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Abstract As a powerful design tool, Reliability Based Mul-
tidisciplinary Design Optimization (RBMDO) has received
increasing attention to satisfy the requirement for high reli-
ability and safety in complex and coupled systems. In
many practical engineering design problems, design vari-
ables may consist of both discrete and continuous vari-
ables. Moreover, both aleatory and epistemic uncertainties
may exist. This paper proposes the formula of RFCDV
(Random/Fuzzy Continuous/Discrete Variables) Multidisci-
plinary Design Optimization (RFCDV-MDO), uncertainty
analysis for RFCDV-MDO, and a method of RFCDV-MDO
within the framework of Sequential Optimization and Relia-
bility Assessment (RFCDV-MDO-SORA) to solve RFCDV-
MDO problems. A mathematical problem and an engineer-
ing design problem are used to demonstrate the efficiency
of the proposed method.
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1 Introduction

In the last two decades, the consideration of uncertainty
has been a focus of engineering design for achieving reli-
able design of complex and coupled systems. Reliability
Based Multidisciplinary Design Optimization (RBMDO)
has gained increasing attention because of the desire for
high reliability and safety in complex and coupled systems
with multiple disciplines (Sues et al. 1995; Sues and Cesare
2000; Koch et al. 2000; Padmanabhan and Batill 2002a,
b; Du and Chen 2000, 2005; Du et al. 2008). To release
the computational burden in reliability analysis involved in
MDO under uncertainty, response surface models which
are created at the system level are employed to replace the
computationally expensive simulation models (Sues et al.
1995). In Sues and Cesare (2000), a framework for RBMDO
is proposed where reliability analysis is decoupled from
the optimization loop. Reliabilities are initially computed
before the first execution of the optimization loop, and
then updated iteratively after the optimization loop during
which approximate forms of reliability constraints are used.
In Koch et al. (2000), a multi-stage parallel implementa-
tion of probabilistic design optimization is utilized with the
aim of integrating the existing reliability analysis method
into MDO frameworks. To search the Most Probable Point
(MPP), the concurrent subsystem optimization was pro-
posed in Padmanabhan and Batill (2002a, b), and Du
and Chen (2000) and the collaborative reliability analy-
sis method in Du and Chen (2005). In Du et al. (2008),
a Sequential Optimization and Reliability Assessment
(SORA) method for RBMDO was proposed. In each opti-
mization loop, the deterministic formulation of the MDO
is constructed using the MPP from the previous iteration.
Following each optimization loop, reliability analysis is car-
ried out at the optimal solution of the deterministic MDO to
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check up the feasibilities of the probability constraints. This
method was demonstrated as its good capability of dealing
with RBMDO problems.

Although a number of works have been done in MDO
especially in RBMDO, there are still some issues requiring
further exploration. Most urgent two are that both aleatory
uncertainty and epistemic uncertainty are associated with
design variables and parameters, and also continuous and
discrete variables/parameters simultaneously exist in design
variables/parameters.

In practical engineering design, aleatory uncertainty
and epistemic uncertainty are simultaneously associated
with design variables and parameters. Aleatory uncertainty
(stochastic uncertainty, irreducible uncertainty, inherent
uncertainty, variability) can be modeled with probabil-
ity theory, and variables with aleatory uncertainty can
be treated as random variables. Epistemic uncertainty
(reducible uncertainty, subjective uncertainty) caused by
lack of knowledge can be modeled with possibility theory
(possibility approach can deal with epistemic uncertainty by
defining a fuzzy variable corresponding to the limited data).
Therefore, variables with epistemic uncertainty can be
treated as fuzzy variables (Agarwal et al. 2004; Oberkampf
et al. 2000; Du and Choi 2008; Youn et al. 2005; Du
et al. 2006). The results of RBMDO, in which variables
with epistemic uncertainty are treated as random variables
with their probability distributions fitted using available
limited data from experiments, may be risky and unreli-
able because improper modeling of uncertainty could cause
greater degree of statistical uncertainty than those of phys-
ical uncertainty (Du et al. 2006). Also different kinds of
variables, continuous and discrete, exist in practical design
including MDO problems. Up to now, almost all existing
works only focus on MDO problems with continuous design
variables.

MDO problem with random/fuzzy continuous/discrete
variables is dealt with here. This paper proposes formula
of RFCDV (Random/Fuzzy Continuous/Discrete Variables)
MDO (RFCDV-MDO), uncertainty analysis for RFCDV-
MDO, and a method of RFCDV-MDO within the framework
of Sequential Optimization and Reliability Assessment
(RFCDV-MDO-SORA) to deal with RFCDV-MDO
problems.

This paper is organized as follows. In Section 2, the
mathematical formulation of RFCDV-MDO is provided. In
Section 3, the fundamental analysis is proposed including
the uncertainty analysis for RFCDV-MDO. In Section 4,
the proposed method of RFCDV-MDO-SORA is explained
in detail, including the strategy, procedure and formulas.
In Section 5, a mathematical example and an engineering
practical problem are portrayed to illustrate the efficiency

of the proposed method. Finally, the conclusions are given
in Section 6.

2 RFCDV-MDO

The mathematical formulation of RFCDV-MDO is given as:

min
DV

f
(

ds,c, ds,d , dc, dd , XM
s,c, XM

s,d , XM
c , XM

d , PM , YM
)

s.t. �
[
G(i)

(
ds,c, ds,d , di,c, di,d , Xs,c, Xs,d , Xi,c,

Xi,d , Pi,c, Pi,d , Y•i
)

> 0
] ≤ αt

g(i)
(
ds,c, ds,d , di,c, di,d , XM

s,c, XM
s,d , XM

i,c, XM
i,d ,

PM
i,c, PM

i,d , YM•i

) ≤ 0

dL
s,c ≤ ds,c ≤ dU

s,c, dL
s,d ≤ ds,d ≤ dU

s,d ,

dL
c ≤ dc ≤ dU

c , dL
d ≤ dd ≤ dU

d

XM,L
s,c ≤ XM

s,c ≤ XM,U
s,c , XM,L

s,d ≤ XM
s,d ≤ XM,U

s,d ,

XM,L
c ≤ XM

c ≤ XM,U
c , XM,L

d ≤ XM
d ≤ XM,U

d

i = 1, 2, · · · , nd

DV =
{

ds,c, ds,d , dc, dd , XM
s,c, XM

s,d , XM
c , XM

d

}

(1)

where “DV” denotes design variables in the optimization
formulation. The subscript s denotes that the variables
are sharing variables to all disciplines while subscript i
indicates that the variables or parameters are local ones
only for the i th discipline. Subscripts c and d denote
that the type of a variable and parameter is continu-
ous and discrete, respectively. d indicate deterministic
design variables, and dc = {

di,c, i = 1 ∼ nd
}
, dd ={

di,d , i = 1 ∼ nd
}

where nd is the total number of disci-
plines. X denotes a vector of random and fuzzy variables,
and Xc = {

Xi,c, i = 1 ∼ nd
}
, Xd = {

Xi,d , i = 1 ∼ nd
}
.

Xs,c = {
Xs,rc, Xs, f c

}
, Xs,d = {

Xs,rd , Xs, f d
}
, Xi,c ={

Xi,rc, Xi, f c
}
, Xi,d = {

Xi,rd , Xi, f d
}

in which sub-
scripts rc, fc, rd and fd denote that the type of a
variable or parameter is continuous random, continuous
fuzzy, discrete random and discrete fuzzy, respectively.
P = {(

Pi,c, Pi,d
)
, i = 1 ∼ nd

}
is a vector of random

and fuzzy parameters, and Pi,c = {
Pi,rc, Pi, f c

}
, Pi,d ={

Pi,rd , Pi, f d
}
. Y = {Yi•, i = 1 ∼ nd} are linking vari-

ables, and Yi• are output linking variables from the i th
discipline while Y•i are input linking variables to disci-
pline i . The superscript M denotes that the mean value of
a random variable or parameter, and maximal grade point
of a fuzzy variable or parameter, respectively. The maxi-
mal grade point of a fuzzy variable X is defined as X M =
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{ x | max {�X (x)}} where
∏

X (x) is the membership func-
tion of X . �

[
G(i) (·) > 0

] ≤ αt is the possibility constraint
in discipline i with the failure mode defined as G(i) (·) > 0,
and αt is the allowable possibility of failure. g(i) is the deter-
ministic constraint in discipline i . Superscripts L and U
denote the lower and upper bounds, respectively.

During optimization process, when obtained a design
point, the feasibilities of possibility constraints should be
analyzed at that point. This analysis process is called
uncertainty analysis (probability/possibility analysis). In
Section 3, the approach for uncertainty analysis for RFCDV-
MDO is proposed.

3 Fundamental analysis (uncertainty analysis)

In this section, the uncertainty analysis for the case of
only one discipline developed in Huang and Zhang (2009)
is introduced in Section 3.2, and uncertainty analysis for
RFCDV-MDO will be discussed in Section 3.3.

The conditional possibility of failure proposed in (Du and
Choi 2008) is firstly introduced. Suppose there are two con-
tinuous fuzzy variables which are mutually non-interactive
with their membership functions as �X1 (x1) and �X2 (x2).
The failure event is G(x1, x2) > 0, the possibility of failure
can be computed by

� f = sup
G(x1,x2)>0

[
min

{
�X1 (x1) , �X2 (x2)

}]

= sup
x2

[
sup

x1:G(x1,x2)>0

[
min

{
�X1 (x1) , �X2 (x2)

}]]

= sup
x2

[
min

{
sup

x1:G(x1,x2)>0
�X1 (x1) ,

sup
x1:G(x1,x2)>0

�X2 (x2)

}]

= sup
x2

[
min

{
� f
∣∣ {X2 = x2} , �X2 (x2)

}]

(2)

where � f
∣∣ {X2 = x2} = sup

x1:G(x1,x2)>0
�X1 (x1) is defined

as the conditional possibility of failure when X2 = x2 (Du
and Choi 2008).

3.1 Transformation

This transformation for fuzzy variables and parameters in
X-space into standard non-interactive fuzzy ones in V-space

is on: the membership is the same before and after transfor-
mation (Du et al. 2006). The standard fuzzy variable has the
isosceles triangular membership function as:

�V (v) =
{

v + 1 if −1 ≤ v ≤ 0
1 − v if 0 ≤ v ≤ 1

= 1 − |v| , |v| ≤ 1 (3)

The transformation is:

v =
{

�X (x) − 1 if x ≤ X M

1 − �X (x) if x > X M (4)

where
∏

X (x) is the membership function of a fuzzy
variable X , and X M is the maximal grade point of the
fuzzy variable (Du and Choi 2008; Youn et al. 2005; Du
et al. 2006).

Suppose there are two mutually non-interactive fuzzy
variables X1, X2 with their membership functions
�X1 (x1) , �X2 (x2) satisfied unity, strong convexity, and
boundedness (detailed definitions of these three properties
can be found in Du et al. (2006). After transforming into
the standard normalized fuzzy ones, the joint membership
function of X1, X2 is given as:

�X1,X2 (x1, x2) = min
{
�X1 (x1) , �X2 (x2)

}

= min
{
�V1 (v1) , �V2 (v2)

}

= min {1 − |v1| , 1 − |v2|}

= 1 − ‖(v1, v2)‖∞ (5)

3.2 Uncertainty analysis for the case of only one discipline

In this section, the uncertainty analysis for the case of only
one discipline developed in Huang and Zhang (2009) is
introduced. If only one discipline is considered, there are
not any sharing, local and linking variables. When per-
forming uncertainty analysis at a design point, the pos-
sibility constraint �

[
G(i)

(
ds,c, ds,d , di,c, di,d , Xs,c, Xs,d ,

Xi,c, Xi,d , Pi,c, Pi,d , Y•i
)

> 0
] ≤ αt in (1) becomes∏

[G (Xc, Xd , Pc, Pd) > 0] ≤ αt , which is
∏

[G (Xrc, Xrd ,

X f c, X f d , Prc, Prd , P f c, P f d
)

> 0
] ≤ αt in detail, since

the values of the deterministic variables are known.
Assume the continuous random variables Xrc are subject

to a joint probability density function fXrc (xrc), all discrete
random variables Xrd follow a joint probability distribu-
tion function PXrd . The continuous random parameters Prc

have the joint probability density function fPrc (prc), and all
discrete random parameters Prd have the joint probability
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distribution function PPrd . Also all fuzzy variables X f =
{X f c, X f d} and parameters P f = {P f c, P f d} have the
membership function �X f ,P f

(
x f , p f

)
where X f c, X f d are

continuous and discrete fuzzy variables while P f c, P f d are
continuous and discrete fuzzy parameters. The possibility of

failure
∏

f = [
G
(
Xrc, Xrd , X f , Prc, Prd , P f

)
> 0

]
can

be calculated by the following steps.
Firstly, temporarily fix the fuzzy variables and parame-

ters at X f = x f , P f = p f , the conditional probability of
failure can be calculated by

Pf
∣∣ {X f = x f , P f = p f

}

=
N∑

t=1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫

xrc,prc:G
(

xrc,xt
rd ,x f ,

prc,pt
rd ,p f

)
>0

fXrc (xrc) fPrc (prc) dxrcdprc × PXrd

(
xt

rd

)× PPrd

(
pt

rd

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

where N stands for the total number of all possible
combinations of xrd , prd .

Secondly, set the conditional possibility of failure to be
same as the value of conditional probability of failure. It is
a reasonable assumption because possibility is an alterative
and vague measure of probability, and also possibility of an

event can be assigned as the upper boundary of the probabil-
ity when probability of the event is unknown. If there exists
the probability, one can set the possibility to be same as the
probability (Du and Choi 2008).

Finally, the possibility of failure can be computed by

� f = sup
x f ,p f

[
min

{
� f
∣∣ {X f = x f , P f = p f

}
, �X f ,P f

(
x f , p f

)}]

= sup
x f ,p f

[
min

{
Pf
∣∣ {X f = x f , P f = p f

}
, �X f ,P f

(
x f , p f

)}]

= sup
x f ,p f

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∑
t=1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫

xrc,prc:G
(

xrc,xt
rd ,x f ,

prc,pt
rd ,p f

)
>0

fXrc(xrc) fPrc(prc) dxrcdprc × PXrd

(
xt

rd

)× PPrd

(
pt

rd

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,�X f ,P f

(
x f , p f

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

When the number of possible combinations of discrete
random variables and parameters is large, the computa-
tional price of (6) could be unaffordable. To overcome
this difficulty, based on possibility-probability con-
sistency, all discrete random variables and parame-
ters are initially transformed into discrete fuzzy ones

(
xrd → x f rd , prd → p f rd

)
in which the subscript frd

denotes a discrete fuzzy variable or parameter transformed
from the discrete random one. The transformation is:
assume p(y) is a distribution on Y = {y1, y2, · · · , yn}
in which elements have been indexed in descend-
ing order with their probabilities where p1 ≥ p2 ≥



Multidisciplinary design optimization with discrete and continuous variables of various uncertainties 609

· · · ≥ pn . Then the possibility distribution on Y can be
calculated as:

μn = n × pn

μ j = j
(

p j − p j+1
)+ μ j+1

j = n − 1, · · · , 1 (7)

If p j = p j+1, then μ j = μ j+1; if p j = 0, then μ j = 0
(Dubois and Prade 1983).

Because all discrete random variables and parameters
have initially been transformed into discrete fuzzy ones(
xrd → x f rd , prd → p f rd

)
, there are no longer any dis-

crete random variables and parameters. Following the same
above steps, the possibility of failure can be deduced as:

� f = sup
x f ,x f rd ,p f rd ,p f

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫

xrc,prc:G
(

xrc,x f rd ,x f ,

prc,p f rd ,p f

)
>0

fXrc (xrc) fPrc (prc) dxrcdprc, �
(
x f , x f rd , p f rd , p f

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where �(·) is the membership function of Xf , Xf rd , Pf rd , Pf .
All fuzzy variables and parameters are assumed non-

interactive. Each fuzzy variable and parameter is assumed
with its membership function satisfied: unity, strong con-
vexity, boundedness.

Transform the fuzzy variables and parameters (X f , P f ,
X f rd , P f rd) including the ones transformed from discrete
random variables and parameters into the non-interactive
standard fuzzy ones (V f , VP f , V f rd , VP f rd), respectively.
Equation (8) can be further written as:

� f = sup
v f ,v f rd ,vp f rd ,vp f

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫

xrc,prc:G
(

xrc,v f rd ,v f ,

prc,vp f rd ,vp f

)
>0

fXrc (xrc) fPrc (prc) dxrcdprc, 1 − ∥∥v f , v f rd , vp f rd , vp f

∥∥∞

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

There are two ways to judge whether or not � f ≤ αt

is satisfied. The first way whose computation is huge is:
directly calculate the possibility of failure utilizing (8) or
(9), compare it with αt and then obtain the results of
satisfaction or not.

The second one is:
Among all points satisfied G (·) > 0, there are three

cases:
(1) 1 − ∥∥v f , v f rd , vp f rd , vp f

∥∥∞ < αt

(2) 1 − ∥∥v f , v f rd , vp f rd , vp f

∥∥∞ = αt

(3) 1 − ∥∥v f , v f rd , vp f rd , vp f

∥∥∞ > αt

When the fuzzy part satisfies cases (1) and (2), the value

of min

{ ∫
xrc,prc:G(·)>0

fXrc (xrc) fPrc (prc) dxrcdprc, 1 − ∥∥vf ,

v f rd , vp f rd , vp f

∥∥∞

}
will not be larger than αt . So cases

(1) and (2) do not affect the final result of � f ≤ αt . If∫

xrc,prc:G
(

xrc,v f rd ,v f ,

prc,vp f rd ,vp f

)
>0

fXrc (xrc) fPrc (prc) dxrc dprc ≤

αt is satisfied whenever the fuzzy part satisfies case (3),
then � f ≤ αt .
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Transform the continuous random variables and param-
eters (Xrc, Prc) into the independent standard normal
ones (Urc, UPrc) using Rosenblatt transformation (Du
et al. 2008), respectively. Given the fuzzy part satisfy-
ing 1 − ∥∥v f , v f rd , vp f rd , vp f

∥∥∞ > αt , whether or not∫

xrc,prc:G
(

xrc,v f rd ,v f ,

prc,vp f rd ,vp f

)
>0

fXrc(xrc) fPrc(prc)dxrcdprc ≤ αt

can be checked out by First Order Reliability Method
(FORM) as:

max G
(
Urc, v f rd , v f , UPrc, vp f rd , vp f

)

s.t. ‖(Urc, UPrc)‖2 ≤ −�−1 (αt ) (10)

where � is the cumulative distribution function of
standard normal random variable. If the maximal
value G

(
U∗

rc, v f rd , v f , UP∗
rc, vp f rd , vp f

) ≤ 0, then∫

xrc,prc:G
(

xrc,v f rd ,v f ,

prc,vp f rd ,vp f

)
>0

fXrc (xrc) fPrc (prc) dxrcdprc ≤

αt , and vice versa.
So whether or not � f ≤ αt at current design, an opti-

mization formulated as following can be utilized to check
out:

max G
(
Urc, V f rd , V f , UPrc, VP f rd , VP f

)

s.t. ‖(Urc, UPrc)‖2 ≤ −�−1 (αt )∥∥(V f rd , V f , VP f rd , VP f
)∥∥∞ < 1 − αt (11)

The solutions of (11) are the MPPP (Most Probable/
Possible Point) U∗

rc, V∗
f rd , V∗

f , UP∗
rc, VP∗

f rd , VP∗
f and G(

U∗
rc, V∗

f rd , V∗
f , UP∗

rc, VP∗
f rd , VP∗

f

)
which is the value of

performance measure at the MPPP. If the value of per-
formance measure at the MPPP is not larger than zero,
this indicates that the requirement � f ≤ αt is satisfied;
otherwise unsatisfied.

The second way is called Performance Measure
Approach (PMA) which is different with the first way in
which the actual possibility of failure is calculated.

3.3 Uncertainty analysis for RFCDV-MDO

Different with the case of only one discipline, the consisten-
cies among disciplines should be dealt with and achieved
when performing uncertainty analysis in the environment
of MDO. In Du et al. (2008), two approaches are adopted:

Individual Disciplinary Feasible approach (IDF) and Multi-
disciplinary Feasible approach (MDF). The first one is that
the consistency is considered as extra constraints. The sec-
ond one is that the consistency is acquired by solving an
optimization nested into the probability analysis to obtain
the values of linking variables. These two methods can be
used during the uncertainty (probability/possibility) analy-
sis, but from the results in Du et al. (2008), the first method
is more efficient and stable than the latter. So the first
method, IDF, is adopted in this paper.

It is implied that the possibility constraint function
G(i)

(
ds,c, ds,d , di,c, di,d , Xs,c, Xs,d , Xi,c, Xi,d , Pi,c, Pi,d ,

Y•i ) includes all design inputs because of the existences
of linking variables. In other words, the possibility con-
straint function includes all design variables and parameters
associated with aleatory and epistemic uncertainties.

Followed the IDF method, the consistency is considered
as extra constraints. Transform all continuous random vari-
ables and parameters into the standard normal ones, and
transform all discrete random variables and parameters, all
fuzzy variables and parameters into standard fuzzy ones.
Based on (11), the mathematical formulation of uncertainty
(probability/possibility) analysis under the environment of
MDO is given as:

max
DV

G(i)

⎛
⎜⎜⎜⎜⎝

ds,c, ds,d , di,c, di,d , U(i)
s,rc, V(i)

s, f rd , V(i)
s, f c,

V(i)
s, f d , U(i)

i,rc, V(i)
i, f rd , V(i)

i, f c, V(i)
i, f d ,

UP(i)
i,rc, VP(i)

i, f rd , VP(i)
i, f c, VP(i)

i, f d , Y(i)
•i

⎞
⎟⎟⎟⎟⎠

s.t.
∥∥∥
(

U(i)
s,rc, U(i)

rc , UP(i)
rc

)∥∥∥
2

≤ βt∥∥∥
(

V(i)
s, f rd , V(i)

s, f c, V(i)
s, f d , V(i)

f rd , V(i)
f c, V(i)

f d ,

VP(i)
f rd , VP(i)

f c, VP(i)
f d

)∥∥∥∞ < 1 − αt

y(i)
jm = y(i)

jm

⎛
⎜⎜⎜⎜⎝

ds,c, ds,d , d j,c, d j,d , U(i)
s,rc, V(i)

s, f rd , V(i)
s, f c,

V(i)
s, f d , U(i)

j,rc, V(i)
j, f rd , V(i)

j, f c, V(i)
j, f d ,

UP(i)
j,rc, VP(i)

j, f rd , VP(i)
j, f c, VP(i)

j, f d , Y(i)
• j

⎞
⎟⎟⎟⎟⎠

j, m = 1, 2, · · · , nd j 
= m; i = 1, 2, · · · , nd

DV =
{

U(i)
s,rc, V(i)

s, f rd , V(i)
s, f c, V(i)

s, f d , U(i)
rc , V(i)

f rd , V(i)
f c,

V(i)
f d , UP(i)

rc , VP(i)
f rd , VP(i)

f c, VP(i)
f d , Y(i)

}

(12)

where G(i) is the possibility constraint function in the i th
discipline. The superscript ‘(i)’ indicates that the vari-
ables and parameters correspond to the possibility constraint
in the i th discipline since each possibility constraint has
its own MPPP. U(i)

s,rc, V(i)
s, f rd , V(i)

s, f c, V(i)
s, f d , U(i)

i,rc, V(i)
i, f rd ,

V(i)
i, f c, V(i)

i, f d , UP(i)
i,rc, VP(i)

i, f rd , VP(i)
i, f c, VP(i)

i, f d are trans-
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formed from Xs,rc, Xs,rd , Xs, f c, Xs, f d , Xi,rc, Xi,rd , Xi, f c,
Xi, f c, Xi, f d , Pi,rc, Pi,rd , Pi, f c, Pi, f d , respectively. β t is

equal to −�−1(αt ). U(i)
rc =

{
U(i)

1,rc, U(i)
2,rc, · · · , U(i)

nd,rc

}
,

UP(i)
rc =

{
UP(i)

1,rc, UP(i)
2,rc, · · ·, UP(i)

nd,rc

}
,V(i)

f rd =
{

V(i)
1, f rd ,

V(i)
2, f rd , · · ·, V(i)

nd, f rd

}
,V(i)

f c =
{

V(i)
1, f c, V(i)

2, f c, · · ·,V(i)
nd, f c

}
,

V(i)
f d =

{
V(i)

1, f d , V(i)
2, f d , · · · , V(i)

nd, f d

}
, VP(i)

f rd =
{

VP(i)
1, f rd ,

VP(i)
2, f rd , · · · , VP(i)

nd, f rd

}
, VP(i)

f c =
{

VP(i)
1, f c,VP(i)

2, f c, · · · ,

VP(i)
nd, f c

}
, VP(i)

f d =
{

VP(i)
1, f d , VP(i)

2, f d , · · · , VP(i)
nd, f d

}
. The

linking variables Y(i) are as extra variables in this optimiza-
tion formulation.

In the uncertainty analysis (probability/possibility anal-
ysis) formulation, the first and second constraints in (12)
include all design inputs associated with uncertainties. The
reason is that a possibility constraint function impliedly
includes all design inputs associated with uncertainties
because of the existences of linking variables. The consis-
tency is considered as extra constraints in which variables
and parameters associated with aleatory or epistemic uncer-
tainty should be transformed into standard normal or fuzzy
ones.

The solutions of probability/possibility analysis are MPPP(
U∗,(i)

s,rc , V∗,(i)
s, f rd , V∗,(i)

s, f c, V∗,(i)
s, f d , U∗,(i)

rc , V∗,(i)
f rd , V∗,(i)

f c , V∗,(i)
f d ,

UP∗,(i)
rc , VP∗,(i)

f rd , VP∗,(i)
f c , VP∗,(i)

f d

)
, linking variables Y∗,(i)

and value of performance measure at MPPP G(i), i = 1 ∼
nd . If the value of performance measure at the MPPP
of a possibility constraint function is not larger than zero,
then that possibility constraint is satisfied; otherwise unsat-

isfied. The MPPPs in X-space
(

X∗,(i)
s,rc , X∗,(i)

s,rd , X∗,(i)
s, f c, X∗,(i)

s, f d ,

X∗,(i)
rc , X∗,(i)

rd , X∗,(i)
f c , X∗,(i)

f d , P∗,(i)
rc , P∗,(i)

rd , P∗,(i)
f c , P∗,(i)

f d

)
can

be obtained using the inverse transformations aforementioned.
Directly solving (1) will involve three nested loops: min-

imizing the objective function in the outer loop; performing
uncertainty analysis (probability/possibility analysis) in the
middle loop; performing multidisciplinary analysis in the
inner loop to obtain the consistency among disciplines.
To efficiently solve RFCDV-MDO problem, RFCDV-MDO
within the framework of SORA (RFCDV-MDO-SORA) is
proposed in next section.

4 RFCDV-MDO within the framework of SORA
(RFCDV-MDO-SORA)

Sequential Optimization and Reliability Assessment (SORA)
is originally developed to deal with Reliability Based
Design Optimization problems, and introduced into

RBMDO in Du et al. (2008). In this paper, RFCDV-MDO-
SORA is developed to deal with RFCDV-MDO problems
utilizing the idea of SORA.

4.1 Strategy of RFCDV-MDO-SORA

To solve the RFCDV-MDO problems efficiently, two tech-
nologies are adopted.

1. Performance Measure Approach (PMA). The PMA
approach is found more efficient than evaluating the
actual probability or possibility of failure directly (Du
and Chen 2005; Youn et al. 2005; Du et al. 2006).
PMA decreases the computational price through eval-
uating the value of constraint function corresponding
to the target allowable value of probability or possibil-
ity of failure, instead of calculating the actual value of
probability or possibility of failure which needs more
computation. Hence it is adopted in uncertainty analysis
when solving the RFCDV-MDO problem.

2. Sequential Optimization and Reliability Assessment
(SORA). In this paper, with the idea of SORA, the
MDO solution and probability/possibility analysis are
decoupled, and the whole solution process is a series of
cycles of deterministic MDO and probability/possibility
analysis. In each cycle, the probability/possibility anal-
ysis is performed after the deterministic MDO. After
solving the deterministic MDO, the value of each deter-
ministic design variable and the mean value or maximal
grade point of each design variable with uncertainty
are obtained. Then the probability/possibility analysis
is applied to analyze the feasibility of each possibility
constraint. If possibility constraints are not all satisfied,
the MPPPs will be used to reconstruct the determinis-
tic constraints in deterministic MDO of the next cycle
to improve the feasibility of each possibility constraint.
The efficiency is improved obviously since the solu-
tion process is a sequential manner but not nested. It is
expected that the process will converge in a few cycles.

4.2 Procedure of RFCDV-MDO-SORA

In this section, the procedure of RFCDV-MDO-SORA will
be illustrated step by step.

Step 1: Set initial values for design variables as d(0)
s,c ,

d(0)
s,d , d(0)

c , d(0)
d , XM,(0)

s,c , XM,(0)
s,d , XM,(0)

c , XM,(0)
d ,

and k = 1.
Step 2: Solve the deterministic MDO. The aim of solv-

ing the deterministic MDO is to obtain values of
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dk
s,c, dk

s,d , dk
c, dk

d , XM,k
s,c , XM,k

s,d , XM,k
c , XM,k

d where
the superscript k denotes the kth cycle. Because
there is no information about the MPPPs in the
first cycle, the MPPPs are set to be equivalent to
XM,(0)

s,c , XM,(0)
s,d , XM,(0)

c , XM,(0)
d , PM . Variables in

the deterministic constraints are the deterministic
variables, the mean value or maximal grade point
of each continuous or discrete random or fuzzy
variable.

However, from the second cycle, constraints in
deterministic MDO are modified with the MPPPs
obtained in the previous cycle when requirements
on possibility of failure are not all satisfied.

Step 3: Perform probability/possibility analysis. Trans-
form all continuous random variables and param-
eters into the standard normal ones; and transform
all discrete random variables and parameters, all
fuzzy variables and parameters into standard fuzzy
ones. Then probability/possibility analysis is car-
ried out to check the feasibilities of possibility
constraints at the design point which is obtained
in Step 2, and the results are MPPP and perfor-
mance measure corresponding to each possibility
constraint.

Step 4: Check convergence. If possibility constraints are
all satisfied and the value of the objective is stable(
G(i) ≤ 0, i = 1 ∼ nd; | f (k) − f (k − 1)| ≤ ε

)
where ε is an arbitrary small positive constant, stop
the process of solution; otherwise set k = k+1 and
go to Step 2 with the MPPPs obtained in Step 3.

If the possibility constraint
(
�
(
G(i) (·) > 0

) ≤ αt
)

is
not satisfied in Cycle k-1 (the value of performance
measure at the MPPP satisfies G(i) > 0), then the
MPPP X∗,(i),(k−1)

s,c , X∗,(i),(k−1)
s,d , X∗,(i),(k−1)

c , X∗,(i),(k−1)
d ,

P∗,(i),(k−1)
c , P∗,(i),(k−1)

d obtained from probability/possibility
analysis in Cycle k-1 will be used to reconstruct the con-
straint in the deterministic MDO in Cycle k. To make sure
of feasibility of the possibility constraint, its MPPP in the
kth cycle should fall into the deterministic feasible region.
Let S be the shift vector.

Here, two kinds of shift vector are used.
The first is based on the idea of the SORA in Du

et al. (2008) as:

S(i),k = XM,(k−1) − X∗,(i),(k−1)

where S(i),k denotes the shift vector for X in the i th
discipline for Cycle k.

The second is:
If the mean value or maximal grade point of design vari-

able associated with uncertainty is continuous, the shift
vector is:

S(i),k = X M,(k−1) − X∗,(i),(k−1)

If the mean value or maximal grade point of design variable
associated with uncertainty is discrete, the shift vector is:

S(i),k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j∑
h=1

�h i f X M,(k−1) − X∗,(i),(k−1) > 0 and

j−1∑
h=1

�h < X M,(k−1) − X∗,(i),(k−1) ≤
j∑

h=1

�h

−
j∑

h=1

�h i f X M,(k−1) − X∗,(i),(k−1) < 0 and

−
j∑

h=1

�h ≤ X M,(k−1) − X∗,(i),(k−1) < −
j−1∑
h=1

�h

where �1, �2, · · ·, � j is the discrete increment from
X M,(k−1) when the value of X M,(k−1)− X∗,(i),(k−1) is larger
than zero; �1, �2, · · ·, � j is the discrete decrement from
X M,(k−1) when the value of X M,(k−1) − X∗,(i),(k−1) is less
than zero.

The values of MPPPs P∗,(i),(k−1)
i,c , P∗,(i),(k−1)

i,d directly
substitute Pi,c, Pi,d in the deterministic constraint. The
deterministic constraint in the deterministic MDO of Cycle
k is constructed as:

G(i)
�

(
dk

s,c, dk
s,d , dk

i,c, dk
i,d , XM,k

s,c − S(i),k
s,c , XM,k

s,d − S(i),k
s,d ,

XM,k
i,c − S(i),k

i,c , XM,k
i,d − S(i),k

i,d , P∗,(i),(k−1)
i,c ,

P∗,(i),(k−1)
i,d , Y∗,(i)

•i

)
≤ 0

where S(i),k
s,c , S(i),k

s,d , S(i),k
i,c , S(i),k

i,d are shift vectors corre-
sponding to Xs,c, Xs,d , Xi,c, Xi,d , respectively.

4.3 Formulations of deterministic MDO
and probability/possibility analysis

The mathematical formulations of deterministic MDO and
probability/possibility analysis in the kth cycle are dis-
cussed and provided in this section.
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4.3.1 Deterministic MDO in the kth cycle

The mathematical formulation of the deterministic MDO in
the kth cycle is given by:

min
DV

f
(

dk
s,c, dk

s,d , dk
c, dk

d , XM,k
s,c , XM,k

s,d ,

XM,k
c , XM,k

d , PM , YM,k
)

s.t. G(i)
�

(
dk

s,c, dk
s,d , dk

i,c, dk
i,d , XM,k

s,c − S(i),k
s,c ,

XM,k
s,d − S(i),k

s,d , XM,k
i,c − S(i),k

i,c , XM,k
i,d − S(i),k

i,d ,

P∗,(i),(k−1)
i,c , P∗,(i),(k−1)

i,d , Y∗,(i)
•i

)
≤ 0

g(i)
(

dk
s,c, dk

s,d , dk
i,c, dk

i,d , XM,k
s,c , XM,k

s,d , XM,k
i,c ,

XM,k
i,d , PM,k

i,c , PM,k
i,d , YM,k

•i

)
≤ 0

y∗,(i)
jm = y∗,(i)

jm

(
dk

s,c, dk
s,d , dk

j,c, dk
j,d , XM,k

s,c − S(i),k
s,c ,

XM,k
s,d − S(i),k

s,d , XM,k
j,c − S(i),k

j,c , XM,k
j,d − S(i),k

j,d ,

P∗,(i),(k−1)
j,c , P∗,(i),(k−1)

j,d , Y∗,(i)
• j

)

i, j, m = 1, 2, · · · , nd; j 
= m

yM,k
i j = yi j

(
dk

s,c, dk
s,d , dk

i,c, dk
i,d , XM,k

s,c , XM,k
s,d ,

XM,k
i,c , XM,k

i,d , PM
i,c, PM

i,d , YM,k
•i

)

i, j = 1, 2, · · · , nd, i 
= j

dL
s,c ≤ dk

s,c ≤ dU
s,c, dL

s,d ≤ dk
s,d ≤ dU

s,d ,

dL
c ≤ dk

c ≤ dU
c , dL

d ≤ dk
d ≤ dU

d

XM,L
s,c ≤ XM,k

s,c ≤ XM,U
s,c , XM,L

s,d ≤ XM,k
s,d ≤ XM,U

s,d ,

XM,L
c ≤ XM,k

c ≤ XM,U
c , XM,L

d ≤ XM,k
d ≤ XM,U

d

DV =
{

dk
s,c, dk

s,d , dk
c, dk

d , XM,k
s,c , XM,k

s,d ,

XM,k
c , XM,k

d , YM,k, Y∗
}

(13)

where G(i)
� is the modified deterministic constraint of the

i th discipline. S(i),k
j,c , S(i),k

j,d are shift vectors respectively cor-
responding to X j,c, X j,d in the i th discipline for Cycle

k, based on XM,(k−1)
j,c , XM,(k−1)

j,d , X∗,(i),(k−1)
j,c , X∗,(i),(k−1)

j,d .

X∗,(i),(k−1)
j,c , X∗,(i),(k−1)

j,d , P∗,(i),(k−1)
j,c , P∗,(i),(k−1)

j,d are MPPPs
obtained in the i th discipline in Cycle (k-1) corresponding
to X j,c, X j,d , P j,c, P j,d , respectively. Y∗,(i)

•i is a vector of
linking variables, corresponding to the possibility constraint
in discipline i .

Because there are linking variables in each determin-

istic constraint
(

G(i)
� i = 1, 2, · · · , nd

)
, the equality con-

straints for consistency among disciplines should also be
modified using the MPPPs of previous cycles. For example,
the formulation of y∗,(i)

jm in the i th disciplinary should be
modified as:

y∗,(i)
jm = y∗,(i)

jm

(
dk

s,c, dk
s,d , dk

j,c, dk
j,d , XM,k

s,c − S(i),k
s,c ,

XM,k
s,d − S(i),k

s,d , XM,k
j,c − S(i),k

j,c , XM,k
j,d − S(i),k

j,d ,

P∗,(i),(k−1)
j,c , P∗,(i),(k−1)

j,d , Y∗,(i)
• j

)

The solution of (13) is the optimal design point dk
s,c, dk

s,d ,

dk
c, dk

d , XM,k
s,c , XM,k

s,d , XM,k
c , XM,k

d in Cycle k.

4.3.2 Probability/possibility analysis in the kth cycle

From (12), the mathematical formulation for probability/
possibility analysis in the kth cycle is given as:

max
DV

G(i)

⎛
⎜⎜⎜⎝

dk
s,c, dk

s,d , dk
i,c, dk

i,d , U(i),k
s,rc , V(i),k

s, f rd , V(i),k
s, f c,

V(i),k
s, f d , U(i),k

i,rc , V(i),k
i, f rd , V(i),k

i, f c , V(i),k
i, f d , UP(i),k

i,rc ,

VP(i),k
i, f rd , VP(i),k

i, f c , VP(i),k
i, f d , Y(i)

•i

⎞
⎟⎟⎟⎠

s.t.
∥∥∥
(

U(i),k
s,rc , U(i),k

rc , UP(i),k
rc

)∥∥∥
2

≤ βt∥∥∥
(

V(i),k
s, f rd , V(i),k

s, f c, V(i),k
s, f d , V(i),k

f rd , V(i),k
f c , V(i),k

f d , VP(i),k
f rd ,

VP(i),k
f c , VP(i),k

f d

)∥∥∥∞ < 1 − αt

y(i)
jm = y(i)

jm

⎛
⎜⎜⎜⎜⎝

dk
s,c, dk

s,d , dk
j,c, dk

j,d , U(i),k
s,rc , V(i),k

s, f rd ,

V(i),k
s, f c, V(i),k

s, f d , U(i),k
j,rc , V(i),k

j, f rd , V(i),k
j, f c, V(i),k

j, f d ,

UP(i),k
j,rc , VP(i),k

j, f rd , VP(i),k
j, f c, VP(i),k

j, f d , Y(i)
• j

⎞
⎟⎟⎟⎟⎠

j, m = 1, 2, · · · , nd j 
= m; i = 1, 2, · · · , nd

DV =
{

U(i),k
s,rc , V(i),k

s, f rd , V(i),k
s, f c, V(i),k

s, f d , U(i),k
rc , V(i),k

f rd , V(i),k
f c ,

V(i),k
f d , UP(i),k

rc , VP(i),k
f rd , VP(i),k

f c , VP(i),k
f d , Y(i)

}

(14)

where dk
s,c, dk

s,d , dk
i,c, dk

i,d are optimal values of determinis-
tic design variables obtained after solving the deterministic
MDO in Cycle k.
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The solutions are MPPP
(

U∗,(i),k
s,rc ,V∗,(i),k

s, f rd ,V∗,(i),k
s, f c ,V∗,(i),k

s, f d ,

U∗,(i),k
rc , V∗,(i),k

f rd , V∗,(i),k
f c , V∗,(i),k

f d ,UP∗,(i),k
rc ,VP∗,(i),k

f rd ,VP∗,(i),k
f c ,

VP∗,(i),k
f d

)
, linking variables Y∗,(i) and value of performance

measure at MPPP G(i), i = 1 ∼ nd . Then MPPPs in X-
space

(
X∗,(i),k

s,rc , X∗,(i),k
s,rd , X∗,(i),k

s, f c , X∗,(i),k
s, f d , X∗,(i),k

rc , X∗,(i),k
rd ,

X∗,(i),k
f c , X∗,(i),k

f d , P∗,(i),k
rc , P∗,(i),k

rd , P∗,(i),k
f c , P∗,(i),k

f d

)
(i = 1 ∼

nd) can be obtained using inverse transformation afore-
mentioned, and will be used to construct deterministic
constraints for next cycle if possibility constraints are not
all satisfied.

From (13, 14), there are both inequality and equal-
ity constraints. Because of the discrete requirements for
design variables and the existences of equality constraints,
it becomes very difficult to solve the optimization prob-
lem. In this paper, it is assumed that the equality constraints
can be eliminated by some technologies such as elimination
method, and there are only inequality constraints left after
elimination.

The discrete-continuous optimization problem is solved
by the following steps. First, treating all variables including
discrete ones as continuous variables, solve the optimization
problem using a continuous optimization algorithm such as
sequential quadratic programming (SQP) and so on, and
then obtain the optimal solution. Second, eliminating all
equality constraints and discretizing the design space, the
method of “TRANS” in MDOD (Yu et al. 1997) is used to
find a feasible discrete point based on that optimal solution,
where the unit vector of the feature vector is used directly
for rounding. Then the one-dimension searching and adja-
cent point-checking in the discrete unit area technologies
(Yu et al. 1997; Chen 1989) in the algorithm MDOP (Yu
et al. 1997) are utilized to find out the optimal discrete
point. Finally, starting from the optimal discrete point,
the original discrete-continuous optimization problem is
resolved using algorithms for continuous optimization while
fixing the discrete part at relevant values of that optimal dis-
crete point. During one-dimension searching and adjacent
point-checking in the discrete unit area, when a new point is
obtained, the point is firstly compared with those saved. If
there exists a same point, set the values of objective function
and constraints the same as those saved; otherwise save the
point, calculate and save its values of objective function and
constraints.

5 Examples

In this section, the proposed RFCDV-MDO and the method
of RFCDV-MDO-SORA are demonstrated using a mathe-
matical problem and an engineering problem.

Subsystem 1 Subsystem 2

Fig. 1 Mathematical problem

5.1 Mathematical example for RFCDV-MDO

The mathematical example changed from Du et al. (2008) is
given as:

min
(ds ,d1,d2)

f
(
d, xM

) = (
ds + x M

s

)2 + d2
1 + d2

2

s.t. � {G1 (d, x) = x1 − ds − xs − d1 − d2 > 0} ≤ αt

� {G2 (d, x) = ds + xs − 2d1 + d2 − x2 > 0} ≤ αt

0 ≤ ds, d1, d2 ≤ 5

(15)

In this problem, ds , d1, d2 take values as multiple of 0.01.

xs ∼
⎧⎨
⎩

−0.24 p = 0.2
0 p = 0.6
0.24 p = 0.2

. x1 ∼ N (5, 0.5) where N (μ,σ )

stands for a normal distribution with the mean value μ and
the standard deviation σ . The triangular membership of x2

is (0.7,1,1.3). In
(
x M − dt , x M , x M + dt

)
, the value x M

is the maximal grade point of the membership function of
x ; the value dt is the deviation along each side from the
maximal grade point. The problem is decomposed into two
subsystems in Fig. 1 as Du et al. (2008).

L

R
L

R

T

R

Fig. 2 Pressure vessel
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Y12 = (T)

Y21 = (R,L)

X1 = (T) X2 = (R,L)

Z1 = (v1)
Z2 = (v2)

P = (P,St)

Fig. 3 System structure of pressure vessel design

It should be noted that in this problem xs , x1, x2 are
design parameters but not design variables because the mean
value or the maximal grade point is known and fixed. The
formulation of deterministic MDO is given as:

min
DV

f = ( f1 + f2) =
(

ds + x M
s

)2 + d2
1 + d2

2

s.t. g1 = x∗,(1)
1 −

(
ds + x∗,(1)

s + 2d1 + 2y∗,(1)
21

)
≤ 0

y∗,(1)
12 = ds + x∗,(1)

s + d1 + y∗,(1)
21

y∗,(1)
21 = ds + x∗,(1)

s + d2 − y∗,(1)
12

g2 =
(

5ds + 5x∗,(2)
s + 3d2 − 4y∗,(2)

12

)
− x∗,(2)

2 ≤ 0

y∗,(2)
12 = ds + x∗,(2)

s + d1 + y∗,(2)
21

y∗,(2)
21 = ds + x∗,(2)

s + d2 − y∗,(2)
12

0 ≤ ds, d1, d2 ≤ 5

DV =
{

ds, d1, d2, y∗,(1)
12 , y∗,(1)

21 , y∗,(2)
12 , y∗,(2)

21

}
(16)

The probability/possibility analysis is carried out at the
optimal point (ds , d1, d2). At first, transform the contin-
uous random parameter into standard normal random one;
transform the discrete random parameter and the continuous

fuzzy parameter into standard fuzzy ones. The formulation
of probability/possibility analysis for G1 is given as:

max
DV

g1 =
(

5 + 0.5u(1)
1

)
−
[
ds +

(
0.6v(1)

s

)
+ 2d1 + 2y(1)

21

]

s.t.
∥∥∥u(1)

1

∥∥∥
2

≤ βt∥∥∥
(

v(1)
s , v(1)

2

)∥∥∥∞ < 1 − αt

y(1)
12 = ds +

(
0.6v(1)

s

)
+ d1 + y(1)

21

y(1)
21 = ds +

(
0.6v(1)

s

)
+ d2 − y(1)

12

DV =
{

v(1)
s , u(1)

1 , v(1)
2 , y(1)

12 , y(1)
21

}

(17)

The variable v(1)
s is discrete and only takes a few allow-

able values. The solution MPPP
(

v∗,(1)
s , u∗,(1)

1 , v∗,(1)
2

)
is

then transformed into the MPPP
(

x∗,(1)
s , x∗,(1)

1 , x∗,(1)
2

)
in X-

space. The formulation for G2 can be derived in the same

way with the solution
(

x∗,(2)
s , x∗,(2)

1 , x∗,(2)
2

)
. The MPPP

will be used to reconstruct the deterministic constraints in
the deterministic MDO of the next cycle if possibility con-
straints are not all satisfied. The judgment of convergence
is gi ≤ 0, i = 1 ∼ 2; | f (k) − f (k − 1)| ≤ 0.0001. Dur-
ing the solution, ‖·‖∞ ≤ 1 − αt is used instead of ‖·‖∞ <

1 − αt for convenience in computation. Theoretically this
will result to a conservative solution.

In this RFCDV-MDO problem with (αt = 0.0013, βt =
3 = −�−1 (αt )), the optimal solution of (ds , d1, d2) is
(2.2400,2.2600,2.2400), and the objective function value is
15.1428. The values of performance measure at MPPPs of
G1 and G2 are −8.8818 × 10−16 and −0.5004, respec-
tively. This indicates that both possibility constraints at
the optimal design point are satisfied because the values
of performance measure at their MPPPs are all not larger
than zeros. RFCDV-MDO-SORA efficiently solves this

Table 1 Uncertainty
descriptions of design variables
and parameters

Variables Mean value Standard Distribution Lower bound Upper bound

or parameters deviation of mean value of mean value

R 0.01 Normal 0.1 36

T 0.01 Normal 0.5 6.0

L 0.1 140

St 40 4 Normal

Maximal Deviation Membership

grade function

point

P 3.89 1.167 Triangular
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Table 2 Results of pressure vessel design

T M RM LM V v1 v2 Number k

First kind of shift 6.0000 33.2300 71.3000 −2.0447 × 105 1.9658 × 105 4.0105 × 105 7,016 3

Second kind of shift 6.0000 33.1600 71.4000 −2.0324 × 105 1.9615 × 105 3.9938 × 105 9,275 4

RFCDV-MDO problem in three cycles with 350 function
evaluations including objective and constraints in probabil-
ity/possibility analysis.

5.2 Design of a pressure vessel

The example of pressure vessel design showed in Fig. 2 is
derived from (Lewis and Mistree 1997), in which the exam-
ple is solved in a multi-player formulation based on game
theory. The design variables are radius (R), length (L) and
thickness (T ). There are two parameters: internal pressure
(P) and allowable tensile strength of the material (St ). The
objective is to maximize the internal volume while mini-
mize the weight. In this paper, this problem is modified into
an MDO problem.

The pressure vessel is designed by two design groups,
and the coupled variables are thickness (T ), length (L)

and radius (R). Multidisciplinary systems and notations are
illustrated in Fig. 3. Here, T , R are continuous random vari-
ables, and L is a discrete random variable. Table 1 shows
uncertainty descriptions of design variables and parameters.

Due to manufacture practice, mean values of T , R are
multiple of 0.01, and that of L is multiple of 0.1. When
mean value of T is obtained as T M , the practical dimension
is subjected to N (T M , 0.01). The case of R is similar as
T . The length L is discretely distributed according to the
following probability:

Pr| {L = τ } =
⎧⎨
⎩

0.1 τ = L M + 0.1
0.8 τ = L M

0.1 τ = L M − 0.1
, L M is multiple of 0.1.

Sharing design variables: ds = φ, φ denotes empty set.
Sharing random or fuzzy continuous or discrete variables: φ.

Subsystem 1:
Random variable: X1 = {T }.
Input linking variables: Y21 = {

y21,1,y21,2
} = {R, L}.

Output linking variables: Y12 = {y12} = {T }.

Output: Z1 = {v1}. v1 = 4
3π(T M + yM

21,1)
3 + π(T M +

yM
21,1)

2 yM
21,2 −

[
4
3π(yM

21,1)
3 + π(yM

21,1)
2 yM

21,2

]
. In this sub-

system, the objective is to minimize the weight, which is
equal to minimize the relevant volume.

The constraints in Subsystem 1 are as follows:
The possibility constraints are those:

�
{
G11 = 5T − y21,1 > 0

} ≤ αt

�
{
G12 = T + y21,1 − 40 > 0

} ≤ αt
.

Subsystem 2:
Random variable: X2 = {R, L}.
Input fuzzy and random parameters: P = {P , St }.
Input linking variables: Y12 = {y12} = {T }.
Output linking variables: Y21 = {

y21,1,y21,2
} = {R, L}.

Output: Z2 = {v2}. v2 = 4
3π(RM )3+π(RM )2L M . In this

subsystem, the objective is to maximize internal volume.
The constraints in Subsystem 2 are as follows:
The possibility constraints are those:

∏{
G21 = P R

y12
− St > 0

}
≤ αt

� {G22 = L + 2R + 2y12 − 150 > 0} ≤ αt

.

The whole objective v is to minimize v1 − v2. The target
possibility of failure is αt = 0.0013 = 1 − 0.9987.

In the computational process, the starting points in the
current cycle are set to be the results of the last cycle to
improve efficiency. The optimum results with the first and
second kind of shift vector are given in Table 2. The eighth
column lists the total number of function evaluations of
objective and constraints in probability/possibility analysis.
The whole process with the first kind of shift vector con-
verges in three cycles while four cycles with the second kind
of shift vector. The values of performance measure of possi-
bility constraint functions at relevant MPPPs with different
shift vectors are listed in Table 3. All values of performance

Table 3 Value of performance
measure at MPPP G11 G12 G21 G22

First kind of shift −3.0770 −0.7276 −2.0724 × 10−4 −0.0551

Second kind of shift −3.0070 −0.7976 −0.0592 −0.0951
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measure at MPPPs are less than zeros which indicates that
the requirements of possibility of failure are all satisfied.

The optimal design obtained using the first kind of shift
vector is better than that of the second kind of shift vec-
tor. The reason is that from the second cycle, the feasible
area of the reconstructed deterministic MDO with the sec-
ond kind of shift vector is narrower than that of the first kind
because the shiftiness is larger than that of the first one.
The aim of the second kind of shift vector is to avoid this
situation: when there are discrete requirements on design
variables and shiftiness of deterministic constraints, some
equality constraints especially with the even power could
not be satisfied.

6 Conclusions

This paper proposes the formulation of RFCDV (Random/
Fuzzy Continuous/Discrete Variables) Multidisciplinary
Design Optimization (RFCDV-MDO), uncertainty analysis
for RFCDV-MDO, and a method of RFCDV-MDO within
the framework of Sequential Optimization and Reliability
Assessment (RFCDV-MDO-SORA) to deal with RFCDV-
MDO problems.

Two kinds of uncertainty, Aleatory Uncertainty (AU) and
Epistemic Uncertainty (EU), and both continuous and dis-
crete variables and parameters are considered. Based on the
conditional possibility of failure, this paper proposes the
performance measure approach of probability/possibility
analysis by transforming the discrete random variables and
parameters into discrete fuzzy ones with the purpose of
avoiding the enormous computational price.

In RFCDV-MDO-SORA, the solution of RFCDV-MDO
problem is decoupled into deterministic MDO and prob-
ability/possibility analysis sequentially. In the proposed
RFCDV-MDO-SORA with the second kind of shift vec-
tor, the shiftiness of variable whose mean value or maximal
grade point is continuous is equal to the value of its mean
value or maximal grade point subtracted by relevant MPPP
of the previous cycle. The shiftiness of variable whose mean
value or maximal grade point is discrete should be expanded
according to the value of its mean value or maximal grade
point subtracted by relevant MPPP of the previous cycle and
discrete increment or decrement. In RFCDV-MDO-SORA
with the first kind of shift vector, the shiftiness of variable is
equal to the value of its mean value or maximal grade point
subtracted by relevant MPPP of the previous cycle. From the
examples, RFCDV-MDO-SORA can solve RFCDV-MDO
problem efficiently in a few cycles. The RFCDV-MDO-
SORA with the first kind of shift vector is more efficient
than that with the second one in the second example.

Future works will develop an efficient algorithm to
directly deal with the discrete-continuous optimization with
equality constraints, more precise measure to simultane-
ously deal with AU and EU, and also more efficient
framework to solve RFCDV-MDO problems.
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