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This article introduces a method which combines the collaborative optimization framework and the inverse
reliability strategy to assess the uncertainty encountered in the multidisciplinary design process. This
method conducts the sub-system analysis and optimization concurrently and then improves the process of
searching for the most probable point (MPP). It reduces the load of the system-level optimizer significantly.
This advantage is specifically more prominent for large-scale engineering system design. Meanwhile,
because the disciplinary analyses are treated as the equality constraints in the disciplinary optimization,
the computation load can be further reduced. Examples are used to illustrate the accuracy and efficiency
of the proposed method.
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764 H.-Z. Huang et al.

1. Introduction

In modern complex engineering design, multidisciplinary design optimization (MDO) (Balling
and Sobieski 1995) has been developed to optimize large-scale and coupled systems, where ‘multi-
disciplinary’implies that a system involves multiple interacting disciplines. Numerous approaches
have been proposed for analysing such MDO problems, such as multidisciplinary feasible method
(MDF), individual discipline feasible method (IDF) (Balling and Wilkison 1997), collaborative
optimization (CO) (Kroo et al. 1994), concurrent subspace optimization (CSSO) (Sobieszczanski-
Sobieski 1989) and bi-level integrated system synthesis (BLISS) (Sobieszczanski-Sobieski et al.
1998), where CO uses separate optimization routines for each sub-system to satisfy interdisci-
plinary compatibility, while a system-level optimizer coordinates the tradeoffs among sub-systems
(McAllister and Simpson 2003).

However, to improve the overall performance of an engineering multidisciplinary system
especially under uncertainty, the effect of uncertainty must be taken into account. In recent devel-
opments, some preliminary results of multidisciplinary design under uncertainty are reported
(Mavris et al. 1999, Koch et al. 1999, Padmanabhan and Batill 2000, Du and Chen 2000b, 2002).
In these works, the mean and variance of system performance are evaluated through uncertainty
analysis and then utilized to obtain optimal solutions based on robustness considerations. A
framework for reliability-based MDO was proposed in Sues and Cesare (2000). In their work, the
reliability analysis is decoupled from the optimization. Reliabilities are computed initially before
the first execution of the optimization loop, and then updated after the optimization loop is exe-
cuted. Figure 1 shows this approach. However, inside each optimization loop, approximate forms
of probabilistic constraints are introduced in the optimization formulation. To integrate the exist-
ing reliability analysis techniques into the MDO framework more tightly, a multi-stage, parallel
implementation strategy of probabilistic design optimization was proposed by Koch et al. (2000).
Du and Chen (2005) presented a collaborative reliability analysis that particularly is implemented
in the IDF method for MDO. In this method, the procedure of the traditional most probable
point (MPP) based reliability analysis method (Du and Chen 2000a, 2005) is combined with the
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Figure 1. Double loop of RBO.
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Engineering Optimization 765

collaborative disciplinary analysis to automatically satisfy the interdisciplinary consistency in
reliability analysis.

The objective of this article is to incorporate a novel collaborative reliability analysis in the
multidisciplinary CO framework. An inverse reliability analysis strategy (Der Kiureghian et al.
1994, Li and Foschi 1998, Tu et al. 1999) is adopted in the reliability analysis that uses percentile
performance for assessing probabilistic constraints. This article is organized as follows: The
background of reliability analysis is presented in Section 2. Deterministic MDO using the CO
method is introduced in Section 3. In Section 4, the proposed method, the collaborative reliability
analysis in the framework of multidisciplinary system using the inverse reliability analysis strategy
is discussed. Examples for the proposed method are given in Section 5, followed by the conclusions
in Section 6.

2. Reliability analysis

The fundamental task of reliability analysis is to find a solution to a multidimensional integral
representing the reliability, which is expressed by

R = Prob{g(X) ≤ 0} =
∫

g(X)≤0
fx(X)dx. (1)

In the above model, X = {x1, x2, · · · , xn} is a vector of random design variables. fx(X) is the
joint probability density function (PDF) of X. g(X) is a limit-state function, and the safe mode
is defined as g(X) ≤ 0. R = Prob{g(X) ≤ 0} stands for the probability of safety of a limit-state
function.

Often it is impossible to obtain an analytical solution to the probability integration in
Equation (1); therefore approximation methods, such as the first order reliability method (FORM)
(Hasofer and Lind 1974) and the second order reliability method (SORM) (Breitung 1984), are
employed to calculate the probability integration. The common key point of these two methods
is the use of the most probable point (MPP). The reliability analysis based on the MPP using the
FORM and SORM is introduced as follows.

Firstly, the original random variables X = {x1, x2, · · · , xn} (in x-space, the original design
space) are transformed into a set of normalized random variables U = {u1, u2, · · · , un} (in
u-space, the standard normalized design space). Each element of U follows a standard nor-
mal distribution. Secondly, the limit-state function g(U) is approximated by a linear form (in the
FORM) or a quadratic form (in the SORM) at the MPP. After the two-step simplification and
approximation, the probability integration in Equation (1) can be solved analytically. To reduce
the accuracy loss, the expansion point is selected at the MPP which has the highest contribution
to the probability integration. The MPP can be located by solving the following optimization
problem that maximizes the joint PDF of random variables on the hyper surface of the integration
region g(U) = 0 in u-space (Du et al. 2004).

min ‖u‖
s.t. g(u) = 0

, (2)

where ‖ · ‖ stands for the norm of a vector.
After the MPP u∗ is identified, the reliability can then be simply expressed in the FORM as

R = �(β), (3)
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766 H.-Z. Huang et al.

where β = ‖u∗‖ is the shortest distance from the surface g(U) = 0 to the origin in u-space, and is
called the ‘reliability index’. The reliability solution using the SORM can be found in Breitung’s
work (Breitung 1984).

However, to use Equations (1) and (2), the reliability Prob{g(X) ≤ 0} for each limit-state
function g(X) needs to be evaluated. In presence of multiple constraints, some constraints may
never be active and consequently their reliabilities are extremely high (approaching 1.0).Although
these constraints are the least critical, the evaluation of reliability will unfortunately dominate the
computational effort in probabilistic optimization. The solution to this problem is to perform the
reliability assessment only up to the necessary level. Hence, using the percentile performance
measure (inverse reliability) will be more efficient than directly evaluating the reliability. The
percentile performance is shown as:

gR ≤ 0, (4)

where gR is the R-percentile performance of g(X), namely,

Prob{g(x) ≤ gR} = R. (5)

If the FORM is used, the R-percentile performance can be obtained by solving the following
model:

max g(u)

s.t. ‖u‖ = β
. (6)

Then gR is the function value at the solution u∗
MPP (Du et al. 2004).

3. Collaborative optimization (CO)

For simplicity, a 3-sub-system example (Du and Chen 2005) shown in Figure 2 is used to present
the CO method.

In this system, xs are the system input variables which are the input for all disciplines, also
called sharing variables. xi (i = 1, 2 and 3) are the input variables of disciplines i, y = (y21, y31,

y12, y32, y13, y23) are state variables (linking variables), and yij is the output of sub-system i which
is taken as input to sub-system j . zi are outputs of disciplines i.

The model of MDO is presented as follows,

min f (x, y)

s.t. gi(xs , xi , y.i ) ≥ 0

hi(xs , xi , y.i ) = 0

i = 1 ∼ 3

, (7)

where x = (xs , x1, x2, x3) is a vector of design variables, f is the design objective function, g

and h denote inequality constraints and equality constraints. y.i is the input linking variables of
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Figure 2. A multidisciplinary system.

discipline i from other disciplines.

y12 = Fy12 (xs , x1, y21, y31)

y13 = Fy13 (xs , x1, y21, y31)

y21 = Fy21 (xs , x2, y12, y32)

y23 = Fy23 (xs , x2, y12, y32)

y31 = Fy31 (xs , x3, y13, y23)

y32 = Fy32 (xs , x3, y13, y23)

. (8)

The CO method divides the original problem in Equation (7) into two levels: one system level
and parallel sub-system (discipline) levels. The system level assigns the targets of design variables
to all sub-systems. The objective of each sub-system is to minimize the gap between the design
variables and the target values under the condition of satisfying its own constraints. After the
optimization of sub-systems is accomplished, the objective functions are passed to the system as
consistent constraints to resolve the inconsistency among the design variables of all sub-systems.

Compared with other methods for MDO, CO preferably solves computational complexity and
structural complexity, since it utilizes sub-system optimizer to make the disciplinary decisions.
One of the merits of CO is that it reduces the complexity of a system so that sub-system problems
can be analysed and optimized synchronously. The framework is similar to the modern engineering
design structure and is suitable for large-scale optimization problems.

The CO method is used to reformulate the model Equation (7) as follows,
System level:

min f (x, y)

s.t. qj = 0

DV = {x, y}
. (9)
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768 H.-Z. Huang et al.

Sub-system level:

min qj = ‖xs − xs0‖2
2 + ‖xj − xj0‖2

2 +
m∑

l=1

(yl − yl0)
2

s.t. yj. = Fyj.
(xs , xj , y.j )

gj ≥ 0

hj = 0

DV = {xs , xj , y}

, (10)

where xs denotes the sharing variable, xj is a vector of local variables in disciplines j , and m is
the number of linking variables. xs0, xj0, yl0 are the target values.

The calculation process is as follows:

(1) Firstly, system level assigns target values (xs0, xi0, yl0) of design variables (xs, xi, yl) to each
sub-system.

(2) Sub-system optimizers find local optimal solutions to meet the targets assigned at the system
level. However, the solution from each sub-system may not exactly match the target. So,
there exists an inconsistency between the target and the response. The inconsistency should
be overcome.

(3) System optimizer obtains the global optimal solution, and passes the solution to the sub-system
as new target values. (System optimizer assigns new targets for the sub-system level with the
consideration of sub-systems’ capabilities based on the response passed from sub-systems).

(4) Steps (2) and (3) are repeated until convergence (Li 2003).

4. Reliability analysis under the framework of multidisciplinary systems using inverse
reliability

With the existence of uncertainty, the deterministic MDO model (7) is reformulated as follows:

min f (x, y)

s.t. P{gi(xs , xi , y.i ) ≤ 0} ≥ Ri

. (11)

The design feasibility under uncertainty is defined as the probability of the constraint satis-
faction gi ≤ 0 being greater than or equal to the desired probability Ri . The probability of the
constraint satisfaction is also called the reliability. The reliability assessment is a critical compo-
nent that demands much more computational effort for MDO under uncertainty than deterministic
MDO. The traditional method, also called as multidisciplinary feasible method (MDF) reliability
analysis, integrates MPP method directly with multidisciplinary systems (Du and Chen 2005),
and Figure 3 shows this method in detail. This approach needs large-scale disciplinary analyses
in the system-level analysis for locating the MPP.

In this section, the method which combines inverse reliability analysis with CO for MDO
problems is proposed. Figure 4 shows the flowchart of this proposed method with related numeric
formulation as follows:
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Figure 3. MPP search using the MDF method.

Figure 4. The model of the integration of CO and inverse reliability for MPP.

System level:

max g(u, y)

s.t. ‖u‖ = β

qj = 0

DV = {u, y}

. (12)

Sub-system level:

min qj = ‖us − us0‖2
2 + ‖uj − uj0‖2

2 +
m∑

l=1

(yl − yl0)
2

s.t. yj. = Fyj.
(us , uj , y.j )

. (13)

In Equation (13), u is the design vector in u-space (standard normal space) corresponding to x
vector in x-space (original design space). us0, uj0, yl0 are the target values from the system level,
other symbols are the same as those in the foregoing formulations. Corresponding to the given R,
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770 H.-Z. Huang et al.

β = φ−1(R), where φ−1 is the inverse function of cumulative probabilistic function of a standard
normal distribution.

In this method, optimization at the disciplinary level can be performed independently. This
not only decomposes coupling among disciplines, but also can improve the process of searching
the MPP. The load of the system-level optimizer will be reduced significantly, because of the
optimization in disciplines. This advantage will especially be more prominent in large-scale
engineering system design.

Using this proposed method, u∗
MPP will be obtained for each probability constraint, and

then the percentile performance gR = g(u∗
MPP ) can be calculated at the MPP. The determin-

istic optimization problems of Equations (12) and (13) can be solved by traditional optimization
algorithms.

5. Example

In this section, two examples are utilized to demonstrate the proposed methods.

5.1. Mathematical example

The mathematical example is from the work of Du and Chen (2005). This example includes
two disciplines and five random variables. Figure 5 illustrates the multidiscipline system of this
example.

In discipline 1:

xs = {x1}, x1 = {x2, x3}, z1 = {z1}
y12 = x2

1 + 2x2 − x3 + 2
√

y21

z1 = 5 − (
x2

1 + 2x2 + x3 + x2e
−y21

)
.

In discipline 2:

xs = {x1}, x2 = {x4, x5} , z2 = {z2}
y21 = x1x4 + x2

4 + x5 + y12

z2 = √
x1 + x4 + x5(0.4x1).

{ }
{ }

1

1 2 3,

s x

x x

=

=

x

x
{ }1 1z=z

{ }
{ }

1

2 4 5,

s x

x x

=

=

x

x
{ }2 2z=z

{ }12 12y=y { }21 21y=y

Figure 5. Multidiscipline system of the mathematical example.
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Engineering Optimization 771

When x1 − x5 ∼ N(1, 0.1), the proposed method is utilized to perform reliability analysis
while treating z1 as the limit-state function. The formulations are as follows.

System level:

max z1(u, y) = 5 − (
(1 + 0.1u1)

2 + 2(1 + 0.1u2) − (1 + 0.1u3) + (1 + 0.1u2)e
−y21

)
s.t. qj = 0√

u2
1 + u2

2 + u2
3 + u2

4 + u2
5 = β

.
Sub-system level:
Discipline 1:

min q1 = (u1 − u10)
2 + (u2 − u20)

2 + (u3 − u30)
2 + (y12 − y120)

2 + (y21 − y210)
2

s.t. y12 = (1 + 0.1u1)
2 + 2(1 + 0.1u2) − (1 + 0.1u3) + 2

√
y21

Discipline 2:

min q2 = (u1 − u10)
2 + (u4 − u40)

2 + (u5 − u50)
2 + (y12 − y120)

2 + (y21 − y210)
2

s.t. y21 = (1 + 0.1u1)(1 + 0.1u4) + (1 + 0.1u4)
2 + (1 + 0.1u5) + y12

The solutions are u∗
1MPP = (u1, u2, u3, u4, u5) = (−1.7774, −2.1616, −1.0809, 0.0001,

0.0000) and z1(u∗
MPP ) = 1.8643. For comparisons, the results of MDF and the proposed method

are listed in Table 1.
From Table 1, the solution of CO is very close to that of MDF, but the function evaluation

number of CO is much less than that of MDF. This indicates that the proposed method is more
efficient than MDF.

5.2. Heart dipole

The heart dipole is a well-known MDO example modified by NASA (Yuan 2005). The
multidiscipline system is illustrated in Figure 6.

Table 1. Comparisons of MDF and the proposed method for mathematical example.

Method u∗
MPP = (u1, u2, u3, u4, u5) z1(u∗

MPP ) n

MDF (−1.7772, −2.1617, −1.0810, 0.0005, −0.0019) 1.8643 305
CO (−1.7774, −2.1616, −1.0809, 0.0001, 0.0000) 1.8643 169

Discipline 1

1

8

0

0

f

f

=
=

Discipline 2

4

6

0

0

f

f

=
=

1 8,y y

4, 6y y

2 3 5 7, , ,d x x d

Figure 6. Multidiscipline system for heart dipole example.
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772 H.-Z. Huang et al.

Table 2. Reliability analysis results of MDF and the proposed method.

Method u∗
MPP = (u3, u5) z5(u∗

MPP ) n

MDF (2.2574, 1.9759) 0 865
CO (2.2573, 1.9759) 0 447

The RBMDO formulation of the heart dipole is:

min f (d2, d7, x3, x5, y12, y21) = f5 + f6 + f7 + f8

s.t. P {fi(d2, d7, x3, x5, y12, y21) ≤ 0} ≤ R i = 5, 7

f6(d2, d7, x3, x5, y12, y21) ≥ 0

f8(d2, d7, x3, x5, y12, y21) ≥ 0

where y12, y21 can be obtained by solving the following equations

f1 = y1 + d2 − 0.63254 = 0

f4 = d7y1 + y8d2 + x5x3 + y6y4 − 1.7345334 = 0

f6 = x3x
2
5 − x3d

2
7 + 2y1x5d7 + y4y

2
6 − y4y

2
8 − 2d2y6y8 + 0.843453 = 0.

f8 = x3x
3
5 − 3x3x5d

2
7 + y1d

3
7 − 3y1d7x

2
5 + y4y

3
6 − 3y4y6y

2
8

+ d2y
3
8 − 3d2y8y

2
6 − 1.2342523 = 0

The proposed method is used while treating the function f5 as the limit-state function. x3, x5

are normally distributed with the radio of mean value and standard variance equal to 10. The
mean values of x3, x5 are μ3 = 0.4674, μ5 = 1.1653, respectively. The results of MDF and CO
are listed in Table 2.

From Table 2, the MPP and R-percentile performance obtained by CO for reliability analysis
are very close to that of MDF. But the function evaluation number of CO is much less than that of
MDF. This also indicates that the proposed method is much more efficient than MDF reliability
analysis method.

6. Conclusions

In the MDF reliability analysis method for multidisciplinary systems, two nested loops are
involved. The outer loop searches for the MPP, and the inner loop is the system-level analysis. In
the process of system-level analysis, a number of individual disciplinary analyses are performed.
This results in a high computational cost which sometimes is unacceptable.

The proposed method in this article combines CO, which is an efficient MDO method, with
inverse reliability analysis to assess the reliability. In this method, disciplinary analyses and
optimization are performed concurrently. This strategy can improve the process for searching the
MPP. It considers the individual disciplinary analyses as equality constraints of the disciplinary
optimization, which reduces the computational load. The inverse reliability analysis strategy for
analysing reliability is used but not the reliability index approach (RIA), because the former is
more efficient and robust. Results of examples illustrate that the proposed method is much more
efficient than the MDF reliability analysis method.
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