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CONCURRENT ENGINEERING: Research and Applications

A New Method for Achieving Flexibility in Hierarchical
Multilevel System Design

Xiaoling Zhang, Hong-Zhong Huang,* Zhonglai Wang, Yu Liu and Huan-Wei Xu

School of Mechatronics Engineering, University of Electronic Science and Technology of China,

Chengdu, Sichuan, 611731, China

Abstract: Analytical target cascading (ATC) method has been widely applied to solve multilevel decomposed system design optimization

problems. In the ATC method, concurrent design is achieved by target cascading. However, due to the complexity and the presence of

uncertainty, it is a challenging task to set proper targets. In this article, instead of using point value targets, interval targets are analyzed and

propagated through the multilevel system with the goal of reducing the effects of uncertainty while providing more flexibility to a design process.

In the proposed method, the design of a hierarchical system at each level is taken as a single-objective optimization problem, by minimizing the

degree of deviation between the target response interval and the achievable response interval. Not only the optimal design performance is

considered in this method, but also the acceptable variation range of the performance is analyzed. When the present target for a lower level

system and the achievable response from a lower level system are not point values, but rather intervals, their probability distributions are not

available. Therefore, these variables are treated as interval variables. When the random and interval variables are present, the most probable

point-based first-order reliability and the interval analysis methods are used to calculate the reliability bounds. The proposed method for

flexibility under uncertainty provides more degree of freedom to the design of lower level systems, while also keeping the performance of the

upper systems stable within a tolerable range. The accuracy of the proposed method is demonstrated via comparing results from both the

proposed and traditional methods.

Key Words: flexibility, uncertainty, multilevel system, deviation degree, reliability bounds.

1. Introduction

Design of an engineering system is often a challenging
task due to its complexity and the presence of
uncertainty. It is also viewed as a decision-making
process which involves target setting and target coordi-
nation. Analytical target cascading (ATC) is a decom-
position methodology developed for hierarchical
multilevel system optimization. In a hierarchical decom-
position problem, the coordination procedure focuses
on the minimization of the norm of the deviation
between a given target set by the upper level model and
the response of the lower level model.

The original target setting [1] and the target coordina-
tion [2,3] methods in multilevel systems are point-based
design optimization. The optimization requires complete
knowledge of design concepts and design models at each
level [4]. The point-based target offers little flexibility
since the targets have to be achieved exactly to avoid

penalty. Instead of seeking a single-point solution for
the design model at each level, it is desired that the target
setting should possess flexibility via providing a range of
solutions based on information passed along systems.
Flexible design target provides designers more design
freedom and can avoid rework by postponing immature
commitments in the early stages of a design process.

Different measures of design flexibility have been
proposed in literature. Suh [5] used the information
content and proposed the notion of flexibility by
considering both the achievable design performance
and the target ranges. The probability density functions
of the system and the target ranges were all assumed to be
uniformly distributed. Simpson et al. [6] pointed out that
developing ranged sets of the top-level system was a
means to enhance openness and system flexibility. The
design freedom and information certainty were used to
measure system’s flexibility. Chen and Yuan [7] proposed
a ‘preference function of performance levels’ to evaluate
the ‘degree of desirability’ of a varying performance to
meet a range of design requirements. The worst-case
scenario of constraints was used to guarantee that the
whole range of design solutions satisfy the constraints. In
Olewnik et al. [8], the flexibility of a system was
represented by a range which was the line segment
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connecting two points in a performance space with a
penalty function for deviation from that range, though
the mathematical model of this approach was not
provided. Moe et al. [9] proposed a prototype partition-
ing strategy considering the flexibility in requirements on
cost, performance, and schedule. However, they did not
develop a general model. Chen and Lewis [10] applied the
robust design concept and game theory to obtain flexible
top-level design specifications by treating targets as
design variables. Their method assumed that the leader
assumes rationality of the followers, and the unilateral
dependency of the system on subsystem did not exist in
hierarchical multilevel systems. Kalsi et al. [11] intro-
duced a sequential approach using the concepts from
comprehensive robust design to provide an additional
option for handling uncertainty. In his method,
unknown common variables needed by the system
designer were modeled as noise variables with uniform
probabilistic distributions, which varying within mod-
ified bounds that lie within the actual bounds of those
common variables. Liu [12] proposed a method that
provides the maximum design flexibility while incorpor-
ating the design heterogeneity. In their method, a
design attribute space was decomposed into subregions
first, and then, a flexibility measure was developed and
used as the metric to obtain the most desired ranged set
of targets.
There are two aspects that the aforementioned works

have not covered. First, the flexible target set in a
multilevel system is not studied. Second, these works
only consider a flexibility range, but do not provide
optimal performance. Many works have been done for
the interval uncertainty analysis [13–26]. The hierarch-
ical optimization and coordination is a multi-objective
problem [27–30]. From [4], the convergence of ATC is
achieved under proper weighting, which needs large
amount of computation. In this article, our primary
focus is threefold: First, a single-objective design
optimization and coordination method is formulated.
Second, the ranged targets are assigned to lower level
systems instead of point-valued targets, and the for-
mulation of ranged target coordination method is
provided. Third, with the mixed random and interval
variables, the maximum possible and the minimum
possible of the probability of failure are computed.
The design requirement is that these two bounds must
be within the acceptable range of the probability of
failure.
This article is organized as follows. Technical back-

ground and terminologies are introduced in Section 2.
In Section 3, the approach for the design flexibility in a
hierarchical multilevel system is put forth. The augmen-
ted ATC formulation for design flexibility is presented.
Numerical examples are given in Section 4 to illustrate
the effectiveness of the proposed method and followed
by a conclusion in Section 5.

2. Technical Background

2.1 The Principle of ATC

ATC is a decomposition methodology developed for
hierarchical multilevel system optimization. The design
objective of each element in ATC is composed of two
parts:

(1) To minimize the deviation of the current level
subsystem performances and common variables
from the assigned targets given by the upper system.

(2) To minimize the deviation of the lower level
subsystem performances and common variables
from response identified in lower system.

Therefore, the framework of ATC represents a
collaborative design effort such that the ultimate goal
of each subproblem is to meet the system-level targets.

In a multilevel hierarchical optimization problem, the
formulations of the system and subsystem follow a top-
down fashion as shown in Equations (1) and (2).

min : Rsys � T�
�� ��þXnsub

i¼1

Rsubi � Rsub
subi

�� ��2
2

þ
Xnsub
i¼1

Xci
k¼1

ysubik � ysubsubik

�� ��2
2

s:t: Rsys ¼ Rsysðxsys,RsubÞ

gsysjðRsub, xsysÞ � 0, j ¼ 1, 2, . . . , m

hsysjðRsub, xsysÞ ¼ 0, j¼ 1, 2, . . . , l

nsub : number of subsystems

ci : number of common varaibles in the ith subsystem

ð1Þ

min : Rsubi � R
sys
subi

�� ��2
2
þ
Xci
k¼1

ysubik � y
sys
subik

�� ��2
2

s:t: Rsubi ¼ Rsubiðxsub, ysubÞ

gsubjðRsubi, xsub, ysubÞ � 0, j ¼ 1, 2, . . . , p

hsubjðRsubi, xsub, ysubÞ ¼ 0, j ¼ 1, 2, . . . , q

ð2Þ

where superscript ‘sub’, refer to the variable’s optimum
in subsystem level, and it will be taken as design
parameter in system level optimization design, and ‘sys’
refer to the variable’s optimum in system which will be
given to the subsystem as target. The deviation terms is
coordinated by L-2 norm.

2.2 Deviation Degree of Intervals

If the superscripts I denotes interval, the underscore
and overscore denote the lower and the upper bounds
of an interval respectively, for intervals xI ¼ ½x,x� and
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zI ¼ ½z, z�, the norm of DðxI, zIÞ ¼ xI � zI
�� �� ¼

x� z
�� ��2

2
þ x� zk k22 refers to the degree of deviation of

intervals xI and zI.

2.3 Uncertainty Analysis with the Mixed Interval
Variables and Random Variables

The reliability constraints can be formulated as
Equation (3).

P giðx, pÞ � 0
� �

¼

Z
g
i
�0

fðXÞdx � 1� pfi, i ¼ 1, 2, . . . , n

ð3Þ

where giðx, pÞ � 0 is a constraint function, x is the vector
of both deterministic and random design variables,
vector p denotes the deterministic and random para-
meters which are uncontrollable, pfi the probability of
failure, and n is the number of reliability constraints.

When both random and interval variables are present,
a single probability of failure is not available, but its
lower and upper bounds are needed. The bounds of
probability failure pf are defined by Equation (4).

pmin
f ¼ P min

z
gðx, p, zÞ � 0

n o
pmax
f ¼ P max

z
gðx, p, zÞ � 0

n o
,

ð4Þ

where z is the vector of interval variables, and
min
z

gðx, p, zÞ and max
z

gðx, p, zÞ are the minimum and
maximum values of the limit state function g over the
intervals of z.

In the uncertainty analysis, the most probable point,
which having the highest probability of failure value, is used
to compute the maximal and minimal failure probability.

3. The Formulation for Achieving Design
Flexibility in Multilevel System

3.1 Ranged Targets Coordination in Each Level

Instead of point-valued targets, ranged targets are
assigned and propagated in each level. The coordination
approach of ranged targets is formulated in Equation
(5). In Equation (5), the degree of deviation between
ranges is used to measure the uncertainty and achievable
degree of the targets.

min : ðRsub ��RsubÞ � ðR
sys
sub ��R

sys
subÞ

�� ��2
2

þ ðRsub þ�RsubÞ � ðR
sys
sub þ�R

sys
subÞ

�� ��2
2

ð5Þ

Equation (5) can be rewritten by the min (max)
objective function as in Equation (6).

min : max
ðRsubk ��RsubkÞ � ðR

sys
subk ��R

sys
subkÞ

�� ��2
2

ðRsubk þ�RsubkÞ � ðR
sys
subk þ�R

sys
subkÞ

�� ��2
2

 !
ð6Þ

The intervals of common variables are calculated by
the sensitivity of design variables with respect to
common variables, as shown in Equation (7).

�ysubik ¼
@ysubik
@Rsubi

�Rsubi ð7Þ

where, @ysubik@Rsubi
is calculated by Equation (8).

@ysubik
@Rsubi

¼ �
@hsubi=@Rsubi

@hsubi=@yik
ð8Þ

The intersection set of intervals of common variables
in different subsystems is calculated and is assigned as
interval targets to the subsystems, which is shown in
Equation (9).

½y
sys
subik ��y

sys
subik, y

sys
subik þ�y

sys
subik� ¼

\nsub
i¼1

ysubIsubik

ysubIsubik ¼ ½y
sub
subik ��ysubsubik, y

sub
subik þ�ysubsubik�

ð9Þ

The difference between general ATC and the pro-
posed ranged target cascading (RTC) is presented in
Table 1. The mathematical formulation is shown by
Equations (10) and (11).

min : Rsys � T
�� ��2

2

s:t: Rsys ¼ Rsysðxsys,RsubÞ

P gsysj ¼ gsysjðxsys,Rsub ��RsubÞ � 0
� �
� 1� pfj, j ¼ 1, 2, � � � ,m

hsysj ¼ hsysjðxsys,RsubÞ � 0, j ¼ 1, 2, � � � , l

Rsub ��Rsub � Rsub
sub ��Rsub

sub

Rsub
sub þ�Rsub

sub � Rsub þ�Rsub

½y
sys
ik ��y

sys
ik , y

sys
ik þ�y

sys
ik � ¼

\nsub
i¼1

ysubIik

ysubIik ¼ ½y
sub
ik ��ysubik , ysubik þ�ysubik �

ð10Þ

min :max
ðRsubi ��RsubiÞ � ðR

sys
subi ��R

sys
subiÞ

�� ��2
2

ðRsubi þ�RsubiÞ � ðR
sys
subi þ�R

sys
subiÞ

�� ��2
2

 !

s:t: Rsubi ¼ Rsubiðxsub, ysubÞ

P gsubj ¼ gsubjðxsub, ysub ��ysub,Rsubi ��RsubiÞ � 0
� �
� 1� pfj, j ¼ 1, 2, . . . , p

hsubj ¼ hsubjðxsub, ysub,RsubiÞ � 0, j ¼ 1, 2, . . . , q

�ysubik ¼
@ysubik
@Rsubi

�Rsubi

y
sys
sub ��y

sys
sub � ysub ��ysub, ysub þ�ysub � y

sys
sub

þ�y
sys
sub

ð11Þ

In this article, the mathematical formulation of the
target cascading is composed of levels of the system and
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the subsystems, which correspond to the top and the
lower levels of the modeling hierarchy, respectively.
However, the target cascading formulation is not limited
to two levels of modeling hierarchy. It can be further
expanded to the system with multiple levels. The
information flow of the proposed RTC for achieving
flexibility is shown in Figure 1.

4. Case Study

4.1 Reliability Allocation and Design
Optimization Problem

The all-in-once (AIO) model of a reliability allocation
and design optimization problem is defined in Equation
(12).

min : f ¼ ð�x1 þ �x2 þ �x3Þ þ R2
1 þ R2

2

s:t: R1 ¼ P g1ðxÞ ¼ 1� x21x2=20 � 0
� �

R2 ¼ P g2ðxÞ ¼ 1� ðx23 � 3x2 þ 5Þ=30 � 0
� �

g3 ¼ 0:997� R1R2 � 0

0 � x1 � 10, 0 � x2 � 10, 0 � x3 � 10

R1 � 0:9987, R2 � 0:9987

ð12Þ

where x1, x2, and x3 are three random variables,
�x1 ,�x2 , and �x3 the mean values of the three random
variables, and P giðxÞ � 0

� �
� RT

i i¼ 1, 2, 3 . . . the relia-
bility constraints.
Based on the ATC method, the problem in Equation

(12) can be formulated as a two-level reliability design
optimization problem. In which, the system level is
formulated in Equation (13). The subsystem level is
composed of two subsystems design optimization

problems which are given in Equations (14) and (15),
respectively.

min : f ¼ R2
1 þ R2

2

s:t: g3 ¼ 0:997� R1R2 � 0

R1 � 0:9985, R2 � 0:9985

ð13Þ

min :�x1 þ �x2 þ ðR1 � R
sys
1 Þ

2
þ ðx2 � x

sys
2 Þ

2

s:t: R1 ¼ P g1ðxÞ ¼ 1� x21x2=20 � 0
� �

0 � x1 � 10, 0 � x2 � 10,R1 � 0:9985

ð14Þ

min :�x2 þ �x3 þ ðR2 � R
sys
2 Þ

2
þ ðx2 � x

sys
2 Þ

2

s:t: R2 ¼ P g2ðxÞ ¼ 1� ðx22 � 3x3 þ 5Þ=30 � 0
� �

0 � x3 � 10, 0 � x2 � 10,R2 � 0:9985

ð15Þ

Different from ATC formulations, the RTC model is
formulated in Figure 2.

The comparisons of optimization results from the
proposed method, the probabilistic all-in-one (PAIO)
and probabilistic ATC (PATC) are presented in Tables 2
and 3.

In terms of both the reliability allocation and design
optimization problem, the optimal range obtained by
the proposed RTC method is the same as that by the
interval PAIO method. In the target cascading process
of the proposed method, the sensitivity of the system to
each subsystem can also be calculated, which will be
studied in future research. The sensitivity provides
information for the reliability allocation and system
reliability design. The ranged targets are propagated
though the multilevel system, which provides more
choices and degree of flexibility to designers.

Table 1. The difference between general ATC and the proposed RTC.

General ATC Proposed RTC

Target setting Point targets Ranged target
Target cascading Point solution Ranged solution

System objective Rsys � T
�� ��2

2
þ
Pnsub

i¼1
ðRsubi � Rsub

subiÞ
2
þ
Pnsub

i¼1

Pci

k¼1
ðysubik � ysub

subikÞ
2 Rsys � T

�� ��2

2

Subsystem objective ðRsubi � Rsys
subiÞ

2
þ
Pci

k
ðysubik � ysys

subikÞ
2 min : max

ðRsubi ��Rsubi � ðR
sys
subi ��Rsys

subiÞÞ
2

ðRsubi þ�Rsubi � ðR
sys
subi þ�Rsys

subiÞÞ
2

 !

Constraints coordination
ðRsub � Rsub

subÞ
2
� "R

ðysub � ysubsubÞ
2
� "y

Rsub ��Rsub � Rsub
sub ��Rsub

sub

Rsub
sub þ�Rsub

sub � Rsub þ�Rsub

½ysys
ik ��ysys

ik , ysys
ik þ�ysys

ik � ¼
\nsub

i¼1

ysubI
ik

ysubI
ik ¼ ½ysub

ik ��ysub
ik , ysub

ik þ�ysub
ik �
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Figure 1. Information flow of RTC for achieving flexibility.

Figure 2. The formulation of the proposed RTC method.

Table 2. The optimal results of reliability allocation.

Interval PAIO
Point
PATC

Proposed
RTC

R1 [0.997, 1] 0.9985 [0.997, 1]
R2 [0.997, 1] 0.9985 [0.997, 1]
Objective
function

[11.7978, 12.8279] 11.8178 [11.7978, 12.8279]

Table 3. The optimal results of design variables.

Interval PAIO
Point
PATC

Proposed
RTC

x1 [3.7583, 3.764] 3.7625 [3.7583, 3.764]
x3 [5.5225, 5.5354] 5.5321 [5.5225, 5.5354]
Common
variable

[1.52, 1.5285] 1.5262 [1.52, 1.5285]
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4.2 A Geometric Programming Problem

Geometric programming problems with polynomials
are known to have a unique global optimal solution.
The AIO formulation of uncertainty analysis is provided
in Equation (16), and the original PATC formulations
and the proposed RTC formulation of the geometric
programming problem are shown in Figures 3 and 4,
respectively.

min f¼x21 þ x22

s:t: P giðx, pÞ � 0
� �

� 1� pfi, i ¼ 1, 2, . . . , 6

g
1
¼

x�23 þ x24
x25

� 1, g
2
¼

x�26 þ x25
x27

� 1

g
3
¼

x28 þ x29
x211

� 1, g
4
¼

x�28 þ x210
x211

� 1

g
5
¼

x�212 þ x211
x213

� 1, g
6
¼

x211 þ x212
x214

� 1

x3, x4, :::,x14 � 0, i¼ 1, 2, . . . , 6

where

x1 ¼ x23 þ x�24 þ x25
� �1=2

, x2 ¼ x25 þ x26 þ x27
� �1=2

x3 ¼ x28 þ x�29 þ x�210 þ x211
� �1=2

,

x6 ¼ x211 þ x212 þ x213 þ x214
� �1=2

ð16Þ

where pfi is a range that within interval [0.001, 0.1] and
x8 the random variable, normally distributed with
constant standard deviations �x8 ¼ 0:1.

The proposed RTC optimization models for the
three systems O0, O11, O12 are formulated in
Equations (17)–(19).

O0:

min : Rsys � T
�� ��2

2

s:t: Rsys ¼
ðR2

sub1 þ x�24 þ x25Þ
1=2

ðR2
sub2 þ x27 þ x25Þ

1=2

" #

P g1 ¼
ðRsub1 ��Rsub1Þ

�2
þ x24

x25
� 1 � 0

� �
� 1� pf1

P g2 ¼
ðRsub2 ��Rsub2Þ

�2
þ x25

x27
� 1

� �
� 1� pf2

Rsub
sub1 ��Rsub

sub1 � Rsub1 ��Rsub1

Rsub1 þ�Rsub1 � Rsub
sub1 þ�Rsub

sub1

Rsub
sub2 ��Rsub

sub2 � Rsub2 ��Rsub2

Rsub2 þ�Rsub2 � Rsub
sub2 þ�Rsub

sub2

ysub ��ysub ¼ ysubsub1 � ysubsub1

\
ysubsub2 � ysubsub2

Rsub1,Rsub2, ysub, x4, x5, x6, x7 � 0

ð17Þ

O11:

min : ðRsub1 ��Rsub1Þ � ðR
sys
sub1 ��R

sys
sub1Þ

�� ��2
2

s:t: Rsub1 ¼ ðx
2
8 þ x�29 þ x�210 þ y2sub1Þ

1=2

P g
3
¼

x28 þ x�29

ðysub1 ��ysub1Þ
2
� 1 � 0

� �
� 1� pf3

P g4 ¼
x210 þ x�28

ðysub1 ��ysub1Þ
2
� 1 � 0

� �
� 1� pf4

y
sys
sub1 ��y

sys
sub1 � ysub1 ��ysub1

ysub1 þ�ysub1 � y
sys
sub1 þ�y

sys
sub1

x8, x9, x10, ysub1 � 0

ð18Þ

Figure 3. The formulation of original PATC.
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O12:

min : ðRsub2 ��Rsub2Þ � ðR
sys
sub2 ��R

sys
sub2Þ

�� ��2
2

s:t: Rsub2 ¼ ðx
2
12 þ x213 þ x214 þ y2sub2Þ

1=2

P g5 ¼
ðysub2 ��ysub2Þ

2
þ x�212

x213
� 1 � 0

� �
� 1� pf5

P g6 ¼
ðysub2 ��ysub2Þ

2
þ x212

x214
� 1 � 0

� �
� 1� pf6

y
sys
sub2 ��y

sys
sub2 � ysub2 ��ysub2

ysub2 þ�ysub2 � y
sys
sub2 þ�y

sys
sub2

ysub2, x12, x13, x14 � 0 ð19Þ

The solutions from PAIO and PATC are presented in
Tables 4 and 5. The optimum solution for both random
and interval variables are provided by the proposed
RTC as shown in these tables.

From Table 5, it shows that the value of common
variable can be obtained form interval ½1:24, 1:64�. Based
on the sensitivity of each subsystem to the common
variable, system level can set different target of common
variable to subsystem. Therefore, the interval solution
provides more design freedom and flexibility to
designers.

Figure 4. The formulation of proposed RTC.

Table 4. Comparison of optimal design variables.

Initial
point

Interval
PAIO

Point
PATC

Proposed
RTC

x4 5.0 0.7598 0.7597 0.76,482
x5 5.0 0.855 0.8659 0.85,677
x7 5.0 0.913 0.9209 0.96,283
mx8 5.0 1.09 1.2013 1.042
x9 5.0 0.815 0.7912 0.99,423
x10 5.0 0.845 0.7229 0.74,461
x12 5.0 0.8409 0.8419 0.84,563
x13 5.0 1.953 2.1080 1.8698
x14 5.0 1.705 1.9344 1.67

Table 5. Comparison of optimal solutions.

Interval PAIO Point PATC
Proposed

RTC

Rsub1 2.51�0.07 3.1019 2.33�0.12
Rsub2 3.165�0.175 3.5599 2.7631�0.15
Common

variable
1.55�0.12 1.4830 1.44�0.2

Objective
function

[18.9817, 21.996] 22.3038 [17.5197, 22.4872]
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5. Conclusions

In this study, a new method to capture the effects of
uncertainty and to improve design flexibility in a
hierarchical multilevel system design process is pro-
posed. Given the flexible interval, intervals of reliability
are computed. The proposed method is capable of
measuring how reliable a design is quantitatively under
the required reliability target. Minimization of the
interval deviation between the target and the achievable
performance ranges, not only provides the optimum
design value, but also gives the acceptable variation
range for subsystem. This provides the flexibility that
helps to resolve conflicts between the top-level system
and lower level subsystems. This is superior to the
conventional approach in which only a single-valued
solution is obtained.
The further study will focus on the sensitivity analysis

in a hierarchical system optimization and concurrent
design in life cycle process [31]. In the presence of
multiple levels, another approach of future research
interest is the Stackelberg game theory approach.
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