0.0074 �0.64%�
4�43.75%� 0.3399 0.5005 �43.18%�
7�55.44%� 0.4960 0.6486 �55.95%�

aterial model 1 for k
8�74.34%� / /
2�25.66%� / /

terial model 2 for n
5�91.21%� / /
3�8.79%� / /
-SV

stag

Lo

.002

.007

.510

.646

M
.785
.271

Ma
.926
.089
f two dependent responses ˆk ,n‰
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ess, where exact details of lower level submodels may not be
ompletely known in an early design stage. The HSSA methods
ave the capability of executing from the top level and then
radually going down to the lower level when more details are
xplored as design is being further developed. The AIO method,
n the other hand, can only be applied when the whole system is
xactly known, which is against the purpose of applying SSA to
anage the complexity in a design process.
Although the HSSA methods have the aforementioned advan-

ages, designers should be aware of the risk of eliminating “unim-
ortant” submodel responses and analyses using upper level SSA
esults based on the prior distributions of responses without pos-
erior verifications using the lower level SSA results. It is recom-

ended that designers should cautiously select the threshold for
liminating unimportant submodels. While our empirical study
hows that using a large range for a prior distribution encompass-
ng as much of the real performance as possible can improve the
osterior estimation, tests with different distribution ranges are
ighly recommended.

Conclusion and Future Work
In this paper, an HSSA-SV method is proposed to handle the

ependency caused by shared variables in a hierarchical system
nd to overcome the limitation of the original HSSA method.
ollowing the top-down strategy proposed in the original HSSA
ethod, the concept of local subset SSA is applied in which the

ependent responses from lower submodels are considered as a
ubset. Critical responses from the lower level can be identified
ccording to the rank of the TSSIs at the upper level and SSA is
urther applied to the lower level submodels with critical re-
ponses. With the assistance of the importance sampling tech-
ique, LSSI at the upper level is then updated without additional
amples after the more accurate posterior joint distributions are
vailable. An extended aggregation approach is introduced to for-
ulate the GSSI for main effects of the input variables at different

evels of hierarchy. With the proposed formulation, an accurate
SSI can be achieved when the upper model function is linear
ith respect to the dependent responses from the lower submod-

ls. A multivariable weighted linear regression approach is em-
loyed to capture the trend of the nonlinear effect of the upper
evel function. As illustrated in the numerical and multiscale de-
ign problems, the proposed HSSA-SV method provides suffi-
iently accurate GSSI compared with the AIO method and impor-
ance rankings of all the input variables are exactly identical.

There are still some important issues in HSSA and HSSA-SV
equiring further explorations. First, both the HSSA and the
SSA-SV methods only focus on estimating the main effects with

n assumption that the main effect of an input is sufficient to
epresent its importance. Assessing the global TSSI in the
SSA-SV method needs to be explored even though it is antici-
ated that it may become computationally intractable. Second,
lthough the proposed HSSA-SV method provides accurate im-

Fig. 7 The GSSI for Main effect of each input variable
ortance rankings, there are several facts that impact the estima-

31006-8 / Vol. 132, MARCH 2010
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tion error of the GSSI magnitudes: the nonlinearity of the upper
level model with respect to the dependent lower level responses;
the simplification of such nonlinearity by using a linear regres-
sion; and the error propagation across multiple levels. These fac-
tors need to be addressed in order to improve the estimation ac-
curacy in future work.
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Nomenclature
VY 
 variance of model output Y
VXi

Y

 partial variance of output Y contributed by in-

dividual input variable Xi

VXi1
. . .Xij

Y

 partial variance of output Y due to the interac-

tion effects between input variables Xi1
, . . . ,Xij

SSIXi

Y

 SSI of Xi with respect to Y

SSIXi1
. . .Xij

Y

 SSI of input variables Xi1

, . . . ,Xij
with respect

to Y
SSITXi

Y

 TSSI of input variable Xi with respect to Y

SSI
XiX̃i

Y

 sum of all higher-order SSI involving the input

variables Xi

SSIUi

Y

 SSI of a variable subset Ui with respect to Y

SSIUi1
. . .Uij

Y

 SSI of variable subsets Ui1

, . . . ,Uij
with re-

spect to Y
CovXsi

YiY j

 partial covariance of Yi and Y j contributed by

the shared input variable Xsi

CovXsi1
,. . .,Xsij

YiY j

 partial covariance of Yi and Y j due to the inter-

action effect between shared input variables
Xsi1

, . . . ,Xsij
�Xi

�Xi� 
 first effect term in ANOVA
�Xi1

. . .Xin
�Xi1

, . . . ,Xin
� 
 interaction effect term in ANOVA

�k�Xk� 
 PDF of variable Xk
�Uik

�Uik
� 
 joint PDF of the subset variables Uik

�X1. . .Xn 
 joint PDF of random variables X1 , . . . ,Xn
E� · � 
 expectation operator

Var� · � 
 variance operator
Cov� · � 
 covariance operator

Appendix A: Proof of the Proposition

To make the expressions more concise, vectors X1�= �Xs ,X1�
and X2�= �Xs ,X2� are used to represent input variables vectors
�Xs1 , . . . ,XsNS

,X11, . . . ,X1N1
� and �Xs1 , . . . ,XsNS

,X21, . . . ,X2N2
� of

functions f1 and f2, then X1�= �X11� , . . . ,X1NS
� ,X1NS+1� , . . .X1NS+N1

� �
= �Xs1 , . . . ,XsNS

,X11, . . . ,X1N1
� and X2�= �X21� , . . . ,X2NS

� ,X2NS+1� , . . .

X2NS+N2
� �= �Xs1 , . . . ,XsNS

,X21, . . . ,X2N2
�.

According to the ANOVA decomposition, the dependent out-
puts Y1 and Y2 can be expressed as

Y1 = f1�X1�� = f10 + �
i

�X1i�
�X1i� � + �

i1�i2

�X1i1
� X1i2

� �X1i1
� ,X1i2

� � + . . .

+ �X1i1
� ,. . .,X1iN +N

� �X1i1
� , . . . ,X1iNs+N1

� � �A1�

s 1
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Y2 = f2�X2�� = f20 + �
i

�X2i�
�X2i� � + �

i1�i2

�X2i1
� X2i2

� �Xi1
� ,Xi2

� � + . . .

+ �X2i1
� ,. . .,X2iNs+N2

� �X2i1
� , . . . ,X2iNs+N2

� � �A2�

ecause of the orthogonal property of each term in Eqs. �A1� and
A2�, one has

Cov�Y1,Y2� = Cov�� f10 + �
i

�X1i�
�X1i� � + �

i1�i2

�X1i1
� X1i2

� �X1i1
� ,X1i2

� �

+ . . . + �X1i1
� ,. . .,X1iNs+N1

� �X1i1
� , . . . ,X1iNs+N1

� �
,

� f20 + �
i

�X2i�
�X2i� � + �

i �i

�X2i1
� X2i2

� �X2i1
� ,X2i2

� � + . . .

1 2

utput is given as
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+ �X2i1
� ,. . .,X2iNs+N2

� �X2i1
� , . . . ,X2iNs+N2

� �
� �A3�

Expanding the covariance expression through a mutual multiply-
ing operation and following orthogonal property of decomposed
terms, one may obtain

Cov�f10,�X2i1
� ,. . .,X2im

� �X2i1
� , . . . ,X2im

� ��

= Cov��X1i1
� ,. . .,X1im

� �X1i1
� , . . . ,X1im

� �, f20� = 0 �A4�

Cov��X1i�
�X1i� �,�X2j�

�X2j� ��

= �Cov��X1i�
�X1i� �,�X2j�

�X2j� �� if i = j ; 1 � i, j � NS

0 if i � j
�

�A5�
Cov��X1i1
� ,. . .,X1im

� �X1i1
� , . . . ,X1im

� �,�X2j1
� ,. . .,X2jn

� �X2j1
� , . . . ,X2jn

� ��

=�Cov��X1i1
� ,. . .,X1ij

� �X1i1
� , . . . ,X1ij

� �,�X2i1
� ,. . .,X2ij

� �X2i1
� , . . . ,X2ij

� �� if m = n; il = jl, 1 � l � m; 1 � j � NS

0 otherwise
� �A6�
he nonzero expression in Eq. �A5� can be written as

Cov��Xsi
�Xsi�,�Xsi

�Xsi��, 1 � i � Ns �A7�

nd it can be simplified into

Cov�E�f1
Xsi�,E�f2
Xsi��, 1 � i � Ns �A8�

hile the nonzero expression in Eq. �A6� can be written as

Cov��Xsi1
,. . .,Xsij

�Xsi1
, . . . ,Xsij

�,�Xsi1
,. . .,Xsij

�Xsi1
, . . . ,Xsij

��

1 � i1, . . . ,ij � Ns �A9�

nd it is equal to

ov�E�f1
Xsi1
, . . . ,Xsij

�,E�f2
Xsi1
, . . . ,Xsij

��

− �
k=1

j−1

�
j1. . .jk��i1. . .ij�

	Cov�E�f1
Xsj1
, . . . ,Xsjk

�,E�f2
Xsj1
, . . . ,Xsjk

��,

1 � i1, . . . ,ij � Ns �A10�

y summing Eqs. �A8� and �A10� recursively, one has

Cov�Y1,Y2� = Cov�E�f1
Xs1, . . . ,XsNs
�,E�f2
Xs1, . . . ,XsNs

��

�A11�

ppendix B: Proof of Eqs. (21)–(23)
Given the linear upper model function with respect to depen-

ent responses Yi and Y j from lower level submodels as Z
h�X0 ,Y�=S�X0 ,Yĩ j̃�+Ti�X0 ,Yĩ j̃�Yi+Tj�X0 ,Yĩ j̃�Y j, there are two
ependent responses, Yi and Y j, and they are regarded as a subset
YiY j

= �Yi ,Y j�. The main effect for the subset is calculated accord-
ng the subset SSA method, and thus, the mean of the upper level
h0 =� �S�X0,Yĩ j̃� + Ti�X0,Yĩ j̃�Yi + Tj�X0,Yĩ j̃�Y j��X0
�YdX0dY = S̃

+ T̃i · E�Yi� + T̃j · E�Y j� �B1�

where S̃=�S�X0 ,Yĩ j̃��X0
�Yĩ j̃

dX0dYĩ j̃, T̃i=�Ti�X0 ,

Yĩ j̃��X0
�Yĩ

dX0dYĩ, and T̃j =�Tj�X0 ,Yĩ j̃��X0
�Y j̃

dX0dY j̃. Let �YiY j

be the joint probability density function. Then

�UYiY j
�UYiY j

� =� �S�X0,Yĩ j̃� + Ti�X0,Yĩ j̃�Yi

+ Tj�X0,Yĩ j̃�Y j��X0
�Yĩ j̃

dX0dYĩ j̃ − h0 = S̃ + T̃i · Yi

+ T̃j · Y j − h0 = T̃i · Yi + T̃j · Y j − T̃i · E�Yi�

− T̃j · E�Y j� �B2�

and the first-order partial variance of subset UYiY j
is equal to

VUYiY j

Z =� �UYiY j

2 �UYiY j
��YiY j

dYidY j = T̃i
2VYi + T̃j

2VY j

+ 2 · T̃i · T̃j · Cov�Yi,Y j� �B3�

Let h�X0 ,Yĩ j̃ ,Xi ,X j ,Xs�=S�X0 ,Yĩ j̃�+Ti�X0 ,Yĩ j̃�Yi+Tj�X0 ,
Yĩ j̃�Y j =S�X0 ,Yĩ j̃�+Ti�X0 ,Yĩ j̃� ·gi�Xi ,Xs�+Tj�X0 ,Yĩj̃� ·gj�Xj ,Xs�
and Xik�Xi, Xjk�Xj, and Xsk�Xs. The decomposed first-order
term of ANOVA for function h with respect to local input variable
Xik in the ith submodel at the lower level is given as

�Xik
�Xik� =� �S�X0,Yĩ j̃� + Ti�X0,Yĩ j̃� · gi�Xi,Xs�

+ Tj�X0,Yĩ j̃� · gj�Xj,Xs���X0
dX0�Yĩ j̃

dYĩ j̃�Xj
dXj�Xs

dXs

		 �Xim
dXim − h0
m�k
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= T̃i · �� gi�Xi,Xs��Xs
dXs	

m�k

�Xim
dXim − E�Yi�
 �B4�

hus, the global main effect contributed by local input variable
ik belonging to the ith submodel on the total variance of output Z

s equal to

VXik

Z =� �Xik

2 �Xik��Xik
dXik = T̃i

2 · VXik

Yi �B5�

hus, GSSI for main effect of Xik is expressed as

SSIXik

Z =
VXik

Z

VZ =
T̃i

2 · VXik

Yi

VZ =
T̃i

2 · VXik

Yi

VYi
·

VYi

VUYiY j

Z ·
VUYiY j

Z

VZ

= SSIUYiY j

Z · SSIXik

Yi ·
T̃i

2 · VYi

VUYiY j

Z �B6�

hen considering the decomposed first-order term of ANOVA for
unction f with respect to shared variable Xsm at the lower level,
he term can be written as

�Xsk
�Xsk� =� �S�X0,Yĩ j̃� + Ti�X0,Yĩ j̃� · gi�Xi,Xs�

+ Tj�X0,Yĩ j̃� · gj�Xj,Xs���X0
dX0�Yĩ j̃

dYĩ j̃�Xi
dXi�Xj

dXj

		
m�k

�Xsm
dXsm − h0

= T̃i · �� gi�Xi,Xs��Xi
dXi	

m�k

�Xsm
dXsm − E�Yi�


+ T̃j · �� gj�Xj,Xs��Xj
dXj	

m�k

�Xsm
dXsm − E�Y j�


�B7�

nd then, the global main effect contributed by the shared variable
sk at the lower level on the total variance of output Z is equal to

VXsk

Z =� �Xsk

2 �Xsk��Xsk
dXsk = T̃i

2 · VXsk

Yi + T̃j
2 · VXsk

Y j

+ 2 · T̃i · T̃j · CovXsk

YiY j �B8�

hus, the GSSI for main effect of the shared variable Xsm is ex-
ressed as

SSIXsm

Z =
VXsm

Z

VZ =
T̃i

2 · VXsm

Yi + T̃j
2 · VXsm

Y j + 2 · T̃i · T̃j · CovXsm

YiY j

VZ

= SSIUYiY j

Z · �SSIXsm

Yi ·
T̃i

2 · VYi

VUYiY j

Z + SSIXsm

Y j ·
T̃j

2 · VY j

VUYiY j

Z 

+

2 · T̃i · T̃j · CovXsm

YiY j

VZ �B9�

These formulations can be easily extended to the case with
ore than two dependent responses from lower level submodels.

ppendix C: Proof of Eqs. (29) and (30)
Based on the subset decomposition and LSSA at the upper
evel, the variance of upper level output Z can be decomposed as
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VZ = V
Ỹ1,. . .,n

Z
+ VUY1,. . .,Yn

Z + V
Ỹ1,. . .,nUY1,. . .,Yn

Z �C1�

where Ỹ1,. . .,n= �X0 ,Y1 , . . . , n˜� represents all the input variables of
the upper level model excluding the subset of dependent re-
sponses from the lower level submodels. According to the ap-
proximation shown in Eq. �27�, the main effect of subset UY1,. . .,Yn
on the total variance of the upper level output Z is formulated as

VUY1,. . .,Yn

Z =� �hUY1,. . .,Yn
�UY1,. . .,Yn

� − h0�2�Y1,. . .,Yn
dY1, . . . ,dYn

= Var�A + �
i=1

n

Bi · Yi� = �
i=1

n

Bi
2VYi

+ 2 · �
i=1

n

�
j�i

n−1

Bi · Bj · Cov�Yi,Y j� �C2�

where Bi is a linear coefficient of the linearized function. Based on
the lower level LSSA and VYi can be further decomposed as

VYi = �
m

VXim

Yi + �
m

VXsm

Yi + � Vhigh
Yi �C3�

where the higher-order contributions of the partial variance are
represented by Vhigh

Yi . The covariance is also decomposed accord-
ing to the proposed covariance decomposition method for the
shared variables, and is formulated as

Cov�Yi,Y j� = Cov�E�Yi
Xs�,E�Y j
Xs�� = �
m

CovXsm

YiY j + � Covhigh
YiY j

�C4�

where Xsm�Xs, and CovXsm

YiY j represent the main effect contributed

by the shared variable Xsm on the covariance of Yi and Y j; Covhigh
YiY j

stands for the higher-order contributions of partial covariance. VZ

can be expressed as

VZ = VUY1,. . .,Yn

Z + V
Ỹ1,. . .,n

Z
+ V

Ỹ1,. . .,nUY1,. . .,Yn

Z
= �

i=1

n

Bi
2��

m

VXim

Yi

+ �
m

VXsm

Yi + � Vhigh
Yi � + 2 · �

i=1

n

�
j�i

n−1

Bi · Bj · ��
m

CovXsm

YiY j

+ � Covhigh
YiY j� + V

Ỹ1,. . .,n

Z
+ V

Ỹ1,. . .,nUY1,. . .,Yn

Z �C5�

Thus, the main contribution of local input variable Xik belonging
to the ith submodel on the variance of Z is given as

VXik

Z = Bi
2VXik

Yi �C6�

It can be observed from Eq. �C5�, the main �first-order� contribu-
tion of a shared variable to its upper level model variance can be
regarded as a combination of its contributions to the variance and
covariance of the dependent responses at the lower level submod-
els. Thus, the main contribution of the shared variable Xsk on the
variance of Z is

VXsk

Z = �
i=1

n

Bi
2VXsk

Yi + 2 · �
i=1

n

�
j�i

n−1

Bi · Bj · CovXsk

YiY j �C7�

Given the GSSI in form of aggregation of LSSI, the Eqs. �C6� and

�C7� are expressed as
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nd

SSIXsk

Z =

�
i=1

n

Bi
2VXsk

Yi + 2 · �
i=1

n

�
j�i

n−1

Bi · Bj · CovXsk

YiY j

VZ

= SSIUY1,. . .,Yn

Z · �
i=1

n �SIXsk

Yi ·
Bi

2 · VYi

VUY1,. . .,Yn

Z 

+
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