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Abstract In engineering design, to achieve high re-
liability and safety in complex and coupled systems
(e.g., Multidisciplinary Systems), Reliability Based
Multidisciplinary Design Optimization (RBMDO) has
been received increasing attention. If there are suffi-
cient data of uncertainties to construct the probabil-
ity distribution of each input variable, the RBMDO
can efficiently deal with the problem. However there
are both Aleatory Uncertainty (AU) and Epistemic
Uncertainty (EU) in most Multidisciplinary Systems
(MS). In this situation, the results of the RBMDO will
be unreliable or risky because there are insufficient
data to precisely construct the probability distribution
about EU due to time, money, etc. This paper pro-
poses formulations of Mixed Variables (random and
fuzzy variables) Multidisciplinary Design Optimization
(MVMDO) and a method of MVMDO within the
framework of Sequential Optimization and Reliability
Assessment (MVMDO-SORA). The MVMDO over-
comes difficulties caused by insufficient information for
uncertainty. The proposed method enables designers
to solve MDO problems in the presence of both AU
and EU. Besides, the proposed method can efficiently
reduce the computational demand. Examples are used
to demonstrate the proposed formulations and the effi-
ciency of MVMDO-SORA.
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Nomenclature

ds sharing deterministic design variables
for all disciplines

di local deterministic design variables of
the ith discipline

Xs sharing random and fuzzy variables,
which are input variables to all disci-
plines

Xi local input variables to the ith disci-
pline, composed by random and fuzzy
variables

X a vector of input variables, composed
by Xi i = 1, · · ·, nd

Y a vector of linking variables with the
maximal grade points YM

Y•i a vector of linking variables, input of
discipline i

yij linking variable, the output of disci-
pline i and input to discipline j

P a vector of all random and fuzzy para-
meters

Pi random and fuzzy parameters of disci-
pline i

g(i) common deterministic constraints in
discipline i

nd total number of disciplines
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�(G > 0) possibility of failure with the failure
mode defined as G > 0

�(G(i)>0)≤αt probability/possibility constraints in
discipline i

X∗,(i),(k−1)
s Most Probable/Possible Point (MPPP)

corresponding to Xs in the ith dis-
cipline in the (k− 1)th cycle

X∗,(i),(k−1)

i MPPP of Xi in the ith discipline of the
(k− 1)th cycle

P∗,(i),(k−1)

i MPPP of Pi in the ith discipline
obtained in the (k− 1)th cycle

Y∗ a vector of linking variables at the
MPPPs, corresponding to probabil-
ity/possibility constraint

Y∗,(i)
•i a vector of linking variables at the

MPPPs, corresponding to probability/
possibility constraint in discipline i

G(i)
� shifted deterministic constraint func-

tions corresponding to probability/
possibility constraints of discipline i

αt allowable target possibility of failure
and β t is equal to −�−1 (αt)

U(i)
s standard normal random variables in

U-space, corresponding to random
variables of Xs in the ith discipline

V(i)
s standard fuzzy variables in V-space,

corresponding to fuzzy variables of Xs

U(i)
i standard normal random variables in

U-space, corresponding to random
variables of Xi in the ith discipline

V(i)
i standard fuzzy variables in V-space,

corresponding to fuzzy variables of Xi

U(i) all standard normal random variables
of all disciplines

V(i) all standard fuzzy variables of all
disciplines

U(i)
P a vector of standard normal random

parameters in U-space, corresponding
to all random parameters of P

V(i)
P a vector of standard fuzzy parameters

in V-space, corresponding to all fuzzy
parameters of P

U(i)
Pi ,V

(i)
Pi standard normal random parameters,

standard fuzzy parameters of discipline i
Y(i)

•i a vector of linking variables, the input
of the ith discipline

1 Introduction

In the last two decades, the consideration of the
effect of uncertainty has been one of the focus areas in
engineering design. With the goal to achieve high relia-

bility and safety in complex and coupled systems (e.g.,
multidisciplinary systems) design, the Reliability Based
Multidisciplinary Design Optimization (RBMDO) has
gained increasing attention (Sues et al. 1995; Sues and
Cesare 2000; Koch et al. 2000; Padmanabhan and Batill
2002a, b; Du and Chen 2000, 2005; Du et al. 2008).
To replace the computationally expensive simulation
models, response surface models created at the system
level are used in the reliability analysis for MDO under
uncertainty (Sues et al. 1995). Within the RBMDO
framework presented by Sues and Cesare (2000), the
reliability analysis is decoupled from the optimization
loop. Reliabilities are initially computed before the
first execution of the optimization loop and updated
after accomplishing the optimization loop during which
approximations of reliability constraints are employed.
In Koch et al. (2000), a multi-stage parallel implemen-
tation of probabilistic design optimization is utilized
with the aim to integrate existing reliability analysis
method into MDO framework. To search the Most
Probable Point (MPP), concurrent subsystem optimiza-
tion techniques were used in Padmanabhan and Batill
(2002a, b) and Du and Chen (2000) and collaborative
reliability analysis method was proposed in Du and
Chen (2005) and Du et al. (2008). In Du et al. (2008),
a Sequential Optimization and Reliability Assessment
(SORA) method for the RBMDO was proposed. The
main idea of the SORA method is to decouple the
reliability analysis from the design optimization. By
using the Most Probable Point (MPP) obtained from
the previous iteration, constraints in the deterministic
optimization are modified to make sure the MPP of
current iteration falling into the deterministic feasible
region. After solving the deterministic optimization, a
new design solution is obtained. The feasibilities of
probabilistic constraints will then be checked by reli-
ability analysis at the new design point. In many cases,
the whole process of solution will be convergent in few
cycles (Du et al. 2008; Du and Chen 2004).

However in the design of most multidisciplinary
systems, both aleatory and epistemic uncertainties ex-
ist. The aleatory uncertainty (stochastic uncertainty,
irreducible uncertainty, inherent uncertainty, variabil-
ity) can be modeled with the probability theory, and
variables with aleatory uncertainty can be treated as
random variables. The epistemic uncertainty (reducible
uncertainty, subjective uncertainty), which is caused by
lack of knowledge, can be modeled by possibility theory
(Agarwal et al. 2004; Oberkampf et al. 2000; Youn et al.
2005; Du and Choi 2008). In single disciplinary de-
sign, Reliability Based Design Optimization (RBDO)
is commonly utilized. When there are insufficient data
to construct the precise statistical distribution of input
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with uncertainty (especially epistemic uncertainty) due
to time, money, etc, the results of the probabilistic
method will be unreliable or risky in this case. Since
improper modeling of uncertainty could cause greater
degree of statistical uncertainty than those of the phys-
ical uncertainty (Youn et al. 2005): 92% reliability with
imprecise statistical data turns out to be 77 reliability
with precise statistical information when the perfor-
mance function is a linear model; system nonlinearity
and smaller amount of data will increase the error
associated with the reliability level. With the possi-
bility theory, fuzzy variables are utilized to represent
epistemic uncertainties (uncertainties with insufficient
data) (Du and Choi 2008). It has been pointed out that
when little information is available for input data, the
possibility based method is better as it provides a more
conservative design than the probabilistic design that is
consistent with the limited available information (Youn
et al. 2005). To deal with both types of uncertainties
in single system design, Mixed Variables Design Opti-
mization (MVDO) is proposed in Du and Choi (2008).
This method is applied in design where only one disci-
pline is involved. However, for MS, both formulations
and solutions become much more complex. Few works
have been done in MDO design when both types of
uncertainties are associated with design inputs. In this
paper, a formulation of MVMDO is proposed and a
MVMDO-SORA method is developed to solve MDO
problems involving both AU and EU.

This paper is organized as follows. In Section 2, Mul-
tidisciplinary Design Optimization (MDO) and Mixed
Variables Design Optimization (MVDO) are briefly re-
viewed. The formulation of the MVMDO, the strategy,
procedure, and formulation of the MVMDO-SORA
are introduced and explained in detail in Section 3.
In Section 4, examples are utilized to demonstrate the
proposed formula and the efficiency of the MVMDO-
SORA, followed by the conclusions in Section 5.

2 Briefly review of multidisciplinary design
optimization (MDO) and mixed variables design
optimization (MVDO)

2.1 Multidisciplinary design optimization (MDO)

The formulation of MDO is given as:

min f
(
X′′, Y′′)

s.t. g(i)
(
X′′

s , X′′
i , Y′′

•i

) ≤ 0

h(i)
(
X′′

s , X′′
i , Y′′

•i

) = 0

Y′′
i• = Y′′

i•
(
X′′

s , X′′
i , Y′′

•i

)

i = 1, 2, · · · , nd

(1)

where X′′ = (
X′′

s , X′′
1, X′′

2, · · · , X′′
nd

)T is a vector of de-
sign variables, X′′

s represents a vector of sharing vari-
ables, and X′′

i are local input variables to discipline i.
Y ′′ = (Y′′

1•, Y′′
2•, · · · , Y′′

(nd)•)
T stands for a vector of link-

ing variables, Y ′′
i• = (y′′

ij; j �= i, j = 1, 2, · · · , nd) refers
to a vector of outputs obtained from the ith discipline,
and y′′

ij denotes the output of discipline i and the input
to discipline j. Y′′

•i is a vector of input linking variables
to the ith discipline. f (·) is the objective function, g(i)(·)
are inequality constraint functions and h(i)(·) are equal-
ity constraint functions in discipline i. nd is the total
number of disciplines.

A MDO problem with three disciplines is illustrated
in Fig. 1. During the optimization, evaluations of the
cost function and constraints require the multidisci-
plinary analysis as shown by the dashed box because
each function has the common component Y′′ which
maintains the consistencies among multiple disciplines.
For example, when evaluating y′′

12 or y′′
13 in discipline 1,

y′′
31 is an input. y′′

31 is a function of y′′
13, but y′′

13 is also the
result of discipline 1 (Du and Chen 2005).

2.2 Mixed variables design optimization (MVDO)

When design with both random and fuzzy variables,
the formulation based on the Performance Measure
Approach (PMA) (Du and Choi 2008) is:

min
(d′,X ′ M)

f
(
d′, X′ M, P′ M

)

s.t. G�i
(
d′, X′, P′) ≤ 0, i = 1, 2, · · · , nc

d′ L ≤ d′ ≤ d′ U

X′ M,L ≤ X′ M ≤ X′ M,U

(2)

where G�i
(
d′, X′, P′) stands for the value of the ith

constraint function at the most probable/possible point
(MPPP). d′ is a vector of deterministic design vari-
ables. X′ = (X′

r, X′
f ) = [X ′

i ]T ∈ Rnr+nf refers to a vector

1 XX ′′′′
s

2 XX ′′′′
s

3 XX ′′′′
s

12y ′′21y ′′

23y ′′32y ′′

13y ′′31y ′′

Cost optimization

Constraint feasibility
OPTIMIZER

Discipline 1

Discipline 2

Discipline 3

Multidisciplinary Analysis

Fig. 1 Flowchart of MDO
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of random and fuzzy variables, where each random
variable X ′

i has the probability density function fX ′
i

(
x′

i

)

with the mean value X ′M
i = E

(
X ′

i

)
, and each fuzzy vari-

able X ′
i has the membership function �X ′

i

(
x′

i

)
with the

maximal grade point X ′ M
i = {x′|max{�X ′

i
(x′

i)}}, X′ M =
[X ′ M

i ]T ∈ Rnr+nf is also a design vector. P′ = (P′
r, P′

f ) =
[
P′

i

]T ∈ Rnpr+npf stands for a vector of random and
fuzzy parameters. nr, nf, nc, npr and npf are numbers of
random variables, fuzzy variables, constraints, random
parameters and fuzzy parameters, respectively.

To calculate the value of G�i
(
d′, X′, P′), all random

variables and parameters need to be transformed into
a set of independent standard normal random ones U
using the Rosenblatt transformation (Du et al. 2008).
All fuzzy variables and parameters need to be trans-
formed into the standard fuzzy ones V. The standard
fuzzy variable has the isosceles triangular membership
function as:

�Vi (vi)=
{

vi + 1 −1 ≤ vi ≤ 0

1 − vi 0 ≤ vi ≤ 1
= 1 − |vi| , |vi| ≤ 1

(3)

This transformation can be written as:

Vi =
{

�Xi (Xi) − 1 Xi ≤ X M
i

1 − �Xi (Xi) Xi > X M
i

(4)

where X M
i is the maximal grade point of the member-

ship function (Youn et al. 2005).
A single-loop optimization to find (u, v) can be

formulated as

max
(u,v)

Gi (u, v)

s.t. ‖u‖2 ≤ βt

‖v‖∞ ≤ 1 − αt

(5)

where αt is the allowable possibility of failure. β t is
equal to −�−1(αt) and � stands for the cumulated prob-
ability function of the standard normal distribution.
The solutions are the MPPP (u*, v*) and performance
measure at the MPPP Gi(u*, v*) (Du and Choi 2008).

3 Mixed variables multidisciplinary design
optimization in the framework of SORA
(MVMDO-SORA)

The SORA method is originally developed for Relia-
bility Based Design Optimization (RBDO) in Du and

Chen (2004) and is introduced into MDO in Du et al.
(2008). In this paper, adopting the basic ideas of SORA,
SORA is further developed to solve MDO prob-
lems in which both aleatory uncertainty and epistemic
uncertainty are associated with design variables and
parameters. The method is called Mixed Variables Mul-
tidisciplinary Design Optimization within the frame-
work of SORA (MVMDO-SORA). In this section, the
MVMDO-SORA is presented in detail including asso-
ciated strategy, procedure and formulations generated
in MVMDO-SORA.

3.1 Strategy

To efficiently solve MVMDO problem, two key tech-
nologies are adopted.

1. Performance Measure Approach (PMA). In
RBDO, PMA is more efficient than evaluating
the actual probability directly. Some non-active
probability constraints will dominate the whole
computational process in directly evaluating their
actual probability which results in low compu-
tational efficiency (Du et al. 2008). PMA is also
effective for possibility based design optimization
(Youn et al. 2005; Du and Choi 2008). Meanwhile
utilizing the PMA, the probability or possibility
requirement of failure is initially set to be an
acceptable value and treated as constraint. The
maximal value of probability or possibility con-
straint function (performance measure at most
probable or possible point) is calculated. The
probability or possibility requirement is achieved
when the value is not larger than zero.

2. Sequential Optimization and Reliability Assess-
ment (SORA). In this paper, with the basic idea
of SORA, the solution process of MDO under
aleatory and epistemic uncertainties is decoupled
into sequential cycles of deterministic MDO and
probability/possibility analysis. In each cycle, the
probability/possibility analysis follows the solution
of deterministic MDO. After solving the deter-
ministic MDO, the maximal grade point of each
fuzzy design variable and the mean value of each
random variable are obtained. Then probabil-
ity/possibility analysis is applied to analyze the
feasibility of each probability/possibility constraint
at the current design point. Based on this, in
each iteration cycle, the optimization problem and
the probability/possibility analysis are not nested
but sequential. So the efficiency will be improved
obviously.
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3.2 Formulation of MVMDO

The formulation of Mixed Variables (random and
fuzzy variables) Multidisciplinary Design Optimization
(MVMDO) is given as:

min
(ds,d,XM

s ,XM)
f
(
ds, d, XM

s , XM, PM
)

s.t. �
(
G(i) (ds, di, Xs, Xi, Pi, Y•i) > 0

) ≤ αt

g(i)
(
ds, di, XM

s , XM
i , PM

i , YM
•i

) ≤ 0

dL
s ≤ ds ≤ dU

s , dL ≤ d ≤ dU

XM,L
s ≤ XM

s ≤ XM,U
s , XM,L ≤ XM ≤ XM,U

i = 1, 2, · · · , nd

(6)

where the superscript M denotes the mean value of a
random variable and parameter or the maximal grade
point of a fuzzy variable and parameter. ds are shar-
ing deterministic design variables for all disciplines.
di denote local deterministic design variables of the
ith discipline. Xs refer to sharing random and fuzzy
variables, which are input variables to all disciplines. Xi

composed of random and fuzzy variables is a vector of
local input variables to the ith discipline. X is composed
of Xi, i = 1, 2, · · · , nd. Y is a vector of linking variables
and YM are maximal grade points of Y. Y•i , a vector of
linking variables, is the input of discipline i. yij is the
output of discipline i and the input to discipline j. P
represents a vector of all random and fuzzy parameters
and Pi denotes a vector of random and fuzzy parame-
ters in discipline i. g(i) denote common deterministic
constraints in discipline i. nd is the total number of
disciplines. �(G > 0) denotes the possibility of failure
with the failure mode defined as G > 0. �

(
G(i) > 0

) ≤
αt are probability/possibility constraints in discipline i.

3.3 Procedure

The procedure of the MVMDO-SORA includes the
following steps:

Step 1: Set initial values for design variables d(0)
s , d(0),

XM,(0)
s , XM,(0); k = 1.

Step 2: Solve the deterministic MDO problem. The
purpose of solving the deterministic MDO
is to get the mean value or maximal grade
point of each variable

(
XM,(k)

s , XM,(k)
)
, as well

as the value of each deterministic variable(
d(k)

s , d(k)
)
.

In the first cycle, the design problem is treated
as a deterministic MDO problem without considering
uncertainties. Because there is no information about
MPPPs, the values of MPPPs are set to be equal to
XM,(0)

s , XM,(0) and PM. Variables in deterministic con-
straints are mean values of random variables, maxi-
mal grade points of fuzzy variables and deterministic
variables.

From the second cycle, constraints in the determin-
istic MDO are modified with the MPPPs information
from the previous cycle when requirements of proba-
bility/possibility constraints are not all satisfied.

Step 3: Probability/possibility analysis. First, all ran-
dom variables and parameters are trans-
formed into the independent standard normal
random ones U using the Rosenblatt trans-
formation. All fuzzy variables and parameters
are transformed into the standard fuzzy ones
V using (4) based on the value XM,(k)

s and
XM,(k). Then the MPPP can be obtained after
probability/possibility analysis. In the formu-
lations of the probability/possibility analysis,
consistencies between disciplines are treated
as extra constraints as in Du et al. (2008).

Step 4: Check convergence. If requirements of prob-
ability/possibility constraints are all satisfied
and the value of objective function is stable:(
G(i) ≤ 0, i = 1 ∼ nd; | f (k) − f (k − 1) |≤ ε

)

where ε is an arbitrary small positive constant,
stop the process of solution; otherwise set
k = k + 1 and go to Step 2 with the MPPPs
obtained in Step 3.

If requirement of probability/possibility constraint
�(G(i) > 0) ≤ αt is not satisfied in Cycle k− 1 (the
performance measure at its MPPP satisfies G(i) > 0),
then the MPPP

(
X∗,(i),(k−1)

s , X∗,(i),(k−1), P∗,(i),(k−1)
)

ob-
tained from probability/possibility analysis in Cycle
k− 1 will be used to modify the constraint in the kth
deterministic MDO. To make sure the feasibility of
probability/possibility constraint, the MPPP should fall
into the deterministic feasible region. Let S be the shift
vector.

The shift is based on the idea of SORA in Du and
Chen (2004) as:

S(i)
s = XM,(k−1)

s − X∗,(i),(k−1)
s

S(i)
j = XM,(k−1)

j − X∗,(i),(k−1)

j (7)

i, j = 1, 2, · · · , nd
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where X∗,(i),(k−1)
s is the MPPP corresponding to Xs in

discipline i of the (k− 1)th cycle; X∗,(i),(k−1)

j denotes the

MPPP of X j in discipline i of the (k− 1)th cycle. S(i)
s

and S(i)
j are shift vectors of Xs and X j in discipline i,

respectively.
Values of the MPPPs of parameters directly sub-

stitute those of P in G(i). The deterministic con-
straint in the kth deterministic MDO is modified as:
G(i)

�

(
ds, di, XM

s − S(i)
s , XM

i − S(i)
i , P∗,(i),(k−1)

i , Y∗,(i)
•i

)
≤ 0.

3.4 Deterministic MDO of the kth cycle

The deterministic MDO of the kth Cycle is given as:

min
(ds,d,XM

s ,XM,YM,Y∗)
f
(
ds, d, XM

s , XM, PM, YM)

s.t. G(i)
�

(
ds, di, XM

s −S(i)
s , XM

i −S(i)
i , P∗,(i),(k−1)

i , Y∗,(i)
•i

)
≤0

g(i) (
ds, di, XM

s , XM
i , PM

i , YM
•i

)≤0

i=1, 2, · · · , nd

yM
ij = yij

(
ds, di, XM

s , XM
i , PM

i , YM
•i

)
i, j=1, 2,· · ·, nd, i �= j

y∗,(i)
jm = y∗,(i)

jm

(
ds, d j, XM

s −S(i)
s , XM

j −S(i)
j , P∗,(i),(k−1)

j , Y∗,(i)
• j

)

i, j, m = 1, 2, · · · , nd, j �= m

dL
s ≤ ds ≤ dU

s , dL ≤ d ≤ dU

XM,L
s ≤ XM

s ≤ XM,U
s , XM,L ≤ XM ≤ XM,U (8)

where S(i)
s , S(i)

i , S(i)
j are shift vectors of Xs, Xi and

X j in discipline i, respectively. Y* represents a vec-
tor of linking variables at the MPPPs, corresponding
to probability/possibility constraints. Y∗,(i)

•i corresponds
to the probability/possibility constraint in discipline i.
P∗,(i),(k−1)

i refers to the MPPP of Pi in the ith discipline
obtained in the (k− 1)th cycle. G(i)

� stand for shifted de-
terministic constraint functions corresponding to prob-
ability/possibility constraints in discipline i.

The equality constraints for achieving consisten-
cies among disciplines are modified with X∗,(i),(k−1)

s ,

X∗,(i),(k−1)

j , P∗,(i),(k−1)

j as y∗,(i)
jm = y∗,(i)

jm

(
ds, d j, XM

s − S(i)
s ,

XM
j −S(i)

j , P∗,(i),(k−1)

j , Y∗,(i)
• j

)
, i, j, m=1, 2, · · · , nd, j �=m.

S(i)
s , S(i)

j are shift vectors obtained from (7) respectively

corresponding to Xs and X j in discipline i. X∗,(i),(k−1)

j

and P∗,(i),(k−1)

j are MPPPs obtained in the (k− 1)th cycle
relevant to X j and P j in discipline i.

3.5 Formula of probability/possibility analysis under
the environment of MDO

The formulation of probability/possibility analysis in
the environment of MDO is:

max⎛

⎜⎜
⎜
⎝

U(i)
s , V(i)

s , U(i),

V(i), U(i)
P , V(i)

P , Y(i)

⎞

⎟⎟
⎟
⎠

G(i)
(

ds, di, U(i)
s , V(i)

s , U(i)
i , V(i)

i , U(i)
Pi , V(i)

Pi , Y(i)
•i

)

s.t.
∥∥
∥
(

U(i)
s , U(i), U(i)

P

)∥∥
∥

2
≤ βt

∥
∥∥
(

V(i)
s , V(i), V(i)

P

)∥
∥∥∞

≤ 1 − αt (9)

y(i)
jm = y(i)

jm

(
ds, d j, U(i)

s , V(i)
s , U(i)

j , V(i)
j , U(i)

P j, V(i)
P j, Y(i)

• j

)

i = 1, 2, · · · , nd; j = 1, 2, · · · , nd;

m = 1, 2, · · · , nd; j �= m

where αt is the allowable target possibility of failure.
β t is equal to −�−1 (αt). U(i)

s and U(i)
i refer to the stan-

dard normal random variables in U-space respectively
corresponding to random variables of Xs and Xi in
discipline i. V(i)

s and V(i)
i denote standard fuzzy vari-

ables in V-space respectively corresponding to fuzzy
variables of Xs and Xi in discipline i. U(i) and V(i)

include all standard normal random variables and stan-
dard fuzzy variables of all disciplines, respectively. U(i)

P
is a vector of standard normal random parameters in
U-space corresponding to all random parameters of P.
V(i)

P denotes a vector of standard fuzzy parameters in
V-space corresponding to all fuzzy parameters of P.
U(i)

Pi and V(i)
Pi are standard normal random and stan-

dard fuzzy parameters of discipline i, respectively. Y(i)
•i ,

a vector of linking variables, is the input of the ith
discipline.

It is implied that the probability/possibility con-
straint function includes all design inputs because of
the existences of linking variables. In (9), the first and
second constraints include all design inputs associated
with uncertainties.

Solutions of probability/possibility analysis are
MPPP

(
U∗,(i)

s , V∗,(i)
s , U∗,(i), V∗,(i), U∗,(i)

P , V∗,(i)
P

)
, linking

variables y∗,(i)
jm at MPPP and performance measure at

MPPP. The MPPP in X-space can be obtained using
the inverse Rosenblatt transformation and the inverse
(4). The MPPPs are used to construct the deterministic
MDO formulation for the next cycle if require-
ments of probability/possibility constraints are not all
satisfied.
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Fig. 2 Mathematical problem

4 Numerical examples

In this section, a mathematical problem is firstly used
to demonstrate the proposed formulation and method
in detail. The method proposed in this paper and
the RBMDO-SORA is compared based on the ob-
tained results. The efficiency of the proposed method
is demonstrated through results. An engineering design
example is subsequently provided.

4.1 A mathematical example for MVMDO

Modified from Du et al. (2008), a mathematical exam-
ple is given as:

min
(ds,d1,d2)

f
(
d, xM) = (

ds + xM
s

)2 + d2
1 + d2

2

s.t. �
{
G1 (d, x) = x1 − ds − xs − d1 − d2 > 0

} ≤ αt

�
{
G2 (d, x) = ds + xs − 2d1 + d2 − x2 > 0

} ≤ αt

0 ≤ ds, d1, d2 ≤ 5 (10)

where xs ∼ N(0,0.3), x1 ∼ N(5,0.5). N(μ, σ ) stands for
a normal distribution with mean value (μ) and standard
deviation (σ ). The triangular membership function of
x2 is (0.7,1,1.3). In (xM− dt, xM, xM + dt), xM is the
maximal grade point of membership function of x;
the value dt is the deviation of each side from the
maximal grade point. The problem is decomposed into
two subsystems as in Fig. 2 in the same way as that in
Du et al. (2008).

It should be noted in this problem, xs, x1 and x2 are
design parameters but not design variables because the
mean values and maximal grade point are all fixed.

The formulation of the deterministic MDO is
given by:

min
(ds, d1, d2) ,

(
yM

12, yM
21

)

(
y∗,(1)

12 , y∗,(1)
21

)
,
(

y∗,(2)
12 , y∗,(2)

21

)

f =( f1+ f2)=
(

ds+xM
s

)2+d2
1+d2

2

s.t. G1 = x∗,(1)
1 −

(
ds + x∗,(1)

s + 2d1 + 2y∗,(1)
21

)
≤ 0

y∗,(1)
12 = ds + x∗,(1)

s + d1 + y∗,(1)
21

y∗,(1)
21 = ds + x∗,(1)

s + d2 − y∗,(1)
12

G2 =
(

5ds + 5x∗,(2)
s + 3d2 − 4y∗,(2)

12

)
− x∗,(2)

2 ≤ 0

y∗,(2)
12 = ds + x∗,(2)

s + d1 + y∗,(2)
21

y∗,(2)
21 = ds + x∗,(2)

s + d2 − y∗,(2)
12

0 ≤ ds, d1, d2 ≤ 5 (11)

The optimal point (ds, d1, d2) is then used in the
probability/possibility analysis. At first, all random pa-
rameters are transformed into independent standard
normal random parameters and all fuzzy parameters
into standard fuzzy parameters.

The formulation for searching the MPPP of G1 is
given as:

max(
u(1)

s , u(1)
1 , v

(1)
2

)

(
y(1)

12 , y(1)
21

)

G1 =
(

xM
1 +u(1)

1 σ1

)
−

[
ds+

(
xM

s +u(1)
s σs

)
+2d1+2y(1)

21

]

s.t.
∥∥
∥
(

u(1)
s , u(1)

1

)∥∥
∥

2
≤ βt

∥
∥
∥v

(1)
2

∥
∥
∥∞

≤ 1 − αt (12)

y(1)
12 = ds + (

xM
s + u(1)

s σs
) + d1 + y(1)

21

y(1)
21 = ds + (

xM
s + u(1)

s σs
) + d2 − y(1)

12

Table 1 Results of RBMDO and MVMDO

Design variables Objective Number

ds d1 d2 f G1 G2 n1 n2 k

RBMDO (β = 3) 2.2497 2.2498 2.2498 15.1843 0 −0.0513 451 635
MVMDO (βt = 3, αt = 0.0013) 2.2165 2.3163 2.2165 15.1909 1.4211 × 10−13 0 522 522 3
(β t = 4, αt = 0) 2.3608 2.6108 2.3608 17.9629 1.3802 × 10−12 0 522 522 3
(β t = 2, αt = 0.0228) 2.0554 2.0554 2.0554 12.6740 1.7764 × 10−15 −0.1068 529 529 3
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Fig. 3 Pressure vessel
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The solution MPPP
(
u∗,(1)

s , u∗,(1)
1 , v

∗,(1)
2

)
to G1 is then

transformed into the MPPP
(
x∗,(1)

s , x∗,(1)
1 , x∗,(1)

2

)
in the

X-space. The formulation for searching the MPPP of
G2

(
x∗,(2)

s , x∗,(2)
1 , x∗,(2)

2

)
can be derived in the same way.

The MPPPs will be used to reconstruct the determin-
istic constraints of MDO for the next cycle if require-
ments of probability/possibility constraints are not all
satisfied.

The judgment of convergence is Gi ≤0, i=1∼2 and
| f (k) − f (k − 1)| ≤ 0.0001. The results of RBMDO
with xs ∼ N(0,0.3), x1 ∼ N(5,0.5) and x2 ∼ N(1,0.1)
solved by SORA in Du et al. (2008) and MVMDO are
listed in Table 1. The results with different αt and β t are
also listed in the same table.

The starting point is (0,0,0). The second row lists
the results of RBMDO from Du et al. (2008). n1

is the number of disciplinary analyses for subsystem
1 and n2 is for subsystem 2. When the target possi-
bility of failure is set the same as the target prob-
ability of failure (1 − �(3) = 0.0013 = αt), MVMDO
obtains a more conservative design. But the number
of disciplinary analyses is in the same order of magni-
tude as that in RBMDO. MVMDO-SORA efficiently
solves the MVMDO problem in three cycles. Based
on the values of objective function f in the fifth col-
umn, the less the possibility of failure is, the more
conservative the design will be. The case of β t = 4 and

Table 2 Nomenclature of the pressure vessel design problem

W Weight of the pressure vessel
V Volume, in.3

R Radius, in.
T Thickness, in.
L Length, in.
P Pressure internal the cylinder, Klb
St Allowable tensile strength of the cylinder material, Klb
σ circ Circumference stress

αt = 0 (1 − �(4) = 0 = αt) proposes the most conserv-
ative design.

4.2 Design of a pressure vessel

The second example is the design of a pressure vessel
showed in Fig. 3. This example is derived from Lewis
and Mistree (1997), in which this problem is solved in
a multi-player formulation based on game theory. The
nomenclature of this example is showed in Table 2. The
design variables are radius (R), length (L) and thick-
ness (T). There are two design parameters: the internal
pressure (P) and the allowable tensile strength of the
material (St). The objective is to maximize the internal
volume while minimizing the weight. In this paper, this
problem is modified to an MVMDO problem.

The pressure vessel is designed by two design groups,
and the coupled variables are thickness (T), length
(L) and radius (R). The multidisciplinary systems and
notations are given in Fig. 4.

Because of insufficient information to construct
probability distributions of design variables, T, R and

Subsystem 1 Subsystem 2

12 ( )T=Y

21 ( , )R L=Y

1 ( )T=X 2 ( , )R L=X

1 1( )Z v=
2 2( )Z v=

( , )tP S=P

Fig. 4 MDO problem of pressure vessel
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Table 3 Membership functions of design variables and distributions of design parameters

Maximal Deviation Membership Low boundary of Up boundary of Mean Standard Distribution
grade dt function maximal grade maximal grade value deviation

Variables
R 0.03 Triangular 0.1 36
T 0.03 Triangular 0.5 6.0
L 0.03 Triangular 0.1 140

Parameters
P 3.89 0.389 Normal
St 40 4 Normal

L are all fuzzy variables. But P and St are random para-
meters. The membership functions of design variables
and probability distributions of parameters are shown
in Table 3.

Sharing design variables ds= φ.
Sharing random or fuzzy variables φ.

Subsystem 1:

Fuzzy variable X1 = {T}.
Input linking variables Y21 = {y21,1, y21,2} = {R,L}.
Output linking variables Y12 = {y12} = {T}.
Output Z1 = {v1}. v1 = 4

3π
(
T M + yM

21,1

)3+π
(
T M +

yM
21,1

)2
yM

21,2 −
[

4
3π

(
yM

21,1

)3 + π
(
yM

21,1

)2
yM

21,2

]
. In this sub-

system the objective is to minimize the weight, which is
equal to minimize the relevant volume.

The constraints in Subsystem 1 are as follows:
The probability/possibility constraints are given by:

�
(
G11 = 5T − y21,1 > 0

) ≤ αt

�
(
G12 = T + y21,1 − 40 > 0

) ≤ αt.

Subsystem 2:

Fuzzy variables X2 = {R,L}.
Input random parameters P = {P,St}.
Input linking variables Y12 = {y12} = {T}.
Output linking variables Y21 = {y21,1, y21,2} = {R,L}.
Output Z2 = {v2}. v2 = 4

3π
(
RM

)3 + π
(
RM

)2
LM. In

this subsystem, the objective is to maximize internal
volume.

The constraints in Subsystem 2 are as follows:
The probability/possibility constraints are

�

(
G21 = PR

y12
− St > 0

)
≤ αt

�(G22 = L + 2R + 2y12 − 150 > 0) ≤ αt.

The whole objective, v, is to minimize v1 − v2.
For comparing the methods of MVMDO and RB-

MDO, the results of MVMDO and RBMDO with
T ∼ N(μT , 0.01), R ∼ N(μR, 0.01), L ∼ N(μL, 0.01),
P ∼ N(3.89, 0.389) and St ∼ N(40, 4) are listed in
Tables 4 and 5.

Design solutions of MVMDO and RBMDO are
shown in Table 4, including the optimal designs and
values of objective function. The possibility require-
ment in MVMDO (αt = 0.0013) is equal to that in the
RBMDO (β = 3). However, from the optimal values
of objective, MVMDO provides a more conservative
design. Because design variables, for which there are
no sufficient data to construct their probability distrib-
utions, are characterized as fuzzy variables; this results
in the difference in the mathematic formulations for
the uncertainty analysis. Meanwhile as the value of
possibility of failure decreases, the more conservative
the design solution is, and vice versa. MVMDO-SORA
works as efficiently as RBMDO-SORA. The whole
design optimization process converges after a few
cycles.

Table 4 Optimal design of MVMDO and RBMDO

μT μR μL T M RM LM v v1 v2 n1 n2 k

MVMDO (αt = 0.0013) 5.2750 34.6650 69.9700 −2.5973 × 105 1.7890 × 105 4.3863 × 105 3528 3528 6
(αt = 0) 6.0000 33.3983 71.0534 −2.0743 × 105 1.9761 × 105 4.0504 × 105 3718 3718 6
(αt = 0.0049) 4.9827 34.9576 69.9701 −2.7759 × 105 1.6998 × 105 4.4757 × 105 3548 3548 6
RBMDO (β = 3) 5.2475 34.7100 69.9949 −2.6187 × 105 1.7822 × 105 4.4009 × 105 3428 3428 5
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Table 5 Values of each probability/possibility constraint at MPPP and probability constraint at MPP

G11 G12 G21 G22

MVMDO (αt = 0.0013) −8.1101 0 −8.9956 × 10−10 0
(αt = 0) −3.2183 −0.5417 −8.1439 × 10−11 0
(αt = 0.0049) −9.8650 −7.1054 × 10−15 −7.0472 × 10−9 −2.8422 × 10−14

RBMDO (β = 3) −8.3194 1.8666 × 10−11 −2.7477 × 10−11 8.6914 × 10−11

Table 5 lists the values of probability/possibility con-
straints at each relevant MPPP and values of prob-
ability constraints at each corresponding MPP. In
MVMDO with different possibility of failure, all values
are not larger than zero. This indicates the probability/
possibility constraints are all satisfied. Some values are
equal to zero, this means that corresponding constraints
are active and the requirements are just satisfied.

5 Conclusions

When there are sufficient data to describe uncertainties
associated with variables, RBMDO performs well to
find an optimal solution. However, in engineer de-
sign, there often exist both aleatory and epistemic
uncertainties. In such situations, MVMDO is more rec-
ommended than RBMDO. MVMDO formulation and
MVMDO under the framework of SORA (MVMDO-
SORA) are developed in this research. This proposed
method can efficiently solve MDO problems in which
both aleatory and epistemic uncertainties exist in de-
sign inputs; the method can also reduce the computa-
tional demand.

The MVMDO problem can be solved efficiently
with sequential deterministic MDO and probability/
possibility analysis. In each cycle, probability/possibility
analysis follows the deterministic MDO. After solv-
ing the deterministic MDO, the maximal grade point
of each fuzzy design variable and mean value of
each random variable can be obtained. Then prob-
ability/possibility analysis is applied to analyze the
feasibility of each probability/possibility constraint at
the current new design point. To improve feasibili-
ties of constraints which violate probability/possibility
requirements, constraints in deterministic MDO are
modified with the MPPPs obtained in probabil-
ity/possibility analysis of previous cycle. Most impor-
tantly, in each iteration cycle, the solution is sequential
but not nested. So the efficiency is improved and the
process can converge in a few cycles.

As demonstrated in the two examples, when the
possibility of failure in MVMDO is set to be the same
as the probability of failure in RBMDO, MVMDO
offers a more conservative design. The reason is that

in MVMDO, some design inputs with limited data
are treated as fuzzy variables. Meanwhile in RBMDO,
there are sufficient data to precisely construct the prob-
ability distributions of design inputs. This results in
differences in the formulation of uncertainty analysis.
On the condition of limited data, the MVMDO obtains
conservative results comparing with those of RBMDO.
When the value of possibility of failure decreases, the
more conservative the design will be. In both examples,
MVMDO-SORA solves MVMDO problem efficiently,
and the whole process converges in a few cycles.
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