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Reliability and robustness are two main attributes of design under uncertainty. Hence, it
is necessary to combine reliability-based design and robust design at the design stage. In
this paper, a unified framework for integrating reliability-based design and robust design

is proposed. In the proposed framework, the probabilistic objective function is converted
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to a deterministic objective function by the Taylor series expansion or inverse reliability
strategy with accounting for the probabilistic characteristic of the objective function.
Therefore, with this unified framework, there is no need to deal with a multiobjective
optimization problem to integrate reliability-based design and robust design any more.
The probabilistic constraints are converted to deterministic constraints with inverse re-

liability strategy at the same time. In order to solve the unified framework, an improved
sequential optimization and reliability assessment method is proposed. Three examples
are given to illustrate the benefits of the proposed methods. [DOI: 10.1115/1.4001526]

1 Introduction

Uncertainty is ubiquitous in the engineering design ranging
from a simple component to complicated systems. Therefore, de-
sign under uncertainty has become growingly important. Many
design methods under uncertainty have been developed over the
past decades. Among these methods, reliability-based design and
robust design are two typical paradigms. The focuses of these two
paradigms are different. Reliability-based design achieves a de-
sign, which has a probability of failure less than the acceptable
level, to ensure that the events lead to a catastrophic result are
extremely unlikely [1,2]. On the other hand, robust design seeks a
design, which is relatively insensitive to the environmental varia-
tion (random parameters), to improve the quality of a product by
minimizing the effect of uncertainty on system performance with-
out eliminating the causes [3-5]. Since reliability and robustness
are attributes of design under uncertainty, it is necessary to com-
bine them into an integrated framework [6,7].

The wide applications for either reliability-based design and/or
robust design are subjected to the restrictions on their costly com-
putation and limited capacities. Under the reliability-based design
paradigm, the computational inefficiency is generally derived
from the expensive probabilistic analysis. Many methods have
been proposed to deal with the probabilistic analysis: (1) most
probable point (MPP)-based methods, (2) simulation methods, (3)
moment-based methods, and (4) metamodeling methods. MPP-
based methods generally include the first order reliability method
(FORM) and second order reliability method (SORM) [8-10].
The probabilistic analysis is achieved by simplifying the limit
state function with the first order or second order Taylor expan-
sion at the MPP for FORM or SORM. Since SORM is second
order gradient-based, it is generally more accurate but more time-
consuming than FORM. Simulation methods, generally including
Monte Carlo simulation and quasi-Monte Carlo simulation, are
easy and feasible to most probabilistic analysis. The computa-
tional cost of simulation methods, however, is prohibitively high
for high reliability. Moment-based methods, such as point esti-
mate method [11], eigenvalue dimension reduction [12], and
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saddlepoint approximation method [13], have been used as alter-
native approaches for probabilistic analysis. In recent years, meta-
modeling methods, such as response surface method [14], Kriging
[15], radial basis function [16], and support vector regression [17],
have been used in both academia and industry.

Traditional approaches to reliability-based design require a
nested double-loop procedure including the optimization outer
loop and the reliability analysis inner loop. The reliability analysis
inner loop calculates the reliability for each of probabilistic con-
straints while the optimization outer loop searches for the optimal
design and calls the reliability analysis inner loop repeatedly. The
process is computationally intensive under the nested framework.
In order to overcome the computational inefficiency of a nested
double-loop procedure, single loop methods [18-21], where the
reliability analysis inner loop is eliminated by introducing addi-
tional variables and constraints, and sequential optimization and
reliability assessment (SORA) methods [22-24], where the nested
framework is decoupled into serial cycles, are developed.

Under the robust design paradigm, mean and variance of the
objective function need to be estimated. Commonly used methods
can be divided into three categories: Taylor series expansion
method [4,25], point estimating methods [26,27], and simulation
methods [28,29]. The first order Taylor series expansion is very
simplified and commonly used in the robust design. However, its
accuracy is not so good when the limit state function is highly
nonlinear. Moreover, since it is a gradient-based method, accurate
gradient calculation is required.

Some attempts have been made to combine reliability-based
design and robust design [6,7,30,31]. In their work, the mean and
variance are minimized at the same time and the weighted-sum
approach is usually used to convert the multiobjective optimiza-
tion to a single objective optimization. In this paper, a unified
framework for integrating reliability-based design and robust de-
sign is proposed based on the work in Ref. [6]. Two major devel-
opments are involved. The fundamental development is convert-
ing the probabilistic objective function to the deterministic one
according to the probabilistic characteristic of the probabilistic
objective function by Taylor series expansion or inverse reliability
strategy [32-34]. In this development, the unified framework
eliminates the need to deal with explicitly a multiobjective opti-
mization problem. In the traditional combination of reliability-
based design and robust design, multiobjective optimization prob-
lems have to be solved and the weighted-sum method is usually
implemented to deal with the multiobjective optimization prob-
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lem. Meanwhile, the probabilistic constraints are converted to de-
terministic ones by inverse reliability strategy [6]. The other de-
velopment is that an improved sequential optimization and
reliability assessment (ISORA) method is proposed to solve the
unified framework.

The organization of the paper is as follows. In Sec. 2, the typi-
cal reliability-based design model and robust design model are
introduced. A unified framework for integrating reliability-based
design and robust design is proposed in Sec. 3. Three examples
follow to demonstrate the effectiveness of the unified framework
in Sec. 4. Section 5 presents some conclusions.

2 Typical Reliability-Based Design and Robust Design

A typical design optimization model under uncertainty is given
by [22]

min f(d,X,P)
d,py
subject to  Pr{ g(d,.X,P)=0)} =[R;] i=12,....n,
d'=d=d", py=pe=py (1)

In the above model, f(*) is an objective function. In engineer-
ing design, an objective function is usually physics-based such as
the volume, the weight, and the manufacturing cost of a product.
d is the vector of deterministic design variables. X is the vector of
random design variables. P is the vector of random parameters.
The difference between X and P is that the former is changeable
and controllable in the design process while the latter is not. py is
the vector of mean values of random design variables. The lower
and upper bounds of d are defined by d- and dY, respectively.
Likewise, the lower and upper bounds of uy are defined by [L)L(
and ug, respectively. d and uy are to be determined in the design
optimization. g;(d,X,P) is a limit state function (also called per-
formance function) and 7, is the number of limit state functions.
Pr{} denotes a probability and Pr{ g,(d,X,P)=0)}=[R;] means
that the probability of constraint satisfaction g;(d,X,P)=0
should not be less than the desired reliability [R;]. Such a prob-
ability is obviously the reliability associated with limit state func-
tion g;(d,X,P)=0.

It is apparent that the objective function in Eq. (1) is a function
of deterministic design variables d, random design variables X
and random parameters P. In the traditional reliability-based de-
sign, the mean value of the objective function in Eq. (1) is gener-
ally treated as the new objective function. Then a typical
reliability-based design model is provided by

min f(d, px)

du
subject to  Pr{ g(d.X,P)=0)}=[R;] i=1,2,...,n,
d'=d=d", pi=pe=pny )

This is a design problem with deterministic objective function
and probabilistic constraints. In this model, the main computa-
tional expense is to calculate the probability Pr{ g;(d,X,P)=0)}.
Theoretically, the probability can be calculated by integrating the
joint probability density fy p(x,p) function of (X,P) over the safe
region defined by g;(d,X,P)=0. The integral is given by [35]

P{g(d,X,P) =0} = fxp(x,p)dxdp (3)
9(d.X,P)=0

It is usually difficult or even impossible to obtain the analytical
solution to the probability integral if the limit state function is
highly nonlinear and multidimensional. In order to deal with the
difficulty in computing the probability, many approximate meth-
ods are developed. FORM and SORM are two main approximate
methods. An approximate solution to Eq. (3) is achieved by sim-
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plifying the performance function at the MPP in FORM or SORM
with the first order or second order Taylor series expansion, re-
spectively. The MPP is the point with the shortest distance from
the origin to the constraint boundary g;(d,Uy,Up)=0 in the stan-
dard normal space. Because of the shortest distance to the origin,
the MPP has the highest probability density on the constraint
boundary g;(d,Uy,Up)=0. Monte Carlo simulation [36], as a di-
rect simulation method, can be used. However, simulation is very
time-consuming for high reliability. Other methods such as
moment-based method [11-13] and metamodeling method
[14-17] can be used as alternatives to estimate the probability in
Eq. (3). For a good balance between accuracy and efficiency,
FORM is usually used.

Many methods are developed to deal with design optimization
under uncertainty. Reliability-based design and robust design are
two major paradigms for design under uncertainty among them
[6]. Different from reliability-based design, the task of robust de-
sign is to minimize the mean and the variation in objective func-
tion simultaneously under the condition that constraints are satis-
fied. The typical robust design model is given [4]

min f(u,(d,X,P),0(d,X,P))
min flu ;

subject to  g(d,X,P)=0 i=1,...,n

dh=d=d"; pg=px=p 4)
where u/(d,X,P) and o/(d,X,P) are the mean value and stan-
dard deviation of the objective function in Eq. (1), respectively. n
is the number of deterministic constraints. This is a multiobjective
optimization problem. A common way to deal with multiobjective
design optimization is to use weighting factors. When probabilis-
tic constraints are considered, Eq. (4) can be rewritten into [5]

d.X,P d.X.p
o )+W20f( A )

min w;
d,px My Ty
subject to ,ugi(d,X,P)-kogi(d,X,P) =0, i=1,....,n,
d'=d=4d"% px=px=pg (5)

wy and w, are the weighting factors, which are generally deter-
mined by the designer during the design process. A restriction is
posed that different designer will choose different values of w
and w,. ,u,; and 0';- are the most achievable optimal solutions for
the mean value, u/d,X,P), and standard deviation, o/(d,X,P),
of the objective function, respectively. u,(d,X,P) and
o'g[(d,X,P) are the mean value and standard deviation of the limit
state function g;(d,X,P). k is a constant to express the ratio be-
tween the mean, ,ugi(d,X,P), and the standard deviation,
O'g[(d,X,P). Therefore, k can indicate the probability of constraint
satisfaction only if the distribution of performance function
g/(d,X,P) is known. For example, k=3 indicates that the prob-
ability of constraint satisfaction is 99.87% under the assumption
that g;(d,X,P) is normally distributed.

Du et al. [6] proposed a novel integrated framework for design
optimization under uncertainty by taking both the design objective
robustness and the probabilistic constraint into account. The inte-
grated framework is given by

min f(sz,Av, “2)

subject to  gi(d,X,P)=0, i=1,2,....n (6)

where Avfo[]"‘2 is the percentile performance difference and is
given by
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Fig. 1 Optimization under probabilistic objective function and
constraints

Avg, 2= Av, M = Ap ™ (7)

where «; and «, are the reliability levels or the cumulative distri-
bution functions of f, given by

Pr{f(d.X,P) = v} = o; (8)

In the integrated framework for reliability-based design and ro-
bust design, the inverse reliability strategy is used to reformulate
the optimization problem under uncertainty. After the reformula-
tion, both the objective function and the probabilistic constraints
are deterministic.

In this paper, an improvement will be made for the integrated
framework. In the traditional robust design, the weighted-sum
method is usually used to deal with the multiobjective optimiza-
tion. Hence, different designs are made according to the prefer-
ence of different designers. On one hand, therefore, the improve-
ment is motivated by the need to build a unified framework to
overcome the difficulty in choosing the weighting factors to con-
vert the multiobjective optimization problem to a single objective
optimization problem. On the other hand, this improvement is
motivated by the need to build a relationship between objective
function satisfaction and robust design based on the probabilistic
objective function. In the reported integrated framework for
reliability-based design and robust design, the probability of the
probabilistic objective function satisfaction cannot be calculated.
In the traditional reliability-based design, the mean of the proba-
bilistic objective function f(d,X,P) in Eq. (1) indicates 50% ob-
jective function satisfaction under the assumption that f(d,X,P)
is normally distributed. Robustness, however, cannot be expressed
in the traditional reliability-based design.

3 Unified Framework for Integrated Reliability-Based
and Robust Design

In this section, we will develop a unified framework for inte-
grating reliability-based and robust design. For design optimiza-
tion with both probabilistic objective function and probabilistic
constraints, as shown in Eq. (1), the task is to minimize the proba-
bilistic objective function most probably under the condition that
constraints are satisfied. In other words, the required probability
of both probabilistic objective function and constraints is satisfied
by ensuring the number of probable design points in the region
between constraint boundary and objective function boundary.
The optimization under both probabilistic objective function and
constraints is given in Fig. 1.

In Fig. 1, g(X,,X,)=0 is the constraint boundary. g(X;,X)
>0 indicates the safe (feasible) region while g(X;,X,)<0 indi-
cates the failure (infeasible) region. The probabilistic constraint is
satisfied by ensuring the probability that the design points appear
in the safe region. f(X;,X,)—f*=0 is the objective function
boundary. f* denotes the a-percentile performance of the objec-
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Fig. 2 Optimization of the unified framework

tive function f. The objective is to minimize f* under the condi-
tion of constraint satisfaction. Then the general unified framework
for integrating reliability-based and robust design is provided by

min f|Pr{f(d,X,P,C) - f* =0} =

d,py
subject to Pr{g,(d,.X,P)=0}=[R;], i=12,...,n,
d'=d=d"; py=py=pn )

In the above model, & denotes a probability. C is the vector of
random parameters, which only appear in the objective function.
For example, C is the cost coefficient in the cost-type objective
function, which is stochastic over the market and is not control-
lable by the designer during the design process. All the random
variables are assumed to be independent in this paper. The unified
framework is achieved by shifting or shrinking the distribution of
the probabilistic objective function or both, as shown in Fig. 2.

As shown in Fig. 2, the standard deviation of the objective
function decreases by shrinking the distribution. Overall, mini-
mizing the a-percentile performance f“ of the probabilistic objec-
tive function f is realized by both shifting and shrinking the dis-
tribution. Hence, the main task is to obtain the expression of the
a-percentile performance f* in terms of the design variables d and
py. Herein, two methods are given depending on whether the
distribution of probabilistic objective function is normally distrib-
uted or not.

3.1 Unified Framework With Normal Distribution. When
the objective function is normally distributed, the percentile per-
formance f* is easily expressed as a function of the mean value u;
and standard deviation oy.

Then Eq. (9) can be rewritten as

min wu,+ ko
gy .

subject to  Pr{g(d,X,P)=0}=[R;], i=1,2,...,n

4

d'=d=d"; pp=pye=py (10)

In Eq. (10), k is a constant to predict the probability a. For

example, k=3 indicates that the probability « is equal to 0.9987.

Many approaches could be used to estimate u; and oy How-

ever, a simple way is the Taylor series expansion of the probabi-

listic function at the mean value of (X,P,C). The approximation
is provided by

,U«f:f(d,ﬂx,ﬂp»ﬂc) (11)
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Since d and gy in Egs. (11) and (12) are to be determined, the
objective function in Eq. (10) is a deterministic function. Several
methods have been developed to solve this design optimization
problem such as nested double-loop procedure method, single
loop method, and SORA method. Considering the balance be-
tween computational efficiency and accuracy, the SORA method
will be used to solve the optimization model in Eq. (10) in this

paper.

3.2 Unified Framework With Other or Unknown Distribu-
tion Types. The approximate reliability index could be calculated
in FORM and SORM. Neither FORM nor SORM, however, is
suitable for estimating the distribution and probability density
function of a probabilistic function. It is also impossible to esti-
mate the probability distribution type by simulation methods such
as direct Monte Carlo simulation, quasi-Monte Carlo simulation
in which the reliability index, or reliability is calculated by ran-
dom sampling. In general, it is difficult to estimate the probability
distribution type of a probabilistic function even though the ex-
pression of the probabilistic function is not so complicated. Thus,
a stringent restriction is imposed on the method proposed in Sec.
3.1. An alternative method needs to be developed to deal with the
general case of the unified framework for integrating reliability-
based and robust design model in Eq. (9). This method needs to be
able to deal with other or unknown distributions of probabilistic
objective function. An inverse reliability strategy is implemented
in this method to convert the probabilistic objective function into
the deterministic function. The emphasis of the inverse reliability
method is to find the a-percentile performance f* with the known
associated probability «. The formulation is given by [34]

Pr{f(d,X,P,C) - f*= 0} = « (13)

As illustrated in Fig. 3, the MPP «* is a point where the perfor-
mance function f(d,X,P,C)—-f*=0 is tangent to the circle with
the radius of .

Moreover, the MPP u* is also a point with a maximum value of
f(d,X,P,C) on the circle with radius B. Then the mathematical
model of the inverse MPP search can be stated as: find the maxi-
mum value of f(d,X,P,C) under the condition that the MPP
remains on the surface of the circle. We first transform random
variables Z=(X,P,C) into the standard normal random variables
U=(Uy,Up,Uc). Then the mathematical model can be expressed
as follows:

max f(u)
subject to |jul|=8 (14)
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Starting Point

d(o)’“()‘:)
}k =Ls;=0,Ppp, = l"’(I?)’XMPPi = "()(())

l

Inverse Reliability Strategy
> {mef (w)
s.t."u" =4

u,,up,u

S, = "()l{‘) = X(Afﬂ)’m

Optimization
min £ (d,u,,u.)
st.g; (d,px -XM,,,,.,PM,,,,[)Z 0
g, (duy,u;)>0

l dopy

Reliability Analysis
Find X, and P,

MPPi MPPi

converage?
g's are feasible?

Fig. 4 Flowchart of ISORA

It is obvious that solving this optimization problem requires an
iterative procedure. f(u*) is the performance percentile f* when
the reliability index S is satisfied. In other words, the probability
that the objective is less than or equal to f* is equal to ®(B). ® is
the standard normal cumulative distribution function.

Then Eq. (9) is rewritten as

min{f(u"):max f(u)lu] = B}
d,pex

subject to  Pr{g(d,X,P)=0}=[R;], i=1,2,...,n

8
d'=d=d" py=pe=py (15)

Since the transformation from the general design space to the
standard normal space and Taylor linear series expansion is em-
ployed in the inverse reliability procedure, the objective function
is normally distributed. Then the percentile performance of the
objective function f* or f(u*) can be expressed by the combina-
tion of w, and oy such as us+oy. After inverse reliability analysis
is used on the probabilistic constraints, Eq. (15) can be repre-
sented in the unified framework by

min{u, + kay:max f(u)||ul| = B}
d.py

subject to  gf(d,X,P) =0, i=1,2,....n

8

d'=d=d" py=py=py (16)

Since SORA has a high computational efficiency and accuracy,
the ISORA method is proposed to deal with the optimization prob-
lem in Eq. (16). The flowchart of the ISORA is given in Fig. 4. As
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Table 1 Distribution of random variables
Variables Mean Standard deviation Distribution type
X, Mx, 1 Normal
X, M, 1 Normal

illustrated in Fig. 4, the ISORA is a sequential optimization pro-
cess consisting of three optimization procedures including inverse
reliability strategy, deterministic optimization, and reliability as-
sessment. The a-percentile performance f¢, which is used as the
objective function to be minimized, and the corresponding MPP
u*, which will appear in the deterministic constraints instead of
the mean in the traditional SORA, can be obtained from the in-
verse reliability strategy.

4 Examples

In this section, we will use three examples to demonstrate the
proposed unified framework for integrating reliability-based de-
sign and robust design. Through the examples, we will discuss the
effectiveness of the unified framework.

4.1 Mathematic Example. A unified framework for integrat-
ing reliability-based and robust design is given by

min f = ,U,f+ kO'f
subject to  Pr{g(X) = d,X?X,/20 — d, = 0} = [R]

~10= g, p,=10; 0=d,, d,=2 (17)

where
szl/d1+d2X2 (18)

Information on the random design variables X=[X;,X,] is
given in Table 1. The required reliability is [R]=0.9987. usand o
are the mean value and the standard deviation of the function f,
respectively. k is a constant and used to express the probability
satisfaction of the probabilistic objective function.

Since X; and X, are normally distributed and d; and d, are
deterministic design variables, f follows the normal distribution.
Then we can use the first method proposed in Sec. 3.1 to formu-
late the unified framework. The results of the mathematical ex-
ample for different k are given in Table 2.

The last row in Table 2 indicates the probability satisfaction of
f for different k values. For example, k=3 means that the prob-
ability that f is less than or equal to w +30y is 99.87% and f*
=11.408 and k=0 corresponds to the probability that f is less than
or equal to u. When k=0, the objective function in Eq. (17)
becomes f*= Mg which is commonly used in the traditional
reliability-based design. The objective value f* for the case k=3 is
greater than that for the case k=0, as shown in Table 2. Therefore,
the practical objective function value is usually bigger than the
optimal value provided by the traditional reliability-based design.

Using the proposed framework, we can control the satisfaction

Table 2 Results of the mathematical example

k 0 1.5 2 3
d; 2 1.9607 1.6611 1.3198
d, 0.13992 0.12851 0.13159 0.1342
My, 8.4774 8.6646 8.1419 7.5278
HMx, 10 10 10 10

‘ 5.6386 8.838 9.8028 11.408
Function calls 781 1187 887 894
Probability
satisfaction (%) 50 93.32 97.72 99.87

NN\

Fig. 5 Cantilever beam

probability of the probabilistic objective function to ensure that
the optimal design is more suitable to the engineering practices.
The accuracy and efficiency is similar to that of traditional SORA
and the number of function calls during the design optimization is
also given in Table 2.

4.2 Cantilever Beam. The cantilever beam shown in Fig. 5 is
subjected to the external force P. The performance function is
defined by the difference between the yield strength S, and the
maximum tensile stress Sy, namely,

g(d’X) =Sy_Smax (19)
The maximum tensile stress S,,,, is given by
6PL
max =7 (20)

The cross-sectional area is considered as the objective function,
namely,

f=bh 21)

Then the unified framework for integrating reliability-based and
robust design is provided by

mlnf=ﬂf+k0f

. 6PL
subject to  Pry S, - T =0 =0.9995

h
--2=0
b

10=p,=45 20=u,=380 (22)

The distributions of random variables are given in Table 3.

Even though the expression of the probabilistic objective func-
tion f=bh is very simple and b and & are normally distributed, it
is difficult to estimate the distribution type of f. Then the second
method proposed in Sec. 3.2 is employed to solve this problem.
The results for different k values are given in Table 4.

Since the standard deviations of the random design variables in
the objective function f are very small, e.g., 0.05 mm, and there
are no random parameters, the differences among the objective
values f* for different k values are not very big. Hence, we can
conclude that the error of the objective function is small if the
mean of the probabilistic objective function is used as the deter-
ministic objective function when the standard deviation of design
variables in the probabilistic objective function is not big. Actu-
ally, when k=0, the unified framework reduces to the traditional

Table 3 Distributions of random variables

Variables Variables Mean STD Distribution
X b (mm) L 0.05 Normal
h (mm) M 0.05 Normal
P S, (MPa) 200 20 Normal
P (KN) 20 2 Extreme value
L (mm) 200 1 Normal

Journal of Mechanical Design
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Table 4 Results of the cantilever beam

Table 6 Results of the single helical gear reducer

k 0 1 2 3 k 0 1 2 3
M 37.236 37.213 37.174 37.168  z; 22 26 26 26
2 74471 74493 74533 74538 m, 8.58 5.14 5.20 523
r 2773 2776.3 2782.2 2783.0 b 153.73 108 108 108
Function calls 2215 5441 5417 5569 B 10.22 10.89 10.86 10.85
Probability satisfaction (%) 50 84.13 99.72 99.87 ' 47303 56164  11,418.0 12,2340
Function calls 7198 21,716 31,420 31,852
Probability satisfaction (%) 50 84.13 97.72 99.87
SORA. But when k=1,2,3, the unified framework guarantees
ISORA. The number of function calls is also given in Table 4.
Then we can see that the efficiency of ISORA is lower than that of 8 deg=pug=16 deg; 100= u, =240 (23)
SORA. The reason is that ISORA includes three loops in a cycle  here
while two loops are included in SORA. )
m™m
4.3 Single Helical Gear Reducer Design. A single helical f=C T"[Z%+ (uz;)*1b (24)

gear reducer, shown in Fig. 6, is used in some engines, which
allows the engine to rotate at its most efficient speed. This has
been used as a testing problem for nonlinear optimization method
in literature [37,38]. Since there are some random variables in the
speed reducer design, we will consider the speed reducer design
as a probabilistic design. In the probabilistic design, there are two
deterministic design variables: the tooth module m,, and the num-
ber of pinion teeth z;. Face width b and helix angle 8 are consid-
ered to be random design variables. There are five random param-
eters P;—Ps, including the material properties, the rotation speed,
the engine power, the allowable fatigue stress and the allowable
bending stress, and a random parameter C, which is the cost co-
efficient and only appears in the objective function. Their distri-
butions are given in Table 5.

The unified framework for integrating reliability-based and ro-
bust design is given by

min f* = p;+ ko
subject to  Pr{g,(d,X,P) =0} = [R;]
03=b/d, =07

b sin B/(mm,) = 1

17=7,=40; 2=m,=20
Pinion
{ yd e
) dl dZ

Fig. 6 A single helical gear reducer

Table 5 Distributions of the single helical gear reducer

Variables Variables Mean STD Distribution

d z — — —
m,, (mm) — — —

X b (mm) L 4 Normal

B (deg) Mg 0.5 Normal

P P (kW) 2000 200 Normal

n (rm 1000 100 Normal

Z (VMPa) 189.8 18.98 Normal

O min (MPa) 1400 140 Normal

Op min (MPa) 480 48 Normal

C(107* $/mm’) 1 1.3 Normal
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f is the cost-type objective function, which is proportional to the
volume of the reducer. Two performance functions are defined by
the difference between the allowable fatigue stress and the gear
contact stress and the difference between the allowable bending
stress and the bending stress. They are given by

2000 X 9.55Pu+1
d%bn cos(B) u

g1(d.X,P) = oy pinZy - ZEZH\/
(25)

2000 X 9.55P v
dybm,n cos(B) ©

ZH=2.25, KA=1.45, ZN=OS7, YF=1.98, YST=2.32, and u=4 are
the coefficients and the associated required reliability is [R;]
=0.9987.

Since it is impossible to get the distribution of the objective
function f, the second method proposed in Sec. 3.2 is imple-
mented to deal with the unified framework in Eq. (23). The results
are given in Table 6.

Since the standard deviation of random design variables is rela-
tively small, it is reasonable to treat the mean value of the proba-
bilistic objective function as the objective function when no ran-
dom parameters appear in the probabilistic objective function, as
shown in example 2. In the real word, the probabilistic objective
function usually has physical meaning, e.g., cost. Then some ran-
dom parameters are introduced into the probabilistic objective
function. In this example, cost coefficient is introduced into the
probabilistic objective function as a random parameter. As shown
in Table 6, the difference of the objective values between the case
k=0 and the case k=3 is very big. k=0 indicates the mean and
k=3 indicates that the probability of the probabilistic objective
being less than or equal to us+30; is 99.87%. We also give the
number of function calls during the optimization in Table 6. As in
example 2, when k=0, actually the SORA can be used to deal
with the unified framework. When k=1,2,3, the ISORA is imple-
mented to handle the unified framework. The results also indicate
that the efficiency of ISORA is much lower than SORA.

8:(d.X,P) = OF minYsT— (26)

5 Concluding Remarks

In some engineering design, both the objective function and
some constraints are stochastic. In the traditional reliability-based
design, the probabilistic objective function is converted to a de-
terministic one by taking the expectation of the probabilistic ob-
jective function. A big error will be generated if the standard
deviation of the probabilistic objective function is big. Further-
more, robustness is not accounted for. Then the integrated frame-
work for reliability-based design and robust design is proposed. In
the framework, the combination of reliability-based design and
robust design is considered. Multiobjective optimization prob-
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lems, however, should be solved. Currently, the weighted-sum
method is commonly used to deal with the multiobjective optimi-
zation. Hence, different designs may be obtained for the same
product due to different designers’ preference. A unified frame-
work for integrating reliability-based design and robust design is
proposed in this paper. With the Taylor series expansion or inverse
reliability strategy, the probabilistic objective function is con-
verted to the deterministic one based on the probabilistic charac-
teristic of the probabilistic objective function. The unified frame-
work eliminates dealing with a multiobjective optimization
problem to integrate reliability-based design and robust design.
Therefore, the unified framework could have a wider practical
application.
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Nomenclature
d = vector of deterministic design variables
X = vector of random design variables
P = vector of random parameters

f(*) = objective function
Pr{s} = probability
8i(

= number of limit state functions
= required reliability of the ith limit state
function
pmx = mean value of X
,u,g( = lower bound of uy
,ug = upper bound of uyx
d® = lower bound of d
dY = upper bound of d
fxp(X,P) = joint probability density function of (X,P)
#Ad,X,P) = mean value of objective function f
o/d,X,P) = standard deviation of objective function f
n = number of deterministic constraints
wy,w, = weighting factors
My = most achievable optimal solution for
Mj(d’X7P)
o; = most achievable optimal solution for
o/(d,X,P)
#g,(d, X, P) = mean value of probabilistic constraint g;
0, (d,X,P) = standard deviation of probabilistic constraint g;
k = constant
a = reliability level
f* = a-percentile performance of objective function

)
}
*) = limit state function
g
]

Avfalaz = percentile performance difference
= reliability index
C = vector of random parameters in the objective
function

References

[1] Wang, L., and Grandhi, R. V., 1995, “Structural Reliability Optimization Using
an Efficient Safety Index Calculation Procedure,” Int. J. Numer. Methods Eng.,
38(10), pp. 1721-1738.

[2] Youn, B. D., Choi, K. K., and Park, Y. H., 2003, “Hybrid Analysis Method for
Reliability-Based Design Optimization,” ASME J. Mech. Des., 125(2), pp-
221-232.

[3] Taguchi, G., 1993, Taguchi on Robust Technology Development: Bringing
Quality Engineering Upstream, ASME, New York.

[4] Chen, W., Wiecek, M. M., and Zhang, J., 1999, “Quality Utility-A Compro-
mise Programming Approach to Robust Design,” ASME J. Mech. Des.,
121(2), pp. 179-187.

[5] Du, X., and Chen, W., 2000, “Towards a Better Understanding of Modeling

Journal of Mechanical Design

Feasibility Robustness in Engineering Design,” ASME J. Mech. Des., 122(4),
pp. 385-394.

[6] Du, X., Sudjianto, A., and Chen, W., 2004, “An Integrated Framework for
Optimization Under Uncertainty Using Inverse Reliability Strategy,” ASME J.
Mech. Des., 126(4), pp. 562-570.

[7] Mourelatos, Z. P., and Liang, J., 2004, “An Efficient Unified Approach for
Reliability and Robustness in Engineering Design,” NSF Workshop on Reli-
able Engineering Computing, Savannah, GA.

[8] Hasofer, A. M., and Lind, N. C., 1974, “Exact and Invariant Second-Moment
Code Format,” J. Engrg. Mech. Div., 100, pp. 111-121.

[9] Hohenbichler, M., Gollwitzer, S., Kruse, W., and Rackwitz, R., 1987, “New
Light on First- and Second-Order Reliability Methods,” Struct. Safety, 4, pp.
267-284.

[10] Du, X., and Sudjiano, A., 2004, “The First Order Saddlepoint Approximation
for Reliability Analysis,” ATAA J., 42(6), pp. 1199-1207.

[11] Zhao, Y. G., Alfredo, H. S., and Ang, H. M., 2003, “System Reliability As-
sessment by Method of Moments,” J. Struct. Eng., 129(10), pp. 1341-1349.

[12] Wang, P. F, Byeng, D. Y., and Lee, J. W., 2007, “Bayesian Reliability Based
Optimization Using Eigenvector Dimension Reduction Method,” International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference (IDETC/CIE), Las Vegas, NV, Sep. 4-7.

[13] Huang, B., Du, X., and Eshwarahalli, R., 2006, “A Saddlepoint Approximation
Based Simulation Method for Uncertainty Analysis,” International Journal of
Reliability and Safety, 1(1/2), pp. 206-224.

[14] Kim, C., and Choi, K. K., 2008, “Reliability-Based Design Optimization Using
Response Surface Method With Prediction Interval Estimation,” ASME J.
Mech. Des., 130(12), p. 121401.

[15] Li, M., Li, G., and Azarm, S., 2008, “A Kriging Metamodel Assisted Multi-
Objective Genetic Algorithm for Design Optimization,” ASME J. Mech. Des.,
130(3), p. 031401.

[16] Mullur, A. A., and Messac, A., 2005, “Extended Radial Basis Function for
Metamodeling: A Comparative Study,” International Design Engineering
Technical Conferences and Computers and Information in Engineering Con-
ference (IDETC/CIE), Long Beach, CA, Sep. 24-28.

[17] Clarke, S. M., Griehsch, J. H., and Simpson, T. W., 2005, “Analysis of Support
Vector Regression for Approximation of Complex Engineering Analysis,”
ASME J. Mech. Des., 127(6), pp. 1077-1087.

[18] Yang, R. J., and Gu, L., 2004, “Experience With Approximate Reliability-
Based Optimization Methods,” Struct. Multidiscip. Optim., 26(1), pp. 152—
159.

[19] Wang, L. P., and Kodiyalam, S., 2002, “An Efficient Method for Probabilistic
and Robust Design With Non-Normal Distributions,” Forty-Third AIAA/
ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference, Denver, CO, Apr. 22-25.

[20] Liang, J. H., Mourelatos, Z. P., and Nikolaidis, E., 2007, “A Single-Loop
Approach for System Reliability-Based Design Optimization,” ASME J.
Mech. Des., 129(12), pp. 1215-1224.

[21] Du, X., Sudjianto, A., and Huang, B., 2005, “Reliability-Based Design With
the Mixture of Random and Interval Variables,” ASME J. Mech. Des., 127(6),
pp. 1068-1076.

[22] Du, X., and Chen, W., 2004, “Sequential Optimization and Reliability Assess-
ment for Probabilistic Design,” ASME J. Mech. Des., 126(2), pp. 225-233.

[23] Du, X., 2008, “Saddlepoint Approximation for Sequential Optimization and
Reliability Analysis,” ASME J. Mech. Des., 130(1), pp. 011011.

[24] Du, X., Guo, J., and Beeram, H., 2007, “Sequential Optimization and Reliabil-
ity Assessment for Multidisciplinary Systems Design,” Struct. Multidiscip.
Optim., 35(2), pp. 117-130.

[25] Putko, M. M., Taylor, A. C., Ill, Newman, P. A., and Green, L. L., 2002,
“Approach for Input Uncertainty Propagation and Robust Design in CFD Us-
ing Sensitivity Derivatives,” ASME J. Fluids Eng., 124(1), pp. 60-69.

[26] Taguchi, G., 1978, “Performance Analysis Design,” Int. J. Prod. Res., 16, pp.
521-530.

[27] Frey, D. D., Reber, G., and Lin, Y., 2005, “A Quadrate-Based Sampling Tech-
nique for Robust Design With Computer Models,” International Design Engi-
neering Technical Conferences and Computers and Information in Engineering
Conference (IDETC/CIE), Long Beach, CA, Sep. 24-28.

[28] Law, A. M., and Kelton, W. D., 1982, Simulation Modeling and Analysis,
McGraw-Hill, New York.

[29] Rubinstein, R. Y., 1981, Simulation and the Monte Carlo Method, Wiley, New
York.

[30] Youn, B. D., and Choi, K. K., 2004, “Performance Moment Integration Ap-
proach for Reliability-Based Robust Design Optimization,” International De-
sign Engineering Technical Conferences and Computers and Information in
Engineering Conference (IDETC/CIE), Salt Lake City, UT, Sep. 28—Oct. 2.

[31] Koch, P. N., 2002, “Probabilistic Design for Six Sigma Quality,” Forty-Third
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials
Conference, Denver, Colorado, Apr. 22-25.

[32] Wu, Y. T., and Wang, W., 1998, “Efficient Probabilistic Design by Converting
Reliability Constraints to Approximately Equivalent Deterministic Con-
straints,” J. Integr. Des. Process Sci., 2(4), pp. 13-21.

[33] Wu, Y. T, Shin, Y., Sues, R., and Cesare, M., 2001, “Safety-Factor Based
Approach for Probabilistic-Based Design Optimization,” Forty-Second AIAA/
ASME/ASCE/AHS/ASC Structure, Structural Dynamics and Materials Con-
ference and Exhibit, Seattle, WA, Apr. 16-19.

[34] Tu, J., Choi, K. K., and Young, H. P., 1999, “A New Study on Reliability-
Based Design Optimization,” ASME J. Mech. Des., 121(4), pp. 557-564.

MAY 2010, Vol. 132 / 051008-7

Downloaded 12 Oct 2012 to 142.244.211.62. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



[35] Youn, B. D., and Choi, K. K., 2004, “An Investigation of Nonlinearity of [37] Golinski, J., 1970, “Optimal Synthesis Problems Solved by Means of Nonlin-

Reliability-Based Design Optimization Approaches,” ASME J. Mech. Des., ear Programming and Random Methods,” ASME J. Mech. Des., 5(4), pp.
126(3), pp. 403-411. 287-309.

[36] Laumakis, P. J., and Harlow, G., 2002, “Structural Reliability and Monte Carlo [38] Golinski, J., 1973, “An Adaptive Optimization System Applied to Machine
Simulation,” Int. J. Math. Educ. Sci. Technol., 33, pp. 377-387. Synthesis,” Mech. Mach. Theory, 8(4), pp. 419-436.

051008-8 / Vol. 132, MAY 2010 Transactions of the ASME

Downloaded 12 Oct 2012 to 142.244.211.62. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



