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Nondeterministic variables of certain distributions are employed to represent uncertainties, which
are usually treated as the stochastic factors to reliability models. However, model parameters may
not be precisely represented due to some factors in engineering practices, such as lack of sufficient
data, data with fuzziness and unknown or non-constant reproduction conditions. To address these
issues, fuzzy randomvariables are implemented and two developments aremade in this paper. The
first development is that the Saddlepoint Approximation (SAP)-simulation is extended to conduct
reliability analysis accounting for the time-dependent degradation process and fuzzy random vari-
ables, and we attempt to give a method to select a proper saddlepoint. The second development is
that two system reliability analysis methods are proposed for different scenarios of reliability
modeling processes. It could be suitable for the system consisting of structural components with
gradual failure, whose reliability can be obtained by the method in the improved SPA-simulation,
also for system consisting of components with sudden failure, whose reliability can be acquired
from site field or experiments. An illustrated example is followed to testify the proposed methods.

© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Reliability is one of the major concerns in engineering practices since the occurrence of failures may lead to catastrophic conse-
quences. Reliability-based design optimization (RBDO) and maintenances are the two main approaches to system safe operation.
RBDO seeks a design which achieves the probability of failure less than an acceptable value. Therefore the likelihood of catastrophic
consequences decreases dramatically [1,2]. Maintenance is an important measure to the operation and extension of the product ser-
vice life. In order to do reasonable RBDO and make proper maintenance decisions, system reliability should be precisely evaluated.

System reliability evaluation methods have been the focus during the past several decades, such as Monte Carlo simulation [3],
fault tree analysis [4], Bayesian approach [5], reliability block diagram [6], fuzzy reliability methods [7,8], and multi-state system
reliability methods [9,10]. Reliability evaluation is conducted based on field data or experimental data with statistical tools in
these methods. It is easy to conduct reliability analysis with these methods when the field data or experimental data are effective
and sufficient. However, most structural components will suffer a gradual failure process and it is difficult or impossible to obtain
effective and sufficient data from both engineering practices and experiments, even though accelerated life testing (ALT) is imple-
mented. It should therefore recur to the physical model, failure modes and degradation mechanism, by the so-called physics-
based reliability method [11].

Many methods have been proposed to conduct physics-based reliability analysis, such as first order reliability method (FORM) [12],
second order reliability method (SORM) [13], and Saddlepoint Approximation (SPA) method [14]. SORM is more accurate than FORM,
but more computationally intensive. In spite of its usefulness, FORM often could not satisfy the requirement of accuracy in engineering
fields. With consideration of the tradeoff between the efficiency and accuracy, the first order saddlepoint approximation (FOSPA) meth-
od, which is more accurate without large computational demand, is proposed [15]. With FOSPA, the most likelihood point should be
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searchedwith an iterative process and need a number of evaluations of limit-state function. Due to the intensive computational expense,
FOSPAmay not be suitable for large-scale problems. To alleviate the computational demand, a SPA-based simulationmethod is proposed
[16].

Some conditions could be met in engineering practices, where random variables are no longer proper to represent uncer-
tainties. The conditions could include: (1) the available data is so insufficient that the statistical properties could be not expressed
properly; (2) the field or experimental data possess fuzziness; (3) field data or experimental data are obtained under such con-
ditions, which is unknown or non-constant reproduction [17]. To address these conditions, some methods have been proposed,
such as Bayesian approach [18], evidence theory [19], possibility theory [20] and fuzzy random variable method [21]. Bayesian
approach, evidence theory, and possibility theory have exhibited good capability of describing conditions (1) and (2), but
weak capability for condition (3). Fuzzy random variable method has been attracting more and more interests due to its strong
capability of describing both three conditions.

When considering themerits of both the SPA-based simulationmethod and the fuzzy random variable, a physics-based reliability
analysis method is proposed in this paper. In this method, fuzzy random variable is implemented to deal with uncertainty in three
conditions of engineering practices and SPA-based simulationmethod is used to guarantee the computational efficiency and accuracy.
Therefore, themethodwould extend the current physics-based reliability analysismethod. The other development is thatwe attempt
to present two system reliability analysis methods for complex systems. The proposed methods could be suitable for systems consist
of structural components with gradual failure, whose reliability could be evaluated with the method in fundamental development by
considering the actual conditions, and suitable for systems consist of components with sudden failure, whose reliability can be acquired
by experimental and field data. Hence the second development would be helpful for the progress of system reliability theory.

The organization of this paper is as follows. In Section 2, a brief description on fuzzy random variable and SPA-based simulation
method is introduced. In Section 3, the proposed physics-based reliability analysis method will be illustrated in detail. In Section 4,
the system reliability analysis methods will be provided. An example is followed to demonstrate the proposed methods in
Section 5. A conclusion is arrived in Section 6.

2. Fuzzy random variable and SPA-based simulation method

2.1. Fuzzy random variable

Randomness and fuzziness are usually two alternative representations of uncertainties. Only randomness has been considered
due to the maturation of probability theory in many studies. However, fuzziness in the randomness exists in engineering prac-
tices, because of lack of sufficient data, data with fuzziness, and unknown or non-constant reproduction conditions. Fuzzy random
variable has attracting more attention, for its capacity of uncertainty representation when engineering problems are handled.

A fuzzy random variable ~X can be defined on a fuzzy probability space ((Ω,μ(Ω)), (F,μ(F)), (P,μ(P))), where (Ω,μ(Ω)) is the
fuzzy random sample space and μ(Ω) is corresponding membership function of Ω; a σ−algebra (F,μ(F)) is the subsets
of (Ω,μ(Ω)) and μ(F) is the corresponding membership function of F; (P,μ(P)) is the fuzzy probability measure and μ(P) is the
corresponding membership function of P. Accordingly, ~X is a mapping relationship from (Ω,μ(Ω)) to (Rn,μ(Rn)), namely
~X : Ω; μ Ωð Þð Þ→ Rn; μ Rn� �� �

.
When a fuzzy number ~xi with the membership functions μ(xi) is assigned to an elementary eventω∈Ω, ~xi ωð Þ is a realization of

the fuzzy random variable ~X . Several realizations for a fuzzy random variable are given in Fig. 1 [17].
In Fig. 1, ~X ω1ð Þ, ~X ω2ð Þ, ⋯, ~X ω6ð Þ are several realizations of fuzzy random variable ~X , while X(ω1), X(ω2), ⋯, X(ω6) are several

realizations of random variable X. Therefore, one more axis should be added for fuzzy random variables compared with random
variables due to its fuzziness.

2.2. SPA-based simulation method

SPA, as an effective alternative approach to structural reliability analysis, has been studied widely in the engineering design
because of its higher accuracy than FORM, even than SORM for some cases, with the same computational efficiency with
FORM. Its potential use in engineering fields has been illustrated by the integration of the SPA with SORM [22]. The recent attempt
is the FOSPA for reliability analysis. To alleviate the computational cost, SPA-based simulation method is provided [16]. The flow-
chart of SPA-based simulation is given in Fig. 2, in which simulation process and analytical process are involved in the flowchart.
The results from the simulation process are considered as the inputs of the analytical process to obtain the expression of the
cumulant generating function (CGF) analytically. For more details, please refer to [16].

3. Fuzzy physics-based reliability analysis method

The physics-based reliability analysis model based on fuzzy random design variables and fuzzy random parameters are given
by:

~R ¼ Pr gi d; ~X; ~P
� �

≥0
n o

¼ ∫
gi d;~X ;~Pð Þ≥0

f ~X ;
~P ~X; ~P
� �

dXdP: ð1Þ
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It is noted that the reliability is fuzzy and could be obtained by the integration on the fuzzy joint probability density function

f ~X ;
~P ~X; ~P
� �

over the fuzzy safe region gi d; ~X; ~P
� �

≥0. d is the vector of deterministic design variables; ~X is the vector of fuzzy ran-

dom design variables; ~P is the vector of fuzzy random parameters; gi(⋅) is the limit state function associated with the failure

mode; gi d; ~X; ~P
� �

≥0 denotes the safe region, which is a fuzzy region; f ~X ;
~P ~X; ~P
� �

is the fuzzy joint probability density function

of fuzzy random design variables and fuzzy random parameters. The difference between ~X and ~P is that ~X is controllable by
the designer during the design process while ~P is uncontrollable. Because of the high nonlinear and multidimensional limit
state function, there is rarely a close-form solution to Eq. (1). An approximation method is therefore needed to calculate the
reliability in Eq. (1). Möller tries to solve Eq. (1) with fuzzy first order reliability method (FFORM) [17], but no formal formula
is given. Herein, the extended SPA-simulation method by accounting for fuzzy random variables is proposed to conduct reliability
analysis in Eq. (1). Eight steps are involved in the proposed method. The first four steps are simulation process, while the last four
steps consist of the analytical process. The flowchart of the proposed method is provided in Fig. 3.

Sampling on random variables

Evaluating performance function

Calculating cumulants

Simulation process

Analytical process
Solving the saddlepoint

Estimating PDF & CDF

Approximating CGF

Fig. 2. The flowchart of SPA-based simulation method.

Fig. 1. Several realizations of a one-dimension fuzzy random variable.
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3.1. Step 1: sampling on fuzzy random variables

A general model with fuzzymodel parameters in the probability distribution could be suitable for representing all three conditions:
lack of sufficient data, data with fuzziness, and non-constant reproduction conditions, which is an important representation of fuzzy
randomvariables [17]. Hence it is a fuzzy number sampled from the fuzzy randomvariables. The samples for the vector of fuzzy random
design variables ~X and the vector of fuzzy random parameters ~P could be provided by:

~X ¼ ~X1;
~X2; ⋯; ~Xn

h i
¼ ~x11; ~x

2
1; ⋯; ~x

N
1 ; ~x

1
2; ~x

2
2; ⋯; ~x

N
2 ; ⋯; ~x

1
n; ~x

2
n; ⋯; ~x

N
n

h i
ð2Þ

~P ¼ ~P1;
~P2; ⋯; ~Pm

h i
¼ ~p1

1; ~p
2
1; ⋯; ~p

N
1 ; ~p

1
2; ~p

2
2; ⋯; ~p

N
2 ; ⋯; ~p

1
m; ~p

2
m; ⋯; ~p

N
m

h i
ð3Þ

where n is the number of fuzzy random variables in the vector ~X; m is the number of fuzzy random variables in the vector ~P; N is
the number of samples for every ~Xi and ~Pi, which is usually taken to be 500 in the proposed method.

3.2. Step 2: discretizating fuzzy samples

Fuzzy sampleswill be implemented for computing the performance based on limit state functions. Because of the high non-linear and
multi-dimensional limit state functions, it is very hard to compute the performance with the extension principle of fuzzy sets. Herein, λ
level cut set method, as an effective and popular method, is employed. Therefore, fuzzy variables are degenerated into interval variables.

For example, with the λ level cut set, a certain sample ~xji (or ~p
j
i) therefore becomes an interval ~x j

i λð Þ ¼ ~x j
i
L λð Þ; ~xjiU λð Þ

h i
.

3.3. Step 3: calculating the boundaries of performance

The limit state function at a given level cut set λ could be formulated as

~y j λð Þ ¼ gi d; ~X j λð Þ; ~P j λð Þ
� �

ð4Þ

Sampling on fuzzy random variables

Discretizating the fuzzy samples

Computing the first fourth order cumulants 

Approximating the cumulative generating function

Solving the saddlepoint

Estimating the probability density function and 
cumulative distribution function

Simulation process

Analytical process

Computing the limit state function 
at the given cut set level 

Calculating the reliability

Fig. 3. The flowchart of the proposed method.
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~yj λð Þ is an interval variable because ~X
j
λð Þ and ~P

j
λð Þ are interval variables. Hence the upper and lower boundaries of the performance

could be found with an optimization procedure [23].

~y
j

U λð Þ ¼ maxgi d; x j
; p j

� �
x j
; pj

� �
∈Xλ

��� ð5Þ

~y
j

L λð Þ ¼ mingi d; x j
; pj

� �
xj
; p j

� �
∈Xλ

��� ð6Þ

where ~y
j

U λð Þ and ~y
j

L λð Þ are the upper and lower boundaries for the jth sampling, respectively. Consequently, ~yj λð Þ represented by
~y

j

L λð Þ; ~y j

U λð Þ
h i

λ∈ [0,1], could be obtained.

3.4. Step 4: computing the first four order cumulants

CGF is actually a polynomial with cumulants kr, r=1,2,⋯ as the coefficients [24].

K ξð Þ ¼ k1ξþ
1
2
k2ξ

2 þ ⋯þ 1
r!
krξ

r þ ⋯ ð7Þ

In principle, all the cumulants could be obtained with samples. To make the tradeoff between computational efficiency and
accuracy, it is considered suitable to approximate the CGF with the first four order cumulants [25].

~k2 ¼ N~s2−~s21
N N−1ð Þ

~k3 ¼ 2~s31−3N~s1~s2 þ N2~s3
N N−1ð Þ N−2ð Þ

~k4 ¼ −6~s41 þ 12N~s21~s2−3N N−1ð Þ~s22−4N N þ 1ð Þ~s1~s3 þ N2 N þ 1ð Þ~s4
N N−1ð Þ N−2ð Þ N−3ð Þ

8>>>>>>><>>>>>>>:
ð8Þ

where

~sr ¼
XN
j¼1

~yj
� �r

: ð9Þ

It is noted that ~k1e~k4 are fuzzy variables since they are the functions of fuzzy variables ~yj. It is difficult to calculate the membership
functions associatedwith~k1e~k4 with the extension principle. The optimization procedure is therefore needed to calculate the boundaries
of ~k1e~k4 at the same λ level as that for calculating ~yj.

kU1 λð Þ ¼ max

PN
j¼1

~y j λð Þ
� �
N

y∈Yλj ð10Þ

kL1 λð Þ ¼ min

PN
j¼1

~y j λð Þ
� �
N

y∈Yλj ð11Þ

kU2 λð Þ ¼ max

N
PN
j¼1

~yj λð Þ
� �" #2

−PN
j¼1

~yj λð Þ
� �2

N N−1ð Þ y∈Yλj ð12Þ

kL2 λð Þ ¼ min

N
PN
j¼1

~yj λð Þ
� �" #2

−PN
j¼1

~yj λð Þ
� �2

N N−1ð Þ y∈Yλj ð13Þ

kU3 λð Þ ¼ max

2
PN
j¼1

~yj λð Þ
� �" #3

−3N
PN
j¼1

~yj λð Þ
� �PN

j¼1
~yj λð Þ

� �2 þ N2 PN
j¼1

~yj λð Þ
� �3

N N−1ð Þ N−2ð Þ y∈Yλj ð14Þ
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kL3 λð Þ ¼ min

2
PN
j¼1

~y j λð Þ
� �" #3

−3N
PN
j¼1

~y j λð Þ
� �PN

j¼1
~y j λð Þ

� �2 þ N2 PN
j¼1

~y j λð Þ
� �3

N N−1ð Þ N−2ð Þ y∈Yλj ð15Þ

kU4 λð Þ ¼ max

−6
XN
j¼1

~y j λð Þ
� �24 354

þ 12N
XN
j¼1

~y j λð Þ
� �24 352XN

j¼1

~y j λð Þ
� �2−3N N−1ð Þ

XN
j¼1

~y j λð Þ
� �2

24 352

N N−1ð Þ N−2ð Þ N−3ð Þ

þ
−4N N þ 1ð Þ

XN
j¼1

~yj λð Þ
� �XN

j¼1

~yj λð Þ
� �3 þ N2 N þ 1ð Þ

XN
j¼1

~yj λð Þ
� �4

N N−1ð Þ N−2ð Þ N−3ð Þ y∈Yλj

ð16Þ

kL4 λð Þ ¼ min

−6
XN
j¼1

~yj λð Þ
� �24 354

þ 12N
XN
j¼1

~y j λð Þ
� �24 352XN

j¼1

~y j λð Þ
� �2−3N N−1ð Þ

XN
j¼1

~y j λð Þ
� �2

24 352

N N−1ð Þ N−2ð Þ N−3ð Þ

þ
−4N N þ 1ð Þ

XN
j¼1

~yj λð Þ
� �XN

j¼1

~y j λð Þ
� �3 þ N2 N þ 1ð Þ

XN
j¼1

~y j λð Þ
� �4

N N−1ð Þ N−2ð Þ N−3ð Þ y∈Yλj

ð17Þ

3.5. Step 5: approximation the cumulative generating function

The CGF approximated with the first four order cumulants is expressed by:

K ξð Þ ¼ ~k1 λð Þξþ 1
2
~k2 λð Þξ2 þ 1

3!
~k3 λð Þξ3 þ 1

4!
~k4 λð Þξ4: ð18Þ

3.6. Step 6: solving the saddlepoint

The first order derivative of the approximated CGF with respect to ξ is:

K 0 ξð Þ ¼ ~k1 λð Þ þ ~k2 λð Þξþ 1
2
~k3 λð Þξ2 þ 1

6
~k4 λð Þξ3: ð19Þ

The solution of Eq. (19) is the saddlepoint.
Accounting for the degradation mechanism of a product performance due to aging, erosion and strength reduction, saddle-

point could be obtained by solving a time-dependent equation.

K 0 ξð Þ ¼ ~k1 λð Þ þ ~k2 λð Þξþ 1
2
~k3 λð Þξ2 þ 1

6
~k4 λð Þξ3 ¼ ~y λ; tð Þ ð20Þ

where t indicates time, and ~y λ; tð Þ is a fuzzy random process. For a simplification, the saddlepoint at any time ti is solved without
considering the autocorrelation between different time ti and tj. The method proposed in Ref. [26] is employed to solve Eq. (20).

When ~k1e~k4 are crisp variables, there are three solutions for Eq. (20). A method for selecting a proper saddlepoint is given in
Ref. [14]. But for Eq. (20), there could be more than three solutions when ~k1e~k4 are fuzzy variables. Herein, the selection method
is provided with ~k1 λð Þe~k4 λð Þ being interval variables, shown in Table 1.

3.7. Step 7: estimating cumulative distribution function

With the obtained saddlepoint ξs(t), the probability density function at λ level could be expressed by:

f y tð Þð Þ ¼ 1
2πK} ξs tð Þð Þ

� �1
2

e K ξs tð Þð Þ−ξs tð Þy tð Þ½ �
λj ð21Þ

where K"(ξs(t)) is the second derivative of K(ξ(t)) at ξ(t)=ξs(t).

K} ξs tð Þð Þ ¼ k2 þ k3ξs tð Þ þ 1
2
k4ξ

2
s tð Þ ð22Þ
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The CGF at λ level is given by:

FY y tð Þð Þ ¼ Pr Y≤y tð Þf g λ ¼ Φ wð Þ þ ϕ wð Þ 1
w
−1

v

	 
� �
λj

���� ð23Þ

where

w ¼ sgn ξs tð Þð Þ 2 ξs tð Þy tð Þ−K ξs tð Þð Þ½ �f g1=2 ð24Þ

v ¼ ξs K} ξs tð Þð Þ
h i1=2

: ð25Þ

3.8. Step 8: calculating the reliability

By accounting for the relationship between the cumulative distribution and reliability, the expression of reliability could be
given by:

R λ; tð Þ ¼ 1− Φ wð Þ þ ϕ wð Þ 1
w
−1

v

	 
� �
λj ð26Þ

K"(ξs)≥0 is always satisfied and the detailed proof is illustrated in Ref. [14]. If 0≤λb1, R(λ) is not a deterministic value but an
interval while if λ=1, R(λ) is a deterministic value .

4. Reliability analysis methods of complex systems

In engineering practices, a complex system is usually consisted of large numbers of components, including structural
components with gradual failure and components with sudden failure. For an easy demonstration, a system with series–parallel
configuration is taken as an example.

As shown in Fig. 4, there are three components in the system. Herein, component 1 is assumed to be a structural component
with gradual failure, and components 2 and 3 are components with sudden failure. The time-dependent reliability of a structural
component could be obtained with the method demonstrated in Section 3. The reliability of components 2 and 3 could be eval-
uated with failure data n(tj) at some time tj. Failure data are usually considered imprecise in handling engineering problems [7].
Two methods are proposed to conduct reliability analysis for the system in terms of different scenarios. There are two steps in

Component 1 

Component 2 

Component 3 

Fig. 4. A system with the series–parallel configuration.

Table 1
The saddlepoint selection method.

Cases Conditions Solutions

Case 1 k4(λ)∈(−∞, 0)
ξLl ¼ min

k3 λð Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

3
λð Þ−2k2 λð Þk4 λð Þ

q
−k4 λð Þ

8<:
9=;

ξUu ¼ max
k3 λð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

3
λð Þ−2k2 λð Þk4 λð Þ

q
−k4 λð Þ

8<:
9=;

ξ∈(ξlL,ξuU)

Case 2 k4(λ)∈ [0,∞) and ΔU=max{k
3

2(λ)−2k2(λ)k4(λ)}≤0 ξ∈Rn

Case 3 k4(λ)∈ [0,∞) and ΔL=min{k
3

2(λ)−2k2(λ)k4(λ)}>0 and k3(λ)>0 ξ∈(ξlL,∞)
Case 4 k4(λ)∈ [0,∞) and ΔL=min{k

3

2(λ)−2k2(λ)k4(λ)}>0 and k3(λ)b0 ξ∈(−∞,ξuU)
Case 5 k4(λ)∈ [0,∞) and ΔU=max{k

3

2(λ)−2k2(λ)k4(λ)}>0
and ΔL=min{k

3

2(λ)−2k2(λ)k4(λ)}b0
If only one solution ξ∈Rn

If more than one solutions and k3(λ)>0 ξ∈(ξlL,∞)
If more than one solutions and k3(λ)b0 ξ∈(−∞,ξuU)

41Z. Wang et al. / Mechanism and Machine Theory 52 (2012) 35–46



the first method. The system reliability at time tj by integrating the reliability of components at the same time tj at a given λ level
is provided in the first step.

~RS tj
� �

λ ¼ ~R1 tj
� �

1− 1−~R2 tj
� �h i

1−~R2 tj
� �h in o

λj
��� ð27Þ

It is noted that ~RS tj
� �

λj is an interval ~RL
S tj
� �

λ; ~R
U
S tj
� �

λj �∈ 0;1½ �
���h

. By accounting for the existence of uncertainty during the design,

manufacture process in the second step, and the cumulative distribution function, the lifetime of the system are assumed to fol-
low a three-parameter Weibull distribution expressed by:

~RS tð Þ λ ¼ 1−F t;α;β;γð Þ ¼ e−
tþγ
αð Þβ :

���� ð28Þ

Because ~RS tj
� �

λj is an interval, the parameters of Weibull distribution are also intervals. Hence ~RS tð Þ λj is a time-dependent
reliability interval bounded by two time-dependent reliability functions ~RL

S tð Þ λj and ~RU
S tð Þ λj .

The time-dependent system reliability ~RS tð Þ λj is to integrate the time-dependent reliability of the components in the second
method. Then the time-dependent reliability at a given λ level is given:

~RS tð Þ λ ¼ ~R1 tð Þ 1− 1−~R2 tð Þ
h i

1−~R2 tð Þ
h in o

λ:j
��� ð29Þ

The same conclusion as that in the first method that ~RS tð Þ λj is a time-dependent reliability interval bounded by two time-
dependent reliability functions ~RL

S tð Þ λj and ~RU
S tð Þ λj is arrived. The distribution type of the system reliability is assumed in the

first method while the distribution type of all the components is assumed in the second method.

5. An illustrated example

A system consist of three subsystems is employed to illustrate the proposedmethods, where two subsystemswith sudden failure
form a parallel configuration and then serially connected with a subsystem with gradual failure. A single helical gear reducer is con-
sidered as the subsystem with gradual failure in this example.

5.1. Reliability evaluation of the single helical gear reducer

Helical gear reducer is widely used in engineering practices, which allows the engine to rotate at its most efficient speed. There
are two deterministic design variables: normal module mn and the number of pinion teeth z1. Face width b and helix angle β are
considered to be random design variables. There are four random parameters P1~P4, including the material properties ZE, the
rotation speed n, the engine power P and bending stress fatigue limit σF min. Parameters P1~P4 are considered as fuzzy random
variables by accounting for the three conditions: lack of sufficient data, data with fuzziness, and unknown or non-constant repro-
duction conditions in engineering practices. The stochastic information of design variables and parameters is given in Table 2.

The bending failure is one of important failure modes for a gear. The limit state function associated with the failure mode is
defined as the difference between the allowable bending stress and bending stress:

g d;X;P; tð Þ ¼ σH limZN

SHmin
−2� 9:55� 106PK

bd1nmn
YFSYεYβ−D tð Þ:

The strength of gear usually degrades with time because of some factors, such as wear, fatigue, and erosion. Furthermore, the
degradation of strength is testified to follow a Gamma process [27] and D(t)=Gamma(0.1,0.12t) is provided in this example.

Table 2
Distribution information of design variables and parameters.

Variables Variables Mean Std Distribution type

d z1 26 – –

mn (mm) 2.5 – –

X b (mm) 68 0.05 Normal
β (degree) 12 0.05 Normal

P P (kw) 15 1.5 Normal
n (rpm) 970 97 Normal
ZE (

ffiffiffiffiffiffiffiffiffiffi
MPa

p
) 189.8 18.98 Normal

σF min (MPa) 560 56 Normal
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Herein, the triangle membership function is employed to represent the fuzziness of the mean values and hence ~P eN ~μ P ;σPð Þ,
~neN ~μ n;σnð Þ, ~ZE eN ~μ ZE ;σZE

� �
and ~σ FmineN ~μσ Fmin

;σσ Fmin

� �
. The membership functions for ~μ P , ~μ n, ~μ ZE and ~μσ Fmin

are provided.

μP xð Þ ¼

x−0:2
0:2

x∈ 14:8;15½ �
xþ 0:2
0:2

x∈ 15;15:2½ �
0 others

8>>><>>>:

μn xð Þ ¼

x−20
20

x∈ 950;970½ �
xþ 20
20

x∈ 970;990½ �
0 others

8>>><>>>:

μZE
xð Þ ¼

x−10
10

x∈ 179:8;189:8½ �
xþ 10
10

x∈ 189:8;199:8½ �
0 others

8>>><>>>:

μσFmin
xð Þ ¼

x−4
4

x∈ 556;560½ �
xþ 4
4

x∈ 560;564½ �
0 others

8>>><>>>:
The reliability at time ti under a given level λ could be represented by:

R λ; tið Þ ¼ Pr g d;X;P; tið Þ≥0f g λ ¼ Pr
σH limZN

SHmin
−2� 9:55� 106PK

bd1nmn
YFSYεYβ−D tið Þ≥0

( )
λ:j

�����
The time-dependent reliability is plotted in Fig. 5. It is known that the initial reliability is not but less than 1. The reason is that

uncertainties exist in the products before they are put into operation. R(λ ; t) is a family of time-dependent reliability functions
bounded by the lower and upper boundaries when λ≠1. When λ=1, R(λ ; t) is a deterministic time-dependent reliability
function.

5.2. System reliability evaluation

For subsystems with sudden failure, statistics-based reliability analysis could be conducted. The center and width of the observed
lifetime data for subsystems 2 and 3 are given in Table 3 by accounting for the fuzziness of lifetime data and triangle membership
function is used.
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t (hour)

Fig. 5. Time-dependent reliability of the single helical gear reducer.
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When the first method proposed in Section 4 is applied, the system reliability is provided.

RU
S tð Þ ¼ exp − t þ 19:6915

3409:8

	 
� �1:0125

RS tð Þ ¼ exp − t þ 21:24
4190:7

	 
� �0:8630

RL
S tð Þ ¼ exp − t þ 22:862

7917:5

	 
� �0:6673
When the second method is applied and the lifetime of the subsystems is assumed to be normally distributed. The two bound-

aries of time-dependent reliability for the two subsystems at level 0 and the time-dependent reliability at level 1 are provided
respectively.

RL
2
tð Þ ¼ 1−∫

t

0

1
38:8

ffiffiffiffiffiffi
2π

p exp
x−237:2
2� 38:82

	 

dx

R
2
tð Þ ¼ 1−∫

t

0

1
38:9

ffiffiffiffiffiffi
2π

p exp
x−239:4
2� 38:92

	 

dx

RU
2
tð Þ ¼ 1−∫

t

0

1
39:0

ffiffiffiffiffiffi
2π

p exp
x−241:7
2� 39:02

	 

dx

RL
3 tð Þ ¼ 1−∫

t

0

1
37:6

ffiffiffiffiffiffi
2π

p exp
x−193:7
2� 37:62

	 

dx

R3 tð Þ ¼ 1−∫
t

0

1
37:8

ffiffiffiffiffiffi
2π

p exp
x−195:7
2� 37:82

	 

dx

RU
3 tð Þ ¼ 1−∫

t

0

1
37:9

ffiffiffiffiffiffi
2π

p exp
x−197:6
2� 37:92

	 

dx

With the proposed method in Section 3, the two boundaries at level 0 and the deterministic one at level 1 of time-dependent
reliability for subsystem 1 are provided.

RU
1 tð Þ ¼ exp − t þ 17:8927

6111:3

	 
0:8946� �

R1 tð Þ ¼ exp − t þ 19:0106
8857:7

	 
0:7423� �

RL
1 tð Þ ¼ exp − t þ 20:4651

24225

	 
0:5514� �

Then the two boundaries at level 0 and the deterministic one at level 1 of time-dependent system reliability could be
expressed by:

RU
S tð Þ ¼ exp − t þ 17:8927

6111:3

	 
0:8946� �
� 1−∫

t

0

1
39:0

ffiffiffiffiffiffi
2π

p exp
x−241:7
2� 39:02

	 

dx∫

t

0

1
37:9

ffiffiffiffiffiffi
2π

p exp
x−197:6
2� 37:92

	 

dx

" #

Table 3
Lifetime data of the subsystems 2 and 3.

Subsystem 2 Center 231 206 242 245 217 263 261 246 243
Width 2.4 2.1 2.6 2.8 2.4 2.5 2.6 2.4 2.9

Subsystem 3 Center 186 204 178 233 187 192 211 191 188
Width 2.0 2.2 1.9 2.6 2.1 2.3 2.5 2.4 2.3
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RS tð Þ ¼ exp − t þ 19:0106
24225

	 
0:7423� �
� 1−∫

t

0

1
38:9

ffiffiffiffiffiffi
2π

p exp
x−239:4
2� 38:92

	 

dx∫

t

0

1
37:8

ffiffiffiffiffiffi
2π

p exp
x−195:7
2� 37:82

	 

dx

" #

RL
S tð Þ ¼ exp − t þ 20:4651

24225

	 
0:5514� �
� 1−∫

t

0

1
38:8

ffiffiffiffiffiffi
2π

p exp
x−237:2
2� 38:82

	 

dx∫

t

0

1
37:6

ffiffiffiffiffiffi
2π

p exp
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2� 37:62

	 

dx

" #
:

The results with the two methods are plotted in Fig. 6.
It is noted that the initial reliability of a system is less than 1 at time t=0, which is different from the statistics-based reliability

method in the reliability engineering. The reason is that the initial reliability of structural component is usually less than 1 in
terms of the uncertainties of design variables and parameters in the design and manufacturing process.

6. Conclusions

Three conditions could be met when conducting reliability analysis in engineering practices: (1) the available data is so
insufficient that the statistical properties could be not expressed properly; (2) the field or experimental data possess fuzziness;
(3) field data or experimental data are obtained under such conditions, which is unknown or non-constant reproduction.
Fuzzy random variables exhibit a good capacity of representing these three conditions. In this paper, the SPA-simulation is ex-
tended to deal with reliability analysis accounting for the time-dependent degradation process and fuzzy random variables. Fur-
thermore, we attempt to provide a method to select a proper saddlepoint. To address the reliability analysis of complex system
consisted of subsystems with sudden failure and subsystems with gradual failure, twomethods are proposed. To further construct
more credible reliability model, more issues should be accounted for: (1) the coefficient of autocorrelation of the stochastic
process; (2) more accurate solution and selection method of saddlepoint.
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