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A Unified Framework for
Integrated Optimization Under
Uncertainty
Reliability and robustness are two main attributes of design under uncertainty. Hence, it
is necessary to combine reliability-based design and robust design at the design stage. In
this paper, a unified framework for integrating reliability-based design and robust design
is proposed. In the proposed framework, the probabilistic objective function is converted
to a deterministic objective function by the Taylor series expansion or inverse reliability
strategy with accounting for the probabilistic characteristic of the objective function.
Therefore, with this unified framework, there is no need to deal with a multiobjective
optimization problem to integrate reliability-based design and robust design any more.
The probabilistic constraints are converted to deterministic constraints with inverse re-
liability strategy at the same time. In order to solve the unified framework, an improved
sequential optimization and reliability assessment method is proposed. Three examples
are given to illustrate the benefits of the proposed methods. �DOI: 10.1115/1.4001526�
Introduction
Uncertainty is ubiquitous in the engineering design ranging

rom a simple component to complicated systems. Therefore, de-
ign under uncertainty has become growingly important. Many
esign methods under uncertainty have been developed over the
ast decades. Among these methods, reliability-based design and
obust design are two typical paradigms. The focuses of these two
aradigms are different. Reliability-based design achieves a de-
ign, which has a probability of failure less than the acceptable
evel, to ensure that the events lead to a catastrophic result are
xtremely unlikely �1,2�. On the other hand, robust design seeks a
esign, which is relatively insensitive to the environmental varia-
ion �random parameters�, to improve the quality of a product by

inimizing the effect of uncertainty on system performance with-
ut eliminating the causes �3–5�. Since reliability and robustness
re attributes of design under uncertainty, it is necessary to com-
ine them into an integrated framework �6,7�.

The wide applications for either reliability-based design and/or
obust design are subjected to the restrictions on their costly com-
utation and limited capacities. Under the reliability-based design
aradigm, the computational inefficiency is generally derived
rom the expensive probabilistic analysis. Many methods have
een proposed to deal with the probabilistic analysis: �1� most
robable point �MPP�-based methods, �2� simulation methods, �3�
oment-based methods, and �4� metamodeling methods. MPP-

ased methods generally include the first order reliability method
FORM� and second order reliability method �SORM� �8–10�.
he probabilistic analysis is achieved by simplifying the limit
tate function with the first order or second order Taylor expan-
ion at the MPP for FORM or SORM. Since SORM is second
rder gradient-based, it is generally more accurate but more time-
onsuming than FORM. Simulation methods, generally including
onte Carlo simulation and quasi-Monte Carlo simulation, are

asy and feasible to most probabilistic analysis. The computa-
ional cost of simulation methods, however, is prohibitively high
or high reliability. Moment-based methods, such as point esti-
ate method �11�, eigenvalue dimension reduction �12�, and
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saddlepoint approximation method �13�, have been used as alter-
native approaches for probabilistic analysis. In recent years, meta-
modeling methods, such as response surface method �14�, Kriging
�15�, radial basis function �16�, and support vector regression �17�,
have been used in both academia and industry.

Traditional approaches to reliability-based design require a
nested double-loop procedure including the optimization outer
loop and the reliability analysis inner loop. The reliability analysis
inner loop calculates the reliability for each of probabilistic con-
straints while the optimization outer loop searches for the optimal
design and calls the reliability analysis inner loop repeatedly. The
process is computationally intensive under the nested framework.
In order to overcome the computational inefficiency of a nested
double-loop procedure, single loop methods �18–21�, where the
reliability analysis inner loop is eliminated by introducing addi-
tional variables and constraints, and sequential optimization and
reliability assessment �SORA� methods �22–24�, where the nested
framework is decoupled into serial cycles, are developed.

Under the robust design paradigm, mean and variance of the
objective function need to be estimated. Commonly used methods
can be divided into three categories: Taylor series expansion
method �4,25�, point estimating methods �26,27�, and simulation
methods �28,29�. The first order Taylor series expansion is very
simplified and commonly used in the robust design. However, its
accuracy is not so good when the limit state function is highly
nonlinear. Moreover, since it is a gradient-based method, accurate
gradient calculation is required.

Some attempts have been made to combine reliability-based
design and robust design �6,7,30,31�. In their work, the mean and
variance are minimized at the same time and the weighted-sum
approach is usually used to convert the multiobjective optimiza-
tion to a single objective optimization. In this paper, a unified
framework for integrating reliability-based design and robust de-
sign is proposed based on the work in Ref. �6�. Two major devel-
opments are involved. The fundamental development is convert-
ing the probabilistic objective function to the deterministic one
according to the probabilistic characteristic of the probabilistic
objective function by Taylor series expansion or inverse reliability
strategy �32–34�. In this development, the unified framework
eliminates the need to deal with explicitly a multiobjective opti-
mization problem. In the traditional combination of reliability-
based design and robust design, multiobjective optimization prob-
lems have to be solved and the weighted-sum method is usually

implemented to deal with the multiobjective optimization prob-
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em. Meanwhile, the probabilistic constraints are converted to de-
erministic ones by inverse reliability strategy �6�. The other de-
elopment is that an improved sequential optimization and
eliability assessment �ISORA� method is proposed to solve the
nified framework.

The organization of the paper is as follows. In Sec. 2, the typi-
al reliability-based design model and robust design model are
ntroduced. A unified framework for integrating reliability-based
esign and robust design is proposed in Sec. 3. Three examples
ollow to demonstrate the effectiveness of the unified framework
n Sec. 4. Section 5 presents some conclusions.

Typical Reliability-Based Design and Robust Design
A typical design optimization model under uncertainty is given

y �22�

min
d,�X

f�d,X,P�

subject to Pr��gi�d,X,P� � 0�� � �Ri� i = 1,2, . . . ,ng

dL � d � dU, �X
L � �X � �X

U �1�

In the above model, f� • � is an objective function. In engineer-
ng design, an objective function is usually physics-based such as
he volume, the weight, and the manufacturing cost of a product.

is the vector of deterministic design variables. X is the vector of
andom design variables. P is the vector of random parameters.
he difference between X and P is that the former is changeable
nd controllable in the design process while the latter is not. �X is
he vector of mean values of random design variables. The lower
nd upper bounds of d are defined by dL and dU, respectively.
ikewise, the lower and upper bounds of �X are defined by �X

L

nd �X
U, respectively. d and �X are to be determined in the design

ptimization. gi�d ,X ,P� is a limit state function �also called per-
ormance function� and ng is the number of limit state functions.
r� • � denotes a probability and Pr��gi�d ,X ,P��0��� �Ri� means

hat the probability of constraint satisfaction gi�d ,X ,P��0
hould not be less than the desired reliability �Ri�. Such a prob-
bility is obviously the reliability associated with limit state func-
ion gi�d ,X ,P��0.

It is apparent that the objective function in Eq. �1� is a function
f deterministic design variables d, random design variables X
nd random parameters P. In the traditional reliability-based de-
ign, the mean value of the objective function in Eq. �1� is gener-
lly treated as the new objective function. Then a typical
eliability-based design model is provided by

min
d,�X

f�d,�X�

subject to Pr��gi�d,X,P� � 0�� � �Ri� i = 1,2, . . . ,ng

dL � d � dU, �X
L � �X � �X

U �2�
This is a design problem with deterministic objective function

nd probabilistic constraints. In this model, the main computa-
ional expense is to calculate the probability Pr��gi�d ,X ,P��0��.
heoretically, the probability can be calculated by integrating the

oint probability density fx,P�x ,p� function of �X ,P� over the safe
egion defined by gi�d ,X ,P��0. The integral is given by �35�

P�g�d,X,P� � 0� =�
g�d,X,P��0

fx,P�x,p�dxdp �3�

It is usually difficult or even impossible to obtain the analytical
olution to the probability integral if the limit state function is
ighly nonlinear and multidimensional. In order to deal with the
ifficulty in computing the probability, many approximate meth-
ds are developed. FORM and SORM are two main approximate

ethods. An approximate solution to Eq. �3� is achieved by sim-
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plifying the performance function at the MPP in FORM or SORM
with the first order or second order Taylor series expansion, re-
spectively. The MPP is the point with the shortest distance from
the origin to the constraint boundary gi�d ,UX ,UP�=0 in the stan-
dard normal space. Because of the shortest distance to the origin,
the MPP has the highest probability density on the constraint
boundary gi�d ,UX ,UP�=0. Monte Carlo simulation �36�, as a di-
rect simulation method, can be used. However, simulation is very
time-consuming for high reliability. Other methods such as
moment-based method �11–13� and metamodeling method
�14–17� can be used as alternatives to estimate the probability in
Eq. �3�. For a good balance between accuracy and efficiency,
FORM is usually used.

Many methods are developed to deal with design optimization
under uncertainty. Reliability-based design and robust design are
two major paradigms for design under uncertainty among them
�6�. Different from reliability-based design, the task of robust de-
sign is to minimize the mean and the variation in objective func-
tion simultaneously under the condition that constraints are satis-
fied. The typical robust design model is given �4�

min
d,�X

f�� f�d,X,P�,� f�d,X,P��

subject to gi�d,X,P� � 0 i = 1, . . . ,n

dL � d � dU; �X
L � �X � �X

U �4�

where � f�d ,X ,P� and � f�d ,X ,P� are the mean value and stan-
dard deviation of the objective function in Eq. �1�, respectively. n
is the number of deterministic constraints. This is a multiobjective
optimization problem. A common way to deal with multiobjective
design optimization is to use weighting factors. When probabilis-
tic constraints are considered, Eq. �4� can be rewritten into �5�

min
d,�X

w1
� f�d,X,P�

� f
�

+ w2
� f�d,X,P�

� f
�

subject to �gi
�d,X,P�-k�gi

�d,X,P� � 0, i = 1, . . . ,ng

dL � d � dU; �X
L � �X � �X

U �5�

w1 and w2 are the weighting factors, which are generally deter-
mined by the designer during the design process. A restriction is
posed that different designer will choose different values of w1
and w2. � f

� and � f
� are the most achievable optimal solutions for

the mean value, � f�d ,X ,P�, and standard deviation, � f�d ,X ,P�,
of the objective function, respectively. �gi

�d ,X ,P� and
�gi

�d ,X ,P� are the mean value and standard deviation of the limit
state function gi�d ,X ,P�. k is a constant to express the ratio be-
tween the mean, �gi

�d ,X ,P�, and the standard deviation,
�gi

�d ,X ,P�. Therefore, k can indicate the probability of constraint
satisfaction only if the distribution of performance function
gi�d ,X ,P� is known. For example, k=3 indicates that the prob-
ability of constraint satisfaction is 99.87% under the assumption
that gi�d ,X ,P� is normally distributed.

Du et al. �6� proposed a novel integrated framework for design
optimization under uncertainty by taking both the design objective
robustness and the probabilistic constraint into account. The inte-
grated framework is given by

min f�� f,�v f�1

�2�

subject to gi
��d,X,P� � 0, i = 1,2, . . . ,n �6�

where �v f�1

�2 is the percentile performance difference and is

given by
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�v f�1

�2 = �v f
�2 − �v f

�1 �7�

here �1 and �2 are the reliability levels or the cumulative distri-
ution functions of f , given by

Pr�f�d,X,P� � v f
�i� = �i �8�

In the integrated framework for reliability-based design and ro-
ust design, the inverse reliability strategy is used to reformulate
he optimization problem under uncertainty. After the reformula-
ion, both the objective function and the probabilistic constraints
re deterministic.

In this paper, an improvement will be made for the integrated
ramework. In the traditional robust design, the weighted-sum
ethod is usually used to deal with the multiobjective optimiza-

ion. Hence, different designs are made according to the prefer-
nce of different designers. On one hand, therefore, the improve-
ent is motivated by the need to build a unified framework to

vercome the difficulty in choosing the weighting factors to con-
ert the multiobjective optimization problem to a single objective
ptimization problem. On the other hand, this improvement is
otivated by the need to build a relationship between objective

unction satisfaction and robust design based on the probabilistic
bjective function. In the reported integrated framework for
eliability-based design and robust design, the probability of the
robabilistic objective function satisfaction cannot be calculated.
n the traditional reliability-based design, the mean of the proba-
ilistic objective function f�d ,X ,P� in Eq. �1� indicates 50% ob-
ective function satisfaction under the assumption that f�d ,X ,P�
s normally distributed. Robustness, however, cannot be expressed
n the traditional reliability-based design.

Unified Framework for Integrated Reliability-Based
nd Robust Design
In this section, we will develop a unified framework for inte-

rating reliability-based and robust design. For design optimiza-
ion with both probabilistic objective function and probabilistic
onstraints, as shown in Eq. �1�, the task is to minimize the proba-
ilistic objective function most probably under the condition that
onstraints are satisfied. In other words, the required probability
f both probabilistic objective function and constraints is satisfied
y ensuring the number of probable design points in the region
etween constraint boundary and objective function boundary.
he optimization under both probabilistic objective function and
onstraints is given in Fig. 1.

In Fig. 1, g�X1 ,X2�=0 is the constraint boundary. g�X1 ,X2�
0 indicates the safe �feasible� region while g�X1 ,X2��0 indi-

ates the failure �infeasible� region. The probabilistic constraint is
atisfied by ensuring the probability that the design points appear
n the safe region. f�X1 ,X2�− f�=0 is the objective function

�

ig. 1 Optimization under probabilistic objective function and
onstraints
oundary. f denotes the �-percentile performance of the objec-

ournal of Mechanical Design
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tive function f . The objective is to minimize f� under the condi-
tion of constraint satisfaction. Then the general unified framework
for integrating reliability-based and robust design is provided by

min
d,�X

f��Pr�f�d,X,P,C� − f� � 0� = �

subject to Pr�gi�d,X,P� � 0� � �Ri�, i = 1,2, . . . ,ng

dL � d � dU; �X
L � �X � �X

U �9�

In the above model, � denotes a probability. C is the vector of
random parameters, which only appear in the objective function.
For example, C is the cost coefficient in the cost-type objective
function, which is stochastic over the market and is not control-
lable by the designer during the design process. All the random
variables are assumed to be independent in this paper. The unified
framework is achieved by shifting or shrinking the distribution of
the probabilistic objective function or both, as shown in Fig. 2.

As shown in Fig. 2, the standard deviation of the objective
function decreases by shrinking the distribution. Overall, mini-
mizing the �-percentile performance f� of the probabilistic objec-
tive function f is realized by both shifting and shrinking the dis-
tribution. Hence, the main task is to obtain the expression of the
�-percentile performance f� in terms of the design variables d and
�X. Herein, two methods are given depending on whether the
distribution of probabilistic objective function is normally distrib-
uted or not.

3.1 Unified Framework With Normal Distribution. When
the objective function is normally distributed, the percentile per-
formance f� is easily expressed as a function of the mean value � f
and standard deviation � f.

Then Eq. �9� can be rewritten as

min
d,�X

� f + k� f

subject to Pr�gi�d,X,P� � 0� � �Ri�, i = 1,2, . . . ,ng

dL � d � dU; �X
L � �X � �X

U �10�

In Eq. �10�, k is a constant to predict the probability �. For
example, k=3 indicates that the probability � is equal to 0.9987.

Many approaches could be used to estimate � f and � f. How-
ever, a simple way is the Taylor series expansion of the probabi-
listic function at the mean value of �X ,P ,C�. The approximation
is provided by

Fig. 2 Optimization of the unified framework
� f = f�d,�X,�P,�C� �11�
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� f 	 

i=1

n � � f

�Xi
�

�X,�P,�C

2

�Xi
+ 


k=1

m � � f

�Pk
�

�X,�P,�C

2

�Pk

+ 

j=1

l � � f

�Cj
�

�X,�P,�C

2

�Cj
�12�

Since d and �X in Eqs. �11� and �12� are to be determined, the
bjective function in Eq. �10� is a deterministic function. Several
ethods have been developed to solve this design optimization

roblem such as nested double-loop procedure method, single
oop method, and SORA method. Considering the balance be-
ween computational efficiency and accuracy, the SORA method
ill be used to solve the optimization model in Eq. �10� in this
aper.

3.2 Unified Framework With Other or Unknown Distribu-
ion Types. The approximate reliability index could be calculated
n FORM and SORM. Neither FORM nor SORM, however, is
uitable for estimating the distribution and probability density
unction of a probabilistic function. It is also impossible to esti-
ate the probability distribution type by simulation methods such

s direct Monte Carlo simulation, quasi-Monte Carlo simulation
n which the reliability index, or reliability is calculated by ran-
om sampling. In general, it is difficult to estimate the probability
istribution type of a probabilistic function even though the ex-
ression of the probabilistic function is not so complicated. Thus,
stringent restriction is imposed on the method proposed in Sec.

.1. An alternative method needs to be developed to deal with the
eneral case of the unified framework for integrating reliability-
ased and robust design model in Eq. �9�. This method needs to be
ble to deal with other or unknown distributions of probabilistic
bjective function. An inverse reliability strategy is implemented
n this method to convert the probabilistic objective function into
he deterministic function. The emphasis of the inverse reliability

ethod is to find the �-percentile performance f� with the known
ssociated probability �. The formulation is given by �34�

Pr�f�d,X,P,C� − f� � 0� = � �13�

As illustrated in Fig. 3, the MPP u� is a point where the perfor-
ance function f�d ,X ,P ,C�− f�=0 is tangent to the circle with

he radius of 	.
Moreover, the MPP u� is also a point with a maximum value of

f�d ,X ,P ,C� on the circle with radius 	. Then the mathematical
odel of the inverse MPP search can be stated as: find the maxi-
um value of f�d ,X ,P ,C� under the condition that the MPP

emains on the surface of the circle. We first transform random
ariables Z= �X ,P ,C� into the standard normal random variables
= �UX ,UP ,UC�. Then the mathematical model can be expressed

s follows:

max
u

f�u�

Fig. 3 Inverse MPP search
subject to u = 	 �14�

51008-4 / Vol. 132, MAY 2010
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It is obvious that solving this optimization problem requires an
iterative procedure. f�u�� is the performance percentile f� when
the reliability index 	 is satisfied. In other words, the probability
that the objective is less than or equal to f� is equal to 
�	�. 
 is
the standard normal cumulative distribution function.

Then Eq. �9� is rewritten as

min
d,�X

�f�u��:max f�u��u = 	�

subject to Pr�gi�d,X,P� � 0� � �Ri�, i = 1,2, . . . ,ng

dL � d � dU; �X
L � �X � �X

U �15�
Since the transformation from the general design space to the

standard normal space and Taylor linear series expansion is em-
ployed in the inverse reliability procedure, the objective function
is normally distributed. Then the percentile performance of the
objective function f� or f�u�� can be expressed by the combina-
tion of � f and � f such as � f +� f. After inverse reliability analysis
is used on the probabilistic constraints, Eq. �15� can be repre-
sented in the unified framework by

min
d,�X

�� f + k� f:max f�u��u = 	�

subject to gi
�i�d,X,P� � 0, i = 1,2, . . . ,ng

dL � d � dU; �X
L � �X � �X

U �16�
Since SORA has a high computational efficiency and accuracy,

the ISORA method is proposed to deal with the optimization prob-

Fig. 4 Flowchart of ISORA
lem in Eq. �16�. The flowchart of the ISORA is given in Fig. 4. As
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llustrated in Fig. 4, the ISORA is a sequential optimization pro-
ess consisting of three optimization procedures including inverse
eliability strategy, deterministic optimization, and reliability as-
essment. The �-percentile performance f�, which is used as the
bjective function to be minimized, and the corresponding MPP
�, which will appear in the deterministic constraints instead of
he mean in the traditional SORA, can be obtained from the in-
erse reliability strategy.

Examples
In this section, we will use three examples to demonstrate the

roposed unified framework for integrating reliability-based de-
ign and robust design. Through the examples, we will discuss the
ffectiveness of the unified framework.

4.1 Mathematic Example. A unified framework for integrat-
ng reliability-based and robust design is given by

min f� = � f + k� f

subject to Pr�g�X� = d2X1
2X2/20 − d1 � 0� � �R�

− 10 � �X1
, �X2

� 10; 0 � d1, d2 � 2 �17�

here

f = X1/d1 + d2X2 �18�

Information on the random design variables X= �X1 ,X2� is
iven in Table 1. The required reliability is �R�=0.9987. � f and � f

re the mean value and the standard deviation of the function f ,
espectively. k is a constant and used to express the probability
atisfaction of the probabilistic objective function.

Since X1 and X2 are normally distributed and d1 and d2 are
eterministic design variables, f follows the normal distribution.
hen we can use the first method proposed in Sec. 3.1 to formu-

ate the unified framework. The results of the mathematical ex-
mple for different k are given in Table 2.

The last row in Table 2 indicates the probability satisfaction of
f for different k values. For example, k=3 means that the prob-
bility that f is less than or equal to � f +3� f is 99.87% and f�

11.408 and k=0 corresponds to the probability that f is less than
r equal to � f. When k=0, the objective function in Eq. �17�
ecomes f�=� f, which is commonly used in the traditional
eliability-based design. The objective value f� for the case k=3 is
reater than that for the case k=0, as shown in Table 2. Therefore,
he practical objective function value is usually bigger than the
ptimal value provided by the traditional reliability-based design.

Using the proposed framework, we can control the satisfaction

Table 1 Distribution of random variables

ariables Mean Standard deviation Distribution type

1 �X1
1 Normal

2 �X2
1 Normal

Table 2 Results of the mathematical example

0 1.5 2 3

1 2 1.9607 1.6611 1.3198

2 0.13992 0.12851 0.13159 0.1342

X1
8.4774 8.6646 8.1419 7.5278

X2
10 10 10 10

f� 5.6386 8.838 9.8028 11.408
unction calls 781 1187 887 894
robability
atisfaction �%� 50 93.32 97.72 99.87
ournal of Mechanical Design
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probability of the probabilistic objective function to ensure that
the optimal design is more suitable to the engineering practices.
The accuracy and efficiency is similar to that of traditional SORA
and the number of function calls during the design optimization is
also given in Table 2.

4.2 Cantilever Beam. The cantilever beam shown in Fig. 5 is
subjected to the external force P. The performance function is
defined by the difference between the yield strength Sy and the
maximum tensile stress Smax, namely,

g�d,X� = Sy − Smax �19�

The maximum tensile stress Smax is given by

Smax =
6PL

bh2 �20�

The cross-sectional area is considered as the objective function,
namely,

f = bh �21�
Then the unified framework for integrating reliability-based and

robust design is provided by

min f� = � f + k� f

subject to Pr�Sy −
6PL

bh2 � 0� � 0.9995

h

b
− 2 � 0

10 � �b � 45, 20 � �h � 80 �22�
The distributions of random variables are given in Table 3.
Even though the expression of the probabilistic objective func-

tion f =bh is very simple and b and h are normally distributed, it
is difficult to estimate the distribution type of f . Then the second
method proposed in Sec. 3.2 is employed to solve this problem.
The results for different k values are given in Table 4.

Since the standard deviations of the random design variables in
the objective function f are very small, e.g., 0.05 mm, and there
are no random parameters, the differences among the objective
values f� for different k values are not very big. Hence, we can
conclude that the error of the objective function is small if the
mean of the probabilistic objective function is used as the deter-
ministic objective function when the standard deviation of design
variables in the probabilistic objective function is not big. Actu-
ally, when k=0, the unified framework reduces to the traditional

Fig. 5 Cantilever beam

Table 3 Distributions of random variables

Variables Variables Mean STD Distribution

X b �mm� �b 0.05 Normal
h �mm� �h 0.05 Normal

P Sy �MPa� 200 20 Normal
P �KN� 20 2 Extreme value
L �mm� 200 1 Normal
MAY 2010, Vol. 132 / 051008-5

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S
I
T
S
w

g
a
b
i
s
a
d
b
e
e
t
b
e
b

b

k

�
�

F
P

V

d

X

P

0

Dow
ORA. But when k=1,2 ,3, the unified framework guarantees
SORA. The number of function calls is also given in Table 4.
hen we can see that the efficiency of ISORA is lower than that of
ORA. The reason is that ISORA includes three loops in a cycle
hile two loops are included in SORA.

4.3 Single Helical Gear Reducer Design. A single helical
ear reducer, shown in Fig. 6, is used in some engines, which
llows the engine to rotate at its most efficient speed. This has
een used as a testing problem for nonlinear optimization method
n literature �37,38�. Since there are some random variables in the
peed reducer design, we will consider the speed reducer design
s a probabilistic design. In the probabilistic design, there are two
eterministic design variables: the tooth module mn and the num-
er of pinion teeth z1. Face width b and helix angle 	 are consid-
red to be random design variables. There are five random param-
ters P1– P5, including the material properties, the rotation speed,
he engine power, the allowable fatigue stress and the allowable
ending stress, and a random parameter C, which is the cost co-
fficient and only appears in the objective function. Their distri-
utions are given in Table 5.

The unified framework for integrating reliability-based and ro-
ust design is given by

min f� = � f + k� f

subject to Pr�gi�d,X,P� � 0� � �Ri�

0.3 � b/d1 � 0.7

b sin 	/��mn� � 1

17 � z1 � 40; 2 � mn � 20

Table 4 Results of the cantilever beam

0 1 2 3

b 37.236 37.213 37.174 37.168

h 74.471 74.493 74.533 74.538
f� 2773 2776.3 2782.2 2783.0
unction calls 2215 5441 5417 5569
robability satisfaction �%� 50 84.13 99.72 99.87

Fig. 6 A single helical gear reducer

Table 5 Distributions of the single helical gear reducer

ariables Variables Mean STD Distribution

z1 — — —
mn �mm� — — —
b �mm� �b 4 Normal
	 �deg� �	 0.5 Normal
P �kW� 2000 200 Normal
n �rpm� 1000 100 Normal

ZE ��MPa� 189.8 18.98 Normal
�H min �MPa� 1400 140 Normal
�F min �MPa� 480 48 Normal

C�10−4 $ /mm3� 1 1.3 Normal
51008-6 / Vol. 132, MAY 2010
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8 deg � �	 � 16 deg; 100 � �b � 240 �23�
where

f = C
�mn

2

4
�z1

2 + �uz1�2�b �24�

f is the cost-type objective function, which is proportional to the
volume of the reducer. Two performance functions are defined by
the difference between the allowable fatigue stress and the gear
contact stress and the difference between the allowable bending
stress and the bending stress. They are given by

g1�d,X,P� = �H minZN − ZEZH�2000 � 9.55P

d1
2bn cos�	�

u + 1

u
KA

�25�

g2�d,X,P� = �F minYST −
2000 � 9.55P

d1bmnn cos�	�
YF �26�

ZH=2.25, KA=1.45, ZN=0.87, YF=1.98, YST=2.32, and u=4 are
the coefficients and the associated required reliability is �Ri�
=0.9987.

Since it is impossible to get the distribution of the objective
function f , the second method proposed in Sec. 3.2 is imple-
mented to deal with the unified framework in Eq. �23�. The results
are given in Table 6.

Since the standard deviation of random design variables is rela-
tively small, it is reasonable to treat the mean value of the proba-
bilistic objective function as the objective function when no ran-
dom parameters appear in the probabilistic objective function, as
shown in example 2. In the real word, the probabilistic objective
function usually has physical meaning, e.g., cost. Then some ran-
dom parameters are introduced into the probabilistic objective
function. In this example, cost coefficient is introduced into the
probabilistic objective function as a random parameter. As shown
in Table 6, the difference of the objective values between the case
k=0 and the case k=3 is very big. k=0 indicates the mean and
k=3 indicates that the probability of the probabilistic objective
being less than or equal to � f +3� f is 99.87%. We also give the
number of function calls during the optimization in Table 6. As in
example 2, when k=0, actually the SORA can be used to deal
with the unified framework. When k=1,2 ,3, the ISORA is imple-
mented to handle the unified framework. The results also indicate
that the efficiency of ISORA is much lower than SORA.

5 Concluding Remarks
In some engineering design, both the objective function and

some constraints are stochastic. In the traditional reliability-based
design, the probabilistic objective function is converted to a de-
terministic one by taking the expectation of the probabilistic ob-
jective function. A big error will be generated if the standard
deviation of the probabilistic objective function is big. Further-
more, robustness is not accounted for. Then the integrated frame-
work for reliability-based design and robust design is proposed. In
the framework, the combination of reliability-based design and

Table 6 Results of the single helical gear reducer

k 0 1 2 3

z1 22 26 26 26
mn 8.58 5.14 5.20 5.23
b 153.73 108 108 108
	 10.22 10.89 10.86 10.85
f� 4730.3 5616.4 11,418.0 12,234.0
Function calls 7198 21,716 31,420 31,852
Probability satisfaction �%� 50 84.13 97.72 99.87
robust design is considered. Multiobjective optimization prob-
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ems, however, should be solved. Currently, the weighted-sum
ethod is commonly used to deal with the multiobjective optimi-

ation. Hence, different designs may be obtained for the same
roduct due to different designers’ preference. A unified frame-
ork for integrating reliability-based design and robust design is
roposed in this paper. With the Taylor series expansion or inverse
eliability strategy, the probabilistic objective function is con-
erted to the deterministic one based on the probabilistic charac-
eristic of the probabilistic objective function. The unified frame-
ork eliminates dealing with a multiobjective optimization
roblem to integrate reliability-based design and robust design.
herefore, the unified framework could have a wider practical
pplication.
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omenclature
d  vector of deterministic design variables
X  vector of random design variables
P  vector of random parameters

f� • �  objective function
Pr� • �  probability
gi� • �  limit state function

ng  number of limit state functions
�Ri�  required reliability of the ith limit state

function
�X  mean value of X
�X

L  lower bound of �X
�X

U  upper bound of �X
dL  lower bound of d
dU  upper bound of d

fX,P�X ,P�  joint probability density function of �X ,P�
� f�d ,X ,P�  mean value of objective function f
� f�d ,X ,P�  standard deviation of objective function f

n  number of deterministic constraints
w1 ,w2  weighting factors

� f
�  most achievable optimal solution for

� f�d ,X ,P�
� f

�  most achievable optimal solution for
� f�d ,X ,P�

�gi
�d ,X ,P�  mean value of probabilistic constraint gi

�gi
�d ,X ,P�  standard deviation of probabilistic constraint gi

k  constant
�  reliability level
f�  �-percentile performance of objective function

�v f�1

�2  percentile performance difference
	  reliability index
C  vector of random parameters in the objective

function

eferences
�1� Wang, L., and Grandhi, R. V., 1995, “Structural Reliability Optimization Using

an Efficient Safety Index Calculation Procedure,” Int. J. Numer. Methods Eng.,
38�10�, pp. 1721–1738.

�2� Youn, B. D., Choi, K. K., and Park, Y. H., 2003, “Hybrid Analysis Method for
Reliability-Based Design Optimization,” ASME J. Mech. Des., 125�2�, pp.
221–232.

�3� Taguchi, G., 1993, Taguchi on Robust Technology Development: Bringing
Quality Engineering Upstream, ASME, New York.

�4� Chen, W., Wiecek, M. M., and Zhang, J., 1999, “Quality Utility-A Compro-
mise Programming Approach to Robust Design,” ASME J. Mech. Des.,
121�2�, pp. 179–187.
�5� Du, X., and Chen, W., 2000, “Towards a Better Understanding of Modeling

ournal of Mechanical Design

nloaded 12 Oct 2012 to 142.244.211.62. Redistribution subject to ASM
Feasibility Robustness in Engineering Design,” ASME J. Mech. Des., 122�4�,
pp. 385–394.

�6� Du, X., Sudjianto, A., and Chen, W., 2004, “An Integrated Framework for
Optimization Under Uncertainty Using Inverse Reliability Strategy,” ASME J.
Mech. Des., 126�4�, pp. 562–570.

�7� Mourelatos, Z. P., and Liang, J., 2004, “An Efficient Unified Approach for
Reliability and Robustness in Engineering Design,” NSF Workshop on Reli-
able Engineering Computing, Savannah, GA.

�8� Hasofer, A. M., and Lind, N. C., 1974, “Exact and Invariant Second-Moment
Code Format,” J. Engrg. Mech. Div., 100, pp. 111–121.

�9� Hohenbichler, M., Gollwitzer, S., Kruse, W., and Rackwitz, R., 1987, “New
Light on First- and Second-Order Reliability Methods,” Struct. Safety, 4, pp.
267–284.

�10� Du, X., and Sudjiano, A., 2004, “The First Order Saddlepoint Approximation
for Reliability Analysis,” AIAA J., 42�6�, pp. 1199–1207.

�11� Zhao, Y. G., Alfredo, H. S., and Ang, H. M., 2003, “System Reliability As-
sessment by Method of Moments,” J. Struct. Eng., 129�10�, pp. 1341–1349.

�12� Wang, P. F., Byeng, D. Y., and Lee, J. W., 2007, “Bayesian Reliability Based
Optimization Using Eigenvector Dimension Reduction Method,” International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference �IDETC/CIE�, Las Vegas, NV, Sep. 4–7.

�13� Huang, B., Du, X., and Eshwarahalli, R., 2006, “A Saddlepoint Approximation
Based Simulation Method for Uncertainty Analysis,” International Journal of
Reliability and Safety, 1�1/2�, pp. 206–224.

�14� Kim, C., and Choi, K. K., 2008, “Reliability-Based Design Optimization Using
Response Surface Method With Prediction Interval Estimation,” ASME J.
Mech. Des., 130�12�, p. 121401.

�15� Li, M., Li, G., and Azarm, S., 2008, “A Kriging Metamodel Assisted Multi-
Objective Genetic Algorithm for Design Optimization,” ASME J. Mech. Des.,
130�3�, p. 031401.

�16� Mullur, A. A., and Messac, A., 2005, “Extended Radial Basis Function for
Metamodeling: A Comparative Study,” International Design Engineering
Technical Conferences and Computers and Information in Engineering Con-
ference �IDETC/CIE�, Long Beach, CA, Sep. 24–28.

�17� Clarke, S. M., Griehsch, J. H., and Simpson, T. W., 2005, “Analysis of Support
Vector Regression for Approximation of Complex Engineering Analysis,”
ASME J. Mech. Des., 127�6�, pp. 1077–1087.

�18� Yang, R. J., and Gu, L., 2004, “Experience With Approximate Reliability-
Based Optimization Methods,” Struct. Multidiscip. Optim., 26�1�, pp. 152–
159.

�19� Wang, L. P., and Kodiyalam, S., 2002, “An Efficient Method for Probabilistic
and Robust Design With Non-Normal Distributions,” Forty-Third AIAA/
ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference, Denver, CO, Apr. 22–25.

�20� Liang, J. H., Mourelatos, Z. P., and Nikolaidis, E., 2007, “A Single-Loop
Approach for System Reliability-Based Design Optimization,” ASME J.
Mech. Des., 129�12�, pp. 1215–1224.

�21� Du, X., Sudjianto, A., and Huang, B., 2005, “Reliability-Based Design With
the Mixture of Random and Interval Variables,” ASME J. Mech. Des., 127�6�,
pp. 1068–1076.

�22� Du, X., and Chen, W., 2004, “Sequential Optimization and Reliability Assess-
ment for Probabilistic Design,” ASME J. Mech. Des., 126�2�, pp. 225–233.

�23� Du, X., 2008, “Saddlepoint Approximation for Sequential Optimization and
Reliability Analysis,” ASME J. Mech. Des., 130�1�, pp. 011011.

�24� Du, X., Guo, J., and Beeram, H., 2007, “Sequential Optimization and Reliabil-
ity Assessment for Multidisciplinary Systems Design,” Struct. Multidiscip.
Optim., 35�2�, pp. 117–130.

�25� Putko, M. M., Taylor, A. C., III, Newman, P. A., and Green, L. L., 2002,
“Approach for Input Uncertainty Propagation and Robust Design in CFD Us-
ing Sensitivity Derivatives,” ASME J. Fluids Eng., 124�1�, pp. 60–69.

�26� Taguchi, G., 1978, “Performance Analysis Design,” Int. J. Prod. Res., 16, pp.
521–530.

�27� Frey, D. D., Reber, G., and Lin, Y., 2005, “A Quadrate-Based Sampling Tech-
nique for Robust Design With Computer Models,” International Design Engi-
neering Technical Conferences and Computers and Information in Engineering
Conference �IDETC/CIE�, Long Beach, CA, Sep. 24–28.

�28� Law, A. M., and Kelton, W. D., 1982, Simulation Modeling and Analysis,
McGraw-Hill, New York.

�29� Rubinstein, R. Y., 1981, Simulation and the Monte Carlo Method, Wiley, New
York.

�30� Youn, B. D., and Choi, K. K., 2004, “Performance Moment Integration Ap-
proach for Reliability-Based Robust Design Optimization,” International De-
sign Engineering Technical Conferences and Computers and Information in
Engineering Conference �IDETC/CIE�, Salt Lake City, UT, Sep. 28–Oct. 2.

�31� Koch, P. N., 2002, “Probabilistic Design for Six Sigma Quality,” Forty-Third
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials
Conference, Denver, Colorado, Apr. 22–25.

�32� Wu, Y. T., and Wang, W., 1998, “Efficient Probabilistic Design by Converting
Reliability Constraints to Approximately Equivalent Deterministic Con-
straints,” J. Integr. Des. Process Sci., 2�4�, pp. 13–21.

�33� Wu, Y. T., Shin, Y., Sues, R., and Cesare, M., 2001, “Safety-Factor Based
Approach for Probabilistic-Based Design Optimization,” Forty-Second AIAA/
ASME/ASCE/AHS/ASC Structure, Structural Dynamics and Materials Con-
ference and Exhibit, Seattle, WA, Apr. 16–19.

�34� Tu, J., Choi, K. K., and Young, H. P., 1999, “A New Study on Reliability-

Based Design Optimization,” ASME J. Mech. Des., 121�4�, pp. 557–564.

MAY 2010, Vol. 132 / 051008-7

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0

Dow
�35� Youn, B. D., and Choi, K. K., 2004, “An Investigation of Nonlinearity of
Reliability-Based Design Optimization Approaches,” ASME J. Mech. Des.,
126�3�, pp. 403–411.

�36� Laumakis, P. J., and Harlow, G., 2002, “Structural Reliability and Monte Carlo
Simulation,” Int. J. Math. Educ. Sci. Technol., 33, pp. 377–387.
51008-8 / Vol. 132, MAY 2010

nloaded 12 Oct 2012 to 142.244.211.62. Redistribution subject to ASM
�37� Golinski, J., 1970, “Optimal Synthesis Problems Solved by Means of Nonlin-
ear Programming and Random Methods,” ASME J. Mech. Des., 5�4�, pp.
287–309.

�38� Golinski, J., 1973, “An Adaptive Optimization System Applied to Machine
Synthesis,” Mech. Mach. Theory, 8�4�, pp. 419–436.
Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


