
This article was downloaded by: [University of Alberta]
On: 12 October 2012, At: 13:05
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Computational Intelligence
Systems
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcis20

A New Multidisciplinary Design Optimization Method
Accounting for Discrete and Continuous Variables
under Aleatory and Epistemic Uncertainties
Hong-Zhong Huang a , Xudong Zhang a , De-Biao Meng a , Yu Liu a & Yan-Feng Li a
a School of Mechatronics Engineering, University of Electronic Science and Technology
of China, No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan, 611731, P.R.
China

Version of record first published: 05 Apr 2012.

To cite this article: Hong-Zhong Huang, Xudong Zhang, De-Biao Meng, Yu Liu & Yan-Feng Li (2012): A New Multidisciplinary
Design Optimization Method Accounting for Discrete and Continuous Variables under Aleatory and Epistemic Uncertainties,
International Journal of Computational Intelligence Systems, 5:1, 93-110

To link to this article:  http://dx.doi.org/10.1080/18756891.2012.670524

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss, actions,
claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tcis20
http://dx.doi.org/10.1080/18756891.2012.670524
http://www.tandfonline.com/page/terms-and-conditions


A New Multidisciplinary Design Optimization Method Accounting for Discrete and 
Continuous Variables under Aleatory and Epistemic Uncertainties 

Hong-Zhong Huang  
School of Mechatronics Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan 

Avenue, West Hi-Tech Zone, Chengdu, Sichuan, 611731, P.R. China 
E-mail: hzhuang@uestc.edu.cn 

Xudong Zhang 
School of Mechatronics Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan 

Avenue, West Hi-Tech Zone, Chengdu, Sichuan, 611731, P.R. China 

De-Biao Meng 
School of Mechatronics Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan 

Avenue, West Hi-Tech Zone, Chengdu, Sichuan, 611731, P.R. China 

Yu Liu 
School of Mechatronics Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan 

Avenue, West Hi-Tech Zone, Chengdu, Sichuan, 611731, P.R. China 

Yan-Feng Li 
School of Mechatronics Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan 

Avenue, West Hi-Tech Zone, Chengdu, Sichuan, 611731, P.R. China 

 

 

 

Abstract 

Various uncertainties are inevitable in complex engineered systems and must be carefully treated in design 
activities. Reliability-Based Multidisciplinary Design Optimization (RBMDO) has been receiving increasing 
attention in the past decades to facilitate designing fully coupled systems but also achieving a desired reliability 
considering uncertainty. In this paper, a new formulation of multidisciplinary design optimization, namely RFCDV 
(random/fuzzy/continuous/discrete variables) Multidisciplinary Design Optimization (RFCDV-MDO), is developed 
within the framework of Sequential Optimization and Reliability Assessment (SORA) to deal with 
multidisciplinary design problems in which both aleatory and epistemic uncertainties are present. In addition, a 
hybrid discrete-continuous algorithm is put forth to efficiently solve problems where both discrete and continuous 
design variables exist. The effectiveness and computational efficiency of the proposed method are demonstrated via 
a mathematical problem and a pressure vessel design problem. 

Keywords: Multidisciplinary design optimization (MDO), Aleatory uncertainty, Epistemic uncertainty, 
Continuous/discrete variables, Random/Fuzzy/Continuous/Discrete Variables Multidisciplinary Design 
Optimization (RFCDV-MDO), Sequential Optimization and Reliability Assessment (SORA). 
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1. Introduction 

In the last two decades, uncertainty has been a focus of 
engineering design for complex and coupled systems [1-
6]. In practical engineering design problems such as 
aircraft and ship design, the process is coupled and 
specialized design groups are involved. These 
specialists usually have engineering responsibility for 
particular design disciplines. Design decisions made by 
one group are either impacted by or impact on the 
decisions made by other groups. In some cases, different 
groups generate conflicting design proposals. In order to 
preserve the coupling that naturally exists among the 
groups of the whole engineering team, the optimization 
model must include a degree of coordination. 
Multidisciplinary Design Optimization (MDO) is a body 
of methods and techniques for performing such 
optimization so as to balance the design considerations. 
Moreover, uncertainties in MDO have a significant 
influence on the whole design process because 
uncertainties may propagate through linking variables 
and the effect of uncertainties could accumulate. If 
uncertainties are not considered, optimization results 
may be unreliable.  

Reliability Based Multidisciplinary Design 
Optimization (RBMDO) has been widely applied for the 
the requirements of high reliability or safety in complex 
and coupled systems [7-14]. Response surface models 
created at the system level are employed to replace the 
computationally expensive simulation models in order 
to release the computational requirements of reliability 
analysis involved in MDO under uncertainty [7]. The 
framework for RBMDO is proposed in [8] wherein 
reliability analysis is decoupled from the optimization. 
Reliability is initially computed before the first 
execution of the optimization loop. Then updated 
iteratively after each optimization loop during which 
approximate forms of reliability constraints are used. A 
multi-stage, parallel implementation of probabilistic 
design optimization is utilized with the aim of 
integrating the existing reliability analysis methods into 
the MDO framework in [9]. Concurrent subsystem 
optimizations were proposed in [10-12] and 
collaborative reliability analysis methods were used [13] 
to search for the Most Probable Point (MPP). Sequential 
Optimization and Reliability Assessment (SORA) 
method for RBMDO was proposed in [14]. From design 
optimization, SORA is based on the idea of decoupling 

reliability analysis. Using the MPP obtained from the 
previous iteration, the constraint in deterministic 
optimization is modified to make sure that the MPP of 
the current iteration falls into the feasible region. A new 
design point is obtained and followed by reliability 
assessment to check the feasibility of each reliability 
constraint at the new design point after solving the 
deterministic optimization. Generally, the whole process 
will converge in a few iterations. 

However, most existing RBMDO methods are only 
able to deal with uncertainty based on the probability 
theory. In many practical engineering designs, both 
Aleatory Uncertainty (AU) and Epistemic Uncertainty 
(EU) are associated with design inputs. AU include 
stochastic uncertainty, irreducible uncertainty, inherent 
uncertainty, and variability. The design variables with 
AU can be treated as random variables. They may be 
modeled with probability theory. EU represents 
reducible uncertainty and subjective uncertainty. EU 
caused by lack of knowledge can be modeled with 
possibility theory. The design variables with EU can be 
treated as fuzzy variables [15-16]. The challenge is how 
to efficiently propagate the effect of AU and EU 
respectively in the context of multidisciplinary analysis 
and design. Up to now, when both AU and EU exist in 
inputs, inputs with EU are characterized as random 
variables in MDO, and their distributions are inferred 
from the limited data, and then RBMDO is carried out 
to find the optimum design. It has been pointed out in 
[17], in singular disciplinary, the optimum design 
obtained with the above method may be unbelievable 
and unsafe. Results may be even worse because of 
coupling of multiple disciplines. In [18], both types of 
uncertainty are considered in singular discipline design 
based on the idea of conditional possibility of failure. A 
method of Maximal Failure Search (MPS) was 
proposed. As a result, the design problems become more 
complicated in MDO. Few works have been done in this 
situation. Furthermore, both discrete and continuous 
variables may co-exist in practical engineering design. 
So far, almost all existing works focus on MDO 
assuming continuous variables. As not only continuous 
variables but also discrete variables should be 
considered in practical engineering design, methods 
need to be developed to take these features into account. 

This paper proposes a formulation of RFCDV-
MDO, a method of RFCDV-MDO in the framework of 
SORA called RFCDV-MDO-SORA, and a hybrid 
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RFCDV-MDO-SORA 

discrete-continuous algorithm to deal with discrete-
continuous optimization problems. This method has the 
advantage that AU and EU can be measured using 
probability theory and possibility theory, respectively. 
Meanwhile discrete and continuous variables can be 
considered in MDO problems. A mathematical example 
and a pressure vessel design problem are used to 
demonstrate the application of the proposed method. 
The advantages of the proposed method are compared to 
the RBMDO-SORA. 

The reminder of this paper is organized as follows. 
In Section 2, fundamental analysis of reported 
probability/possibility models is given. In Section 3, the 
formulation of RFCDV (random/fuzzy/continuous/ 
discrete variables) Multidisciplinary Design 
Optimization (RFCDV-MDO) is provided. In Section 4, 
the procedure of the RFCDV-MDO-SORA is 
interpreted in detail, subsequently the formulation 
mentioned in this method is proposed. The algorithm is 
proposed in Section 5. A mathematical example and a 
pressure vessel design problem are used to verify the 
effectiveness of the RFCDV-MDO-SORA in Section 6, 
followed by conclusions in Section 7. 

2. Fundamental analysis 

AU and EU are treated as random and fuzzy variables, 
respectively. In [18], the case in which all random and 
fuzzy variables are continuous is discussed in a single 
discipline. Suppose that the random variables Xr  are 

subjected to the joint probability density function 
( )

r rfX X ; the fuzzy variables X f  have the membership 

function ( )
f fX X  and the failure mode is 

( , ) 0r fG x x . 

The possibility of failure is computed as follows. 
Firstly we assume that the fuzzy variables are fixed at 
X xf f . The conditional probability of failure is 

evaluated as  
( , ) 0

( )X
x x

X x x x
r

r f

f f f r r

G

P f d


   . The 

conditional possibility of failure is set to be equal to this 
conditional probability of failure. At last, the possibility 
of failure is computed by  

 
 

: ( , ) 0

sup min ( ), ( )

       sup min ( ), ( )

      sup min ( ) , ( )  

X
x

X
x

X X
x x x x

X x x

X x x

x x x

f
f

f
f

r f
f

r r f

f f f f f

f f f f

r r f

G

P

f d


      

    

      
    



 

We have also assumed that all random variables and 
random parameters are mutually independent, and all 
fuzzy variables and fuzzy parameters are non-
interactive. 

The fuzzy discrete variable is the fuzzy variable 
which can only take a series of integers or some special 

values. For example, if 
0.6 0.8 1 0.8 0.6

4 5 6 7 8fdiX       

and the failure value is set as 0.0001, in possibility 

analysis, fdiX  can only take one of (4,5,6,7,8) . 

In the following formulations, fx  denotes 

( , )fc fdx x  and fp  indicates ( , )fc fdp p . The possibility 

of failure can be calculated by the following steps. 
First, fix the fuzzy variables and parameters at 

( , ), ( , )f fc fd f fc fd x x x p p p , the conditional 

probability of failure can be calculated by 

 

, , ,
, : 0

, ,
1

,

( ) ( )

( ) ( )

X P
x x x

x p
p p p

X P

X x P p

x p x p

x p

rc rc
k

rc rd f
rc rc k

rc rd f

rd rd

f f f f f

rc rc rc rc
N

G

k
k k
rd rd

P

f f d d

F F

 
  
 



 

 
    
 
   




 

where N  stands for the number of all possible 

combinations of rdx  and rdp . 

Second, set the possibility of failure to be the same 
as the calculated probability of failure. Note that 
possibility is an alterative measure when the actual 
probability is difficult to compute. So if there exists the 
probability, one can set the possibility to be the same as 
the probability [18]. 
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 
 

,
,

,
,

, 1 , , ,
, : 0

, ,

sup min ( , ), ( , )

     sup min ( , ), ( , )

     sup min { ( ) ( ) ( )

X P
x p

X P
x p

X P X
x p

x x x
x p

p p p

X x P p x p

X x P p x p

x p x p x

f f
f f

f f
f f

rc rc rd
kf f

rc rd f
rc rc k

rc rd f

f f f f f f f f

f f f f f f f

N
k

rc rc rc rc rd
k

G

P

f f d d F
  

  
 

       

     

   ,( )},  ( , )  P X Pp x p
rd f f

k
rd f fF

  
            

 (1) 

It is impractical to calculate the sum in Eq. (1) using 
the analytical method directly. To resolve this 
difficulty, Eq. (1) can be written as: 

  ,
( , ), 1, , ,

, : 0
, ,

sup min max ( ) ( ) ( ) ( ) , ( , )
rc rc rd rd f f

rd rd kf f
rc rd f

rc rc k
rc rd f

N
k k

f rc rc rc rc rd rd f f
k

G

f f d d F F
 

  
 

    
                               

 X P X P X Px px p
x x x

x p
p p p

x p x p x p x p
            (2)  

where N  stands for the number of all possible 

combinations of rdx  and rdp . 

The value of  
1

( ) ( )
rd rd

N
k k
rd rd

k

F F


 X Px p  can be obtained 

initially in design. It is the sum of probabilities of all 
combinations of discrete random variables and 
parameters. 

To facilitate the calculation, all continuous random 
variables and random parameters should be transformed 
into the standard normal variables and parameters in U-
space using Rosenblatt transformation [14], and all the 
fuzzy variables and fuzzy parameters (discrete and 
continuous) should be translated into the standard fuzzy 
ones in V-space [18]. The standard fuzzy variable has 
the isosceles triangular membership function as: 

1        1 0
( ) 1 ,  

1            0 1
i i

i i
i i

v v
v v

v v

   
       

V  

This transformation can also be written as  
( ) 1        

1 ( )       
X

X

V
M

i i i
M

i i i

X X X

X X X

   
 

                  (3) 

where M
iX  is the maximal grade point of membership 

function of iX , defined as  max{ ( )}
i

M
i X iX x x  . 

The discrete fuzzy variables should also be transferred 
into the standard fuzzy variables V  using (3). 

Then, Eq. (2) can be written as:  

 
( , ), 1, , ,

, : 0
, ,

sup min max ( ) ( ) ( ) ( ) ,1 ( , )X P X Px pv vp
x x v

x p
p p vp

x p x p x p v v
rc rc rd rd

rd rd kf f
rc rd f

rc rc k
rc rd f

N
k k

f rc rc rc rc rd rd p
k

G

f f d d F F


 
  
 

    
                               


                       (4) 

If the right hand side of Eq. (4) is not larger than t , 

then the possibility of failure f t  . 

When given the design point at XM , there are three 

cases among all points satisfying the condition 
( , ) 0X PG  :  

(i) 1 ( , )v v p t
  ; 

(ii) 1 ( , )v v p t
  ; 

(iii) 1 ( , )v v p t
  . 

If the fuzzy part satisfies case (i) or case (ii),  

 
( , )

1, , ,
, : 0

, ,

min max ( ) ( ) ( ) ( ) ,1 ( , )X P X Px p
x x v

x p
p p vp

x p x p x p v v
rc rc rd rd

rd rd k
rc rd f

rc rc k
rc rd f

N
k k

rc rc rc rc rd rd p
k

G

f f d d F F


 
  
 

   
                        


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RFCDV-MDO-SORA 

Then, cases 1 and 2 do not affect the final result of f t  .If 

 
( , )

1, , ,
, : 0

, ,

max ( ) ( ) ( ) ( )
rc rc rd rd

rd rd k
rc rd f

rc rc k
rc rd f

N
k k

rc rc rc rc rd rd t
k

G

f f d d F F 
 

  
 

  
              
  

  

 X P X Px p
x x x

x p
p p p

x p x p x p

 whenever the fuzzy part satisfies case (3), then the 
possibility of failure f t  . 

There is a similar formulation in the method of 
Performance Measure Approach (PMA) to check 
whether or not f t   at the design point as follows:  

 
1

2

1

max    ( , , , , , )

. .    ( , )
( ) ( )

        ( , ) 1

X X P P

X P

X P

X P

X U V P U V

U U
x P

V V

rd rd

d c d c

t
c c N

k k
rd rd

k

t

G

s t
F F











 
 
  
   

 



(5) 
where ,rd rdX P  vary in all allowable combined modes.  

The solution is denoted by , , , , ,X X P PX U V P U Vd c d c
      . 

( , , , , , )X X P PX U V P U Vd c d cG        is the value of the 

performance measure at the MPPP. If the maximal 
value is not larger than zero, the current design point is 
feasible, otherwise infeasible. 

The above formulation is given for the singular 
discipline. When performing uncertainty analysis in the 
environment of MDO, there are extra computations for 
the linking variables to achieve consistency between 
multiple disciplines. In [14], two methods are adopted: 
one is that the consistency is maintained by using extra 
constraints; the other is that the values of the linking 
variables are obtained by solving an optimization 
problem of consistency. 

Although either method may be used, the number of 
disciplinary analyses in the former is less than that of 
the latter and the former is more stable than the latter 
[14]. So in this paper, the first method is adopted, i.e. 
consistency is treated as extra constraints.  

In our fundamental analysis in this section, the 
formulation of uncertainty analysis 
(probability/possibility analysis) in the environment of 
MDO is not provided, but it will be provided in Section 
4.  

3. RFCDV-MDO 

RFCDV-MDO deals with the uncertaint 
continuous/discrete design variables or parameters as 
quantities that can be measured with probability theory 
or possibility theory respectively. The formulation of 
RFCDV-MDO is 

( , , , )

( )

( ) ( ),

, ,

min ( , , , , , )

    . .       ( , , , , , ) 0

               ( , , , , , ) 0

               ,   ,

               

d d X X
d d X X P Y

d d X X P Y

d d X X P Y

d d d d d d

X X X

M M
s s

M M M M
s s

i
s i s i i i t

i M i M M M
s i s i i i

L U L U
s s s

M L M M U
s s s

f

s t G

g





    


   

  , ,, ,

               1, 2, ,

X X XM L M M U

i nd

 
 

 (6) 

4. RFCDV-MDO in the framework of SORA 
(RFCDV-MDO- SORA) 

Sequential Optimization and Reliability Assessment 
(SORA) is developed for Reliability Based Design 
Optimization (RBDO) originally and is introduced into 
MDO in [14]. SORA is further developed to deal with 
MDO with various kinds of variables having different 
uncertainties, named RFCDV-MDO-SORA utilizing the 
idea of SORA. The method is explained in details 
including strategy, procedure and the formulations. 

4.1. Strategy of RFCDV-MDO -SORA 

To solve the RFCDV-MDO problem efficiently, we 
adopt the following two technologies: 
(i) Performance Measure Approach (PMA). PMA is a 

method that is more efficient than evaluating the 
actual probability or possibility [14, 17, 18]. Some 
non-active probability or possibility constraints 
may dominate the whole computational process 
when directly evaluating their actual probability or 
possibility. This will decrease the computational 
efficiency. However, if we utilize PMA, the 
probability or possibility of failure is initially set to 
an acceptable value and treated as constraints. The 
maximum value of the probability or possibility 
constraint function (performance measure) is 
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Hong-Zhong Huang  Xudong Zhang  De-Biao Meng  Yu Liu  Yan-Feng Li 

calculated. In this paper, the failure mode is defined 
as ( ) 0G   . The probability or possibility 
requirement is met when the value is not larger than 
zero. 

(ii) Sequential Optimization and Reliability 
Assessment (SORA). The solution process of MDO 
under uncertainties is decoupled into the solution of 
MDO and the solution of probability/possibility 
analysis with the idea of SORA [14]. 
Probability/possibility analysis is executed after a 
deterministic MDO in each iteration. The mean 
value or maximum grade point of each design 
variable is obtained after solving the deterministic 
MDO. To analyze the feasibility of each 
probability/possibility constraint at the optimum 
and to obtain the MPPP and the value of 
performance measure of each probability/ 
possibility constraint probability/ possibility 
analysis is applied. If some of the 
probability/possibility constraints performance 
measures are larger than zero, the MPPPs relevant 
to all constraints are used to reconstruct a 
deterministic MDO for the next iteration to improve 
the feasible design. Based on this, the MDO 
problem and the uncertainty analysis are not nested 
but sequential. So the efficiency is improved and it 
is expected that the whole process will converge in 
a few iterations. 

4.2. Procedure of Establishment 

In this section, the procedure of RFCDV-MDO-SORA 
is illustrated step by step. 

Step 1: Set the initial value for  
(0) (0) ,(0) ,(0), , ,d d X XM M
s s ; 1k   

Step 2: Solve the deterministic MDO. To obtain the 

values of ( ) ( ) ,( ) ,( ), , ,d d X Xk k M k M k
s s  is the aim of solving 

the deterministic MDO. Because there is no information 
about the MPPPs in the first iteration, the MPPPs are set 

to be equivalent to ,(0) ,(0), ,X X PM M M
s . Deterministic 

variables, the mean value or maximum grade point of 
each random or fuzzy continuous or discrete variable 
are the variables in the deterministic constraints. 

However, constraints in the deterministic MDO are 
modified with the MPPPs obtained in the previous 
iteration when the requirements of 
probability/possibility constraints are not all satisfied 
from the second iteration. 

Step 3: Probability/possibility analysis. First, the 
continuous random variables and the continuous 
parameters are transformed into standard normal ones in 
U-space using Rosenblatt transformation; meanwhile all 
fuzzy variables and fuzzy parameters whether 
continuous or discrete are transformed into standard 
fuzzy ones in V-space using Eq. (3). Then to check the 
feasibility of each probability/possibility constraint at 
the design point obtained in Step 2 , 
probability/possibility analysis is carried out. And the 
results are MPPP and performance measure at MPPP 
corresponding to each probability/possibility constraint. 

Step 4: Check convergence. If the requirements of 
probability/possibility constraints are all satisfied and 
the value of the objective is stable 

   ( 0, 1 ~ ; 1 )iG i nd f k f k      , where   is an 

arbitrary small positive constant, stop the process of 
solution; otherwise set k=k+1 and go to Step 2 with the 
MPPPs obtained in Step 3. 

If the requirement of the probability/possibility 

constraint ( )iG  is not satisfied ( )( 0)iG  , then the 

MPPP ,( ),( 1) ,( ),( 1) ,( ),( 1), ,X X Pi k i k i k
s
       obtained from the 

probability/possibility analysis in iteration k-1 will be 
used to modify the constraint in the kth deterministic 
MDO. To ensure the feasibility of the 
probability/possibility constraint, the kth MPPP should 
fall into the deterministic feasible region. Let S  be the 
shift vector. The deterministic constraint in the kth 

MDO is modified as: ( ) ( ) 0i MG  X S . 

In this paper, two methods of using shift vectors are 
used. The first method is based on the idea of the SORA 
in [14] as: 

    ,S S Si i
c d  

   , *, ,( 1),( 1)S X Xi k i kM k
c c c

   
   , *, ,( 1),( 1)S X Xi k i kM k
d d d

   
where cS  indicates the shifts of variables with 
uncertainty, whose mean value or maximum grade point 
is continuous; while dS  indicates the shifts of the 
variables with uncertainty, whose mean value or 
maximal grade point is discrete.  

The second shift vector is constructed as:
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RFCDV-MDO-SORA 

    
   

 

   

 

, *, ,( 1),( 1)

1
*, ,( 1) *, ,( 1),( 1) ,( 1)

1 1 1,

*, ,( 1),( 1) ,( 1)

1 1

,

    ( ) 0      ( )

     ( ) 0  (

S S S

S X X

X X X X
S

X X X

i i
c d

i k i kM k
c c c

j j j
i k i kM k M k

ih d d ih d d ih
h h hi k

d j j
i kM k M k

ih d d ih d
h h

if and

if and




  

  

 

 



 

       


       

  

   
1

*, ,( 1)

1

)X
j

i k
d ih

h










   


where ,( 1) *,( 1)( )X XM k k i

d d
   indicates the ith component of 

*X XM
d d , 1 2, , , , ,i i ij in     are the discrete 

increments from ,( 1)M k
d

X  when the value of 
,( 1) *,( 1)( )X XM k k i

d d
   is larger than zero, 

1 2, , , , ,i i ij in     are the discrete decrements 

from ,( 1)M k
d

X when the value of ,( 1) *,( 1)( )X XM k k i
d d

   is 

less than zero. The values of the MPPPs ,( ),( 1)i k
i
 P  

directly substitute ( )i
iP  in the probability/possibility 

constraint. The probability/possibility constraint is 
modified into: 

( ) ,( ),( 1) ( )( , , , , , ) 0d d X S X S P Yi M M i k i
s i s s i i i iG  

    . 

Fig. 1 shows the flowchart of the RFCDV-MDO-
SORA approach. The following are the formulations for 
the deterministic MDO and the probability/possibility 
analysis.  

4.3. Formulations for deterministic RFCDV-
MDO and probability/possibility analysis 

The deterministic RFCDV-MDO model of the kth 
iteration can be expressed as follows. 

 , , ,

( ) ,( ),( 1) ,( ),( 1) ,( ),( 1) ,( )

( ) ( ),

min ( , , , , , )

     . .     ( , , , , , ) 0

               ( , , , , , ) 0

               1, 2, ,

        

M M
s s

M M M M
s s

i i k i k i k i
s i s i i i

i M i M M M
s i s i i i

M
ij

f

s t G

g

i nd

y

      
 










d d X X
d d X X P Y

d d X X P Y

d d X X P Y


( ),

,( ) ,( ) ,( ),( 1) ,( ),( 1) ,( ),( 1) ,( )

( , , , , , )  

        , 1, 2, , ,

        ( , , , , , )

        , , 1, 2, , ,

        ,   ,  

    

M i M M M
ij s i s i i i

i i i k i k i k i
jm jm s i s j j j

L U L U
s s s

y

i j nd i j

y y

i j m nd j m



        


 



 

   

d d X X P Y

d d X X P Y

d d d d d d





, , , ,    ,M L M M U M L M M U
s s s   X X X X X X

 (7) 

The equality constraint for consistency among 
disciplines given in the above model can be modified 

using ,( ),( 1) ,( ),( 1) ,( ),( 1), ,i k i k i k
s j j
     X X P  into the following 

form:  
,( ) ,( ) ,( ),( 1) ,( )( , , , , , )d d X S X S P Yi i M M i k i

jm jm s j s s j j j jy y    
  

. 
The probability/possibility analysis model under the 

environment of MDO can be expressed as 

( ) ( ) ( ) ( )
, , , ,,

( ) ( ) ( )( ) ( )

( ) ( ) ( )
, , , ,

, , , ,

, , , ,

( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , , , , ,

( ) ( ) (
, , , ,

max ( , , , , ,

, , , , , , )

. .  ( , ,

X X X

p, pX

X X
U X V U
X V U P V

X X p p

X X p

d d U X V

U X V U P V Y

U U U

i i i i
s c s cs d

i i ii i
cd d

i i i
i s s c s d s

i i i i i i i
i c i d i i c i d i i

i i i
s c c c

G

s t

 
 
 
 



)

2

( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( )
, , , ,

( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , , , , ,

)

      ( , , 1

   ( , , , , ,

, , , , , , )

1, 2, , ;  1,2, , ;  1, 2, , ;  j m

X X p

X X

X X p p

V V V

d d U X V

U X V U P V Y

t

i i i
s t

i i i i i
jm jm s j s c s d s

i i i i i i i
j c j d j j c j d j j

y y

i nd j nd m nd










 



     

 (8) 

t  is equal to 

 
1

1

( ) ( )X Px P
rd rd

t
N

k k
rd rd

k

F F





 
 
 
   


. 

The values of ,d ds  are obtained from the 

deterministic RFCDV-MDO. The solutions of the 
uncertainty analysis problem are MPPPs represented by 

,( ) ,( ) ,( ) ,( ) ,( ) ,( ) ,( ) ,( ) ,( )
, , , , ,( , , , , , , , , )X X X X P PU X V X U V U P Vi i i i i i i i i
s c s d s d c c d

           

( 1, , )i nd   and the performance measures at these 
MPPPs. Then the MPPPs in the X-space are obtained 
using Rosenblatt transformation and Eq. (3). The 
constraints in the deterministic MDO are modified using 
MPPPs when the requirements of probability/possibility 
constraints are not all satisfied. 

To deal with the discrete-continuous optimization 
problem, an algorithm is developed based on the 
algorithms of MDOP and MDOD [19-20]. 
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start

setting the initial solutions

 calculating the initial MPPs 

in every reliaility constraints

       0 0 , 0 , 0, , ,d d X XM M
s s

           

   

*, , 0 , 0 *, , 0 , 0

*, , 0

,

  =1~ ,  1

X X X X

P P

i M i M
s s

i M i nd k

 

 

    ,S S Si i
c d

   , *, ,( 1),( 1)S X Xi k i kM k
c c c

 
   , *, ,( 1),( 1)S X Xi k i kM k
d d d

 

   , *, ,( 1),( 1)S X Xi k i kM k
c c c

 

 

 

 

 

 

*, ,( 1),( 1)

1

1
*, ,( 1),( 1)

1 1,

*, ,( 1),( 1)

1

1
*, ,( 1),( 1)

1 1

    ( ) 0   

   ( )

     ( ) 0 

 ( )

X X

X X
S

X X

X X

j
i kM k

ih d d
h

j j
i kM k

ih d d ih
h hi k

d j
i kM k

ih d d
h

j j
i kM k

ih d d ih
h h

if

and

if

and








 








 


  




    
 
   

       




 



 

    ,S S Si i
c d

shif vector 1 shift vector 2

or

deterministic optimization

 , , ,

( ) ,( ),( 1) ,( ),( 1) ,( ),( 1) ,( )

( ) ( ),

( ),

min ( , , , , , )

. .  ( , , , , , ) 0

( , , , , , ) 0

1,2, ,

( , , , , , )  , 1, 2, , ,

d d X X
d d X X P Y

d d X X P Y

d d X X P Y

d d X X P Y

M M
s s

M M M M
s s

i i k i k i k i
s i s i i i

i M i M M M
s i s i i i

M M i M M M
ij ij s i s i i i

f

s t G

g

i nd

y y i j nd

      
 










 




,( ) ,( ) ,( ),( 1) ,( ),( 1) ,( ),( 1) ,( )

, , , ,

( , , , , , )

, , 1, 2, , ,

,   ,  

,

d d X X P Y

d d d d d d

X X X X X X

i i i k i k i k i
jm jm s i s j j j

L U L U
s s s

M L M M U M L M M U
s s s

i j

y y

i j m nd j m

        






 

   

   



, ,, , ,d d X Xk k M k M k
s s

reliability analysis

( ) ( ) ( ) ( )
, , , ,,

( ) ( ) ( )( ) ( )
,

( ), ( ), ( ),
, , , ,

, , , ,

, , , ,

( ), ( ), ( ), ( ), ( ), ( ), ( )
, , , , , , , ,

max ( , , , , ,

, , , , , , )

. .  (

X X X

p pX

X X
U X V U
X V U P V

X X p p

X

d d U X V

U X V U P V Y

U

i i i i
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Fig. 1. Flowchart of RFCDV-MDO-SORA 
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RFCDV-MDO-SORA 

5. Algorithm 

In the optimization formulations in Section 4, there are 
both inequality and equality constraints. An algorithm is 
developed to address the optimization problem of this 
type. 

First, the design variables are arranged in the 
following sequence: [  ]X X Xd c  where 

1 2=[ , , , , , ]Xd mq mdx x x x  , 1 2[ , , , ]Xc md md mx x x   , 

1 2, , , mqx x x  are discrete equally spaced variables; 

1, ,mq mdx x   are discrete and unequally spaced variables; 

and 
1 2, , ,md md mx x x    are continuous variables. 

Secondly, the equality constraints are transformed 
into inequality constraints. For example: if the equality 
constraint is ( ) 0Xh  , then the corresponding inequality 

constraint is ( ) 0Xh  . Replace ( ) 0Xh  with ( ) 0h X  in 

the original optimization and modify the objective 
function by adding a penalty term which is equal to the 
square of the inequality constraint multiplied by a 
penalty coefficient. 

5.1.  Definitions 

Definition 1: Discretization of continuous variable 
transforms each continuous variable into a discrete 
variable meeting the specified precision requirement. In 
this paper, the continuous variable is discretized in 
equal distance.  

Definition 2: The hybrid discrete point is denoted by 
D m D C  X E E E , where ED is the value space 

composed of all discrete variables and CE  composed of 
discretized values of all continuous variables. 

Definition 3: The discrete unit area of point DX , 
denoted by DUN   X , is defined as 

   

     

D
D D i i i i i i

C
i i i i i i

x x x x
UN

x x x x 

                    

E
X X

E
 

where 
i
  and 

i
  are discrete increments of ix  along 

the negative and the positive directions, respectively. 
i  

is the distance of discretization of ix  which is a 

continuous variable. 
Definition 4: The discrete feasible area of 

constraints   is the aggregation of hybrid discrete 
points which satisfy the requirements of the constraints. 

Definition 5: The local discrete optimum, X , is a 
hybrid point and  X , among all the points 

DUN    X X ,  we have ( ) ( )f f X X .  

Definition 6: The global discrete optimal point, X , 
is a hybrid point and  X , among all the points 
X ,  we have ( ) ( )f f X X . 

Definition 7: The matrix of discrete values. After the 
discretization of continuous variables, all design 
variables are treated as discrete variables. Suppose the 
number of design variables is m  and the maximal 
number of discrete values among all discrete variables is 
t . The matrix is 

11 21 1

12 22 2

1 2

m

m

t t mt

q q q

q q q
Q

q q q

 
 
 
 
 
 




   


 

where 
, 1 , , 1i j i j i jq q q   . If the number of variables ix  is 

l  which is less than t , the values of 
, ( 1 )i jq l j t    is 

equal to ,i lq . 

Definition 8: A discrete active constraint is such a 
constraint such that if each component of the distance, 
which is from the current point to the constraint along 
the current search direction, is less than the increment of 
each variable. The increment is 

i
  if the component of 

the search direction is less than zero, otherwise is 
i
  

[19-20]. 

5.2.  Hybrid discrete-continuous algorithm 

The hybrid discrete-continuous algorithm is proposed in 
Section 5.2.1. The critical techniques used in this 
algorithm are interpreted in Section 5.2.2. 

5.2.1. Hybrid disrete-continuous algorithm 

Step 1: Treat all variables including discrete variables as 
continuous variables first; solve the optimization 
problem using a continuous search algorithm, for 
example sequential quadratic programming (SQP). The 
optimum point is denoted by 

c
X . Set a vessel to save the 

new point. 
Step 2: Discretize continuous variables, construct 

the matrix Q . Round the optimum point 
c
X  to the 

discrete point ( )kX . 
Step 3: One-dimensional search. Starting from ( )kX , 

calculate the sub-gradient at ( )kX , find the step size for 
one-dimensional search. If there exists a better point 

( 1)kX , then do one-dimensional search again by starting 
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Hong-Zhong Huang  Xudong Zhang  De-Biao Meng  Yu Liu  Yan-Feng Li 

from the new point, 1k k  ; otherwise go to step 4. 
During this process, when a new point is obtained, the 
point and the values of the objective function and the 
constraints are all saved into the vessel. When the 
values of the objective function and the constraints at a 
new point need to be calculated, the point is firstly 
compared with the points saved in the vessel. If they are 
the same point, values of the objective function and the 
constraints are set as the same as those saved in the 
vessel, otherwise the values of its objective and the 
constraints need to be calculated and saved in the vessel. 

Step 4: Adjacent point-checking in discrete unit area 
of ( )kX . If there exists a better point ( 1)kX , 1k k   go to 
step 3; otherwise go to step 5. The same strategy in Step 
3 is adopted in this process. 

Step 5: Fixing the discrete part of the optimum, start 
from the continuous part of the optimum and solve the 
optimization problem based on the algorithm used for 
the continuous optimization. Stop. 

5.2.2. Critical techniques 

(i) Round 
Step 1: Directly round the optimum point Xc

  to the 

nearest discrete point ( )X k . 
Step 2: Check all the inequality constraints in the 

original optimization problem including the inequality 
constraints transformed from equality constraints at 

( )X k . If all inequality constraints are satisfied, stop; 
otherwise the violated constraints ( )Xig  are included in 

the set of If . 

Step 3: Calculate the gradient of the constraints 
( )  1, ,Xi Ifg i n  , where Ifn  is the number of violated 

constraints in the If  set. The unit gradient ui  is defined 

as 
( )

( )

X
u

X
i

i
i

g

g





.  

Step 4: Calculate the normalized value ( ( ))Xnig  of 

constraint ( )  1, ,Xi Ifg i n  :  

( )
( )

( )

X
X

X
i

ni
i

g
g

g



. ( )   1, ,Xni If

i

w g i n   . 

Step 5: Calculate the weighted coefficient i :  

( )Xi
ni

w

g
  , in this formulation 

 4
1 ( )   0.00001 ( ) 0.9

1
( )                     ( ) 0.9

2 ( )

1                          ( ) 0.00001

X X

X X
X

X

ni ni

ni ni
ni

ni

g g

g g
g

g

   

  
 

. 

Step 6: Calculate the feature vector dw : 

 1, ,dw ui i If
i

i n   , its unit vector 
dwd
dw

 . 

Step 7: Using the sign of each component of d  to 
adjust ( )X k , then ( 1)X k  is obtained; 1k k  , go to Step 
2. 

Step 3 to Step 6 are based on [19] with the part that 
is different from [19] is that the direction is used to 
directly round instead of the direction for searching. 

 
(ii) Construct the sub-gradient 
The sub-gradient of the objective function is defined as 

1 1

[ , , , , , ]T

md md m

f f f f
f

x x x x

    
   

   

For the discrete variables: 
( ) ( )

    

,    =1,2, ,
( ) ( )

   

upi i
i i

i

upi ii
i i

i

f e f
x x

xf
i md

f f ex
x x

x

           
 

X X

X X
  

where up
ix  is the upper boundary of ix , ie  is a m  

dimensional unit vector and the ith component is one. 
For the continuous variables: 

( ) ( )
    

,    = 1, ,
( ) ( )

   

X X

X X

upi i
i i

i

upi ii
i i

i

f e f
x x

f
i md m

f f ex
x x







        


  

The hybrid negative sub-gradient direction d  is 
defined as: 

,   1, ,d i
i

f
x

d i m
D

 
     

 
 

  where D  is 

max ,   1, ,
i

f
i m

x

 


  

The sub-gradient of the constraint function is 
similarly defined as that of the objective function. 

 
(iii) Step size 

Suppose the current point is ( )kX , then the new point is: 
( 1) ( ) ( )X X dk k k

ka   . 

Published by Atlantis Press 
      Copyright: the authors 
                   102

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

lb
er

ta
] 

at
 1

3:
05

 1
2 

O
ct

ob
er

 2
01

2 



RFCDV-MDO-SORA 

 

Expanding the constraint ( )ig X  at ( )kX : 
( 1) ( ) ( ) ( 1) ( )( ) ( ) ( )( )k k T k k k

i i ig g g   X X X X X  

To ensure ( 1)( ) 0k
ig  X , we need to have 

( )

( ) ( )

( )

( )

k
i

k iT k k
i

g
a a

g
  


X

X d
, because the constraint with 

( ) ( )( ) 0T k k
ig X d  can prevent the decrease of the 

objective function. Thus, only the constraint with 
( ) ( )( ) 0T k k

ig X d  is considered. Set  min , 0k i ia a a   

[19]. 
 

(iv) One-dimensional search 
Step 1: Set the search precision 0   and the reduction 
proportion (0 1)   . 

Step 2: Calculate ka . 

Step 3: Calculate the new point ( 1)kX : 
( ) ( )k k

ka X X d , ( 1)kX  is the direct round result of X . 

Step 4: Check the feasibility of ( 1)kX : if 
( 1) ( 1) ( )( ) 0  1, , ; ( ) ( )k k k

i ueq eqg i n n f f    X X X , then go 

to Step 2; otherwise 
k k ka a a  , go to Step 3 until 

ka  . ueqn  and eqn  are the numbers of inequality and 

equality constraints in the original problem, 
respectively. 

 
(v) Adjacent point-checking  

Using the one-dimensional search technique, in most 
cases, we get only a local optimum point. Then the 
adjacent point-checking technique in [19] is used. First 
the point-checking direction   is determined as: 

1 1 2 2

1 2
1 2

1

2

1 1
  

1

T

T

i

s s

s s

s G f G f

G
s f

G f

G g
k

  

 

 

 

    
 

 

  

 

where k , 
ig  are the number and the sub-gradient of 

the discrete active constraints, respectively. 
Step 1: Calculate the direction  . 
Step 2: Do one-dimensional search along  .  
Step 3: If 

( 1) ( 1) ( )( ) 0  1, , ; ( ) ( )k k k
i ueq eqg i n n f f    X X X , then 

stop; other go to Step 4. 
Step 4: Adjacent point-checking using the method of 

[20]. During this process a better point is defined as 

( 1) ( 1) ( )( ) 0  1, , ; ( ) ( )k k k
i ueq eqg i n n f f    X X X , ueqn  and 

eqn  are the numbers of inequality and equality 

constraints in the original problem respectively. 

5.3.  Analysis of algorithm 

The discrete one-dimensional search starts at a point 
which is the result of rounding at the optimum of the 
continuous optimization. Generally the discrete global 
optimal point can not be attained by the one-
dimensional search. The adjacent point-checking 
technique is conducted then among the discrete unit area 
to find a new and better point with the aim of escaping 
from the local optimum. After this process has been 
repeated several times, the optimum point obtained is 
the best point in all discrete points of the discretized 
problem. Finally the values of the original discrete 
variables are fixed at the relevant values of that 
optimum. A continuous optimization is carried out 
while starting at the continuous part of that optimum.  

6. Examples 

In this section, the proposed RFCDV-MDO model and 
the solution approach of the RFCDV-MDO model 
within the framework of Sequential Optimization and 
Reliability Assessment are demonstrated using a 
mathematical example and an engineering design 
example. 

6.1.  Mathematical example for RFCDV-MDO 

This mathematic example is based on from the one in 
[14]: 

1 2

2 2 2
1 2

( , , )

1 1 1 2

2 1 2 2

1 2

min ( , ) ( )

  . .    { ( , ) 0}

          { ( , ) 2 0}

           0 , , 5

s

M M
s s

d d d

s s t

s s t

s

f d x d d

s t G x d x d d

G d x d d x

d d d




   

       
       
 

d x

d x
d x

 (9) 

1 2, ,sd d d  are design variables and take values as 

multiples of 0.01 in this formulation. 
0.24  0.2

~   0       0.6

0.24    0.2
s

p

x p

p

 
 
 

, 1 ~ (5,0.5)x N ,  

where ( , )N    stands for a normal distribution with the 

mean value of   and the standard deviation of  . The 

triangular membership function of 2x  is denoted by 
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Hong-Zhong Huang  Xudong Zhang  De-Biao Meng  Yu Liu  Yan-Feng Li 

(0.7,1,1.3) . In ( , , )M M Mx dt x x dt  , the value Mx  is 

the maximal grade point of membership function of x ; 

the value dt  is the deviation on each side from the 

maximal grade point. The problem is decomposed into 
two subsystems as shown in Fig. 2 following the same 
approach as used in [14]. 

 

It should be noted that, sx , 1x , 2x  are all design 

parameters but not design variables in this problem. It is 
because the mean value or the maximal grade point is 
fixed.  

The formulation of the deterministic MDO is: 

1 2

2 2 2
1 2 1 2

( , , )

,(1) ,(1) ,(1)
1 1 1 21

,(1) ,(1) ,(1)
12 1 21

,(1) ,(1) ,(1)
21 2 12

,(2) ,(2) ,(2)
2 2 12 2

,(2)
12

min ( ) ( )

. .   ( 2 2 ) 0

(5 5 3 4 ) 0

s

M
s s

d d d

s s

s s

s s

s s

s

f f f d x d d

s t G x d x d y

y d x d y

y d x d y

G d x d y x

y d

  

  

  

  



     

     

   

   

     

 ,(2) ,(2)
1 21

,(2) ,(2) ,(2)
21 2 12

1 20 , , 5

s

s s

s

x d y

y d x d y

d d d

 

  

  

   
 

 (10) 

The optimal point 1 2( , , )sd d d  is then used in the 

probability/possibility analysis. First, all continuous 
random variables/parameters need to be transformed 
into independent continuous normal random 
variables/parameters, the fuzzy continuous/discrete 
variables/parameters into standard fuzzy 
variables/parameters. 

The formulation for searching for the MPPP of 1G  

is given as: 

(1) (1)(1)
1 2

(1) (1)
1 1 1 1 1 21

( , , )

(1)
1 2

(1)
2

(1) (1)
12 1 21

(1) (1)
21 2 12

max ( ) 2 2

. .  

      1

s

M
s s

x u v

t

t

s s

s s

G x u d x d y

s t u

v

y d x d y

y d x d y








       



 

   

   

 (11) 

where 
t  is equal to 

 
1

1
s

t
N

k
X s

k

F x





 
 
 
 
  


. The variable (1)
sx  

is discrete and takes only a few allowable values. 

The solution MPPP ,(1) ,(1) ,(1)
1 2( , , )sx u v    is then 

transformed into the MPPP ,(1) ,(1) ,(1)
1 2( , , )sx x x    in the X-

space. Similarly, the formulation for searching for the 
MPPP of 2G  can be derived while the solution is 

denoted by ,(2) ,(2) ,(2)
1 2( , , )sx x x   . If the requirements of 

probability/possibility constraints are not all satisfied, 
the MPPP is used to reconstruct the deterministic MDO 
for the next iteration. 

The stopping criterion is  

   0, 1 ~ 2; 1 0.0001iG i f k f k     .  

To carry out the proposed algorithm, the ranges of 
the linking variables need to be firstly calculated, and 
then be discretized. During the solution process, 

(1)
2 1 tv 


   is used as the stopping criterion instead 

Subsystem 1 Subsystem 2

1 1

1 1

( )

( )

( )

( )

s s

s s

d

d

x

x






d
d
x
x

1 1 1 21

2 2
1 1

( 2 2 )

0.5( )

s s

M
s s

g x d x d y

f d x d

    

  
2 2 12 2

2 2
2 2

(5 5 3 4 )

0.5( )

s s

M
s s

g d x d y x

f d x d

    

  

12 1 21s sy d x d y   

21 2 12s sy d x d y   

2 2

2 2

( )

( )

( )

( )

s s

s s

d

d

x

x






d
d
x
x

 

Fig. 2. The mathematical problem and its decomposition 
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RFCDV-MDO-SORA 

of (1)
2 1 tv 


  . Theoretically this will result in a 

conservative solution. 
The results of RBMDO with ~ (0,0.3)sx N , 

1 ~ (5,0.5)x N , 2 ~ (1,0.1)x N , RBMDO solved by 

SORA, and RFCDV-MDO-SORA are shown in Table 
1. 

The probability coefficient ( 3)   in RBMDO is 

equivalent to the possibility coefficient 
( 1 ( ) 0.0013)t     in RFCDV-MDO. Columns 

two to five in Table 1 are the results of design variables 
and the objective function. Considering the discrete 
requirements in design variables, RFCDV-MDO-SORA 
delivers a relatively more conservative design. Both 
constraints at each optimal design point meet the 

requirements of probability or possibility. Columns 
eight to nine are iterations of the disciplines 1 and 2. 
The disciplinary iterations in RFCDV-MDO-SORA and 
RBMDO-SORA are much less than that in RBMDO. 
Because of the introduction of SORA, and RFCDV-
MDO-SORA can efficiently solve RFCDV-MDO 
problems like SORA in RBMDO. The whole process 
converges in three iterations which is the same as 
SORA in RBMDO. Table 2 shows the process of the 
whole solution, where 1n , 2n  are the iterations needed 

in disciplines 1 and 2 respectively, 3n  is the iterations 

used in calculating the ranges of the link variables, 4n  is 

the number of iterations of disciplinary analysis needed 
in the proposed algorithm.

 

6.2.  Design of a pressure vessel 

In Fig. 3 the example of pressure vessel design shown is 
derived [21], in which the example is solved in a multi-
player formulation based on game theory. In Table 3, 
the nomenclature of this example is shown. Radius ( )R , 

length ( )L  and thickness ( )T  are the design variables. 

There are two parameters, namely, internal pressure 
( )P  and the tensile strength of the material ( )tS . The 

objective is to maximize the internal volume, while 
minimizing the weight. This problem is modified to an 
MDO problem in this analysis. 

 

 

 
By two design groups, and the coupled variables are 
thickness ( )T , length ( )L  and radius ( )R , the pressure 

vessel is designed. The multidisciplinary system and the 
notation used are given in Fig. 4. 

In this paper, T , R  are continuous random 
variables, and L  is a discrete random variable. 
Uncertainty descriptions of these design variables and 
parameters is shown in Table 4. 
 

Table 1.  Results of RBMDO, RBMDO-SORA and RFCDV-MDO-SORA 

 Design Variables Objective  Iterations  
ds d1 d2 f G1 G2 n1 n2 k 

RBMDO Optimum  
(βt=3) 

2.2500 2.2494 2.2499 15.1843 0 -0.050212 186600 186600 - 

RFCDV-MDO-SORA optimum  
(αt=0.0013) 

2.2500 2.2500 2.2500 15.1875 -0.0100 -0.4604 1800 1800 3 

Table 2.  Process of RFCDV-MDO-SORA 

Cycle Design Variables Objective  Iteration 

sd  1d  2d  f  1G  2G  1n  2n  3n  
4n  

1 1.6700 1.6700 1.6700 8.3667 1.7300 -0.4604 600 600 387 213 

2 2.2500 2.2500 2.2500 15.1875 -0.0100 -0.4604 600 600 387 213 

3 2.2500 2.2500 2.2500 15.1875 -0.0100 -0.4604 600 600 387 213 
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12 ( )TY

21 ( , )R LY

1 ( )TX 2 ( , )R LX

1 1( )Z v 2 2( )Z v

( , )tP SP

 

Fig. 4. System structure of the pressure vessel design problem 

 

Fig. 3. Pressure vessel design 

Table 3.  Nomenclature of the pressure vessel 
design problem 

W Weight of the pressure vessel 
V Volume, in.3 
R Radius, in. 
T Thickness, in. 
L Length, in. 
P Internal pressure of the vessel, Klb 
St Ttensile strength of the 

cylinder material, Klb 

circ  Circumference stress 

Table 4. Uncertainty descriptions of design variables and parameters  

Variables or 
Parameters 

Mean value Standard deviation Distribution Lower boundary
of mean value 

Upper boundary 
of mean value 

R  0.01 Normal 0.1 36 
T  0.01 Normal 0.5 6.0 
L    0.1 140 
St 40 4 Normal   
 Maximal grade 

point 
Deviation 
 

Membership 
function 

  

P 3.89 1.167 Triangular   
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Hong-Zhong Huang  Xudong Zhang  De-Biao Meng  Yu Liu  Yan-Feng Li 

Due to manufacture errors, the mean values of T , 
R  are multiple of 0.01, and that of L  is multiples of 
0.1. The practical dimension is subjected to 

( ,0.01)MN T , when the mean value of T  is MT . The 

case of R  is similar to that of T . According to the 
following distribution, length L  is discretely 
distributed: 

 
0.1 0.1

Pr 0.8           

0.1 0.1

M

M

M

L

L L

L


 



 
  
  

, ML is multiple of 0.1. 

Sharing design variables: s d . 

Sharing random/fuzzy continuous/discrete variables: 
 . 

Subsystem 1: 
Random variable:  1 TX . 

Input linking variables:    21 21,1 21,2, ,y y R L Y . 

Output linking variables:    12 12y T Y . 

Output: 

 1 1

3 2
1 21,1 21,1 21,2

3 2
21,1 21,1 21,2

4
( ) ( )

3
4

      ( ) ( )
3

N N N N N

N N N

Z v

v T y T y y

y y y

 

 



   

    

. 

In this subsystem 1, the objective is to minimize the 
weight which is equivalent to minimizing the relevant 
volume. Below are the constraints in Subsystem 1. 
The probability/possibility constraints are: 

 
 

11 21,1

12 21,1

5 0

40 0

t

t

G T y

G T y





    

     
. 

Subsystem 2: 
Random variable:  2 ,R LX . 

Input fuzzy and random parameters:  , tP SP . 

Input linking variables:    12 12y T Y . 

Output linking variables: 

   21 21,1 21,2, ,y y R L Y . 

Output:  2 2Z v . 3 2
2

4
( ) ( )

3
N N Nv R R L   .  

The objective is to maximize internal volume in this 
subsystem 2. The constraints in Subsystem 2 are given 
below. The probability/possibility constraints are 

 

21
12

22 12

0

2 2 150 0

t t

t

PR
G S

y

G L R y





 
     

 
      

. 

The objective is to minimize 1 2v v  with the 

possibility of failure 0.0013t  . The whole process of 

RFCDV-MDO-SORA with the first and second kinds of 
shift vector converges in three and four iterations, 
respectively. During the process, the starting points of 
the current iteration are set to be the optimal results of 
the previous iteration in order to improve efficiency. 
The probability/possibility constraint expressions at 
relevant MPPPs are less than zero which indicates that 
the requirements of all probability/possibility 
constraints are satisfied. The optimal results of RFCDV-
MDO-SORA and RBMDO-SORA are given in Table 5, 
and the process of RFCDV-MDO-SORA with the first 
or the second shift vector is given in Table 6. As shown 
in Table 5, the results of RFCDV-MDO-SORA are 
conservative compared with the results of RBMDO-
SORA considering the discrete design variables. As 
shown in Table 6, the optimal design obtained using the 
second kind of shift vector is more conservative than 
that of the first kind. The reason is that from the second 
iteration, the feasible area of the reconstructed 
deterministic MDO with the second kind shift vector is 
narrower than that with the first kind. The aim of the 
second kind of shift vector is to avoid the situation that 
some equality constraints especially with the even 
power could not be satisfied when there are discrete 
requirements on design variables and shiftiness of 
deterministic constraints. 

7. Conclusions  

This paper proposes a formulation of RFCDV 
(random/fuzzy/continuous/discrete variables) 
Multidisciplinary Design Optimization (RFCDV-
MDO), a solution method of the RFCDV-MDO model 
within the framework of Sequential Optimization and 
Reliability Assessment (RFCDV-MDO-SORA), and an 
algorithm to deal with discrete-continuous optimization 
problems. 
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Table 5. Results of RFCDV-MDO-SORA and RBMDO-SORA 

 Design Variables Objective  Iterations 
 TM RM LM V1 V2 G11 G12 G21 G22 n1 n2 

RBMDO-SORA 
Optimum (βt=3) 

5.2475 34.7100 69.9949 1.7822*105 4.4009*105 -8.3194 1.8666*10-11 -2.7477*10-11 8.6914*10-11 3428 3428 

RFCDV-MDO-SORA 
Optimum with the second kind  

of shift vector (αt=0.0013) 

6.0000 33.1600 71.4000 1.9615*105 3.9938*105 -3.0070 -0.7976 -0.0592 -0.0951 8375 8375 

RFCDV-MDO-SORA 
Optimum with the first kind  
of shift vector (αt=0.0013) 

6.0000 33.2300 71.3000 1.9658*105 4.0105*105 -3.0770 -0.4576 -2.0724*10-4 -0.0551 4712 4712 

 

 

Table 6. Convergence of optimization using RFCDV-MDO-SORA with the first and second kinds of shift vector 

 cycle TM RM LM V1 V2 G11 G12 G21 G22 n1 n2 
the second kind of shift vector 1 3.5000 36.0000 71.0000 1.2162*105 4.8451*105 -18.3470 -0.4576 24.0076 0.1849 8375 8375 

2 6.0000 33.1700 71.4000 1.9623*105 3.9967*105 -3.0170 -0.7876 -0.0508 -0.0751 
3 6.0000 33.1600 71.4000 1.9615*105 3.9938*105 -3.0070 -0.7976 -0.0592 -0.0951 
4 6.0000 33.1600 71.4000 1.9615*105 3.9938*105 -3.0070 -0.7976 -0.0592 -0.0951 

the first kind of shift vector 1 3.5000 36.0000 71.0000 1.2162*105 4.8451*105 -18.3470 -0.4576 24.0076 0.1849 4712 4712 
2 6.0000 33.2300 71.3000 1.9658*105 4.0105*105 -3.0770 -0.45476 -2.0724*10-4 -0.0551 
3 6.0000 33.2300 71.3000 1.9658*105 4.0105*105 -3.0770 -0.4576 -2.0724*10-4 -0.0551 
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RFCDV-MDO-SORA 

Two kinds of uncertainty, namely aleatory 
uncertainty and epistemic uncertainty, are considered in 
the MDO model. Because of the existence of both  
discrete and continuous random variables in the MDO 
problem, direct calculation of the probability of failure 
is too computationally extensive. If there are many 
discrete random variables and each of them may take 
many possible values, solving the problem becomes 
even more time consuming. Based on conditional 
possibility of failure, the possibility of failure is 
broadened to avoid directly solving the problem with 
integrals at too many combinations. 

The RFCDV-MDO is decoupled into deterministic 
MDO and probability/possibility analysis in RFCDV-
MDO-SORA. The whole computational process is 
sequential but not nested. For RFCDV-MDO-SORA 
with the first kind of shift vector, the values of their 
mean values or maximum grade points subtracting 
relevant MPPPs of the previous iteration are the shifts 
of continuous/discrete variables. With the second kind 
of shift vector, the values of their means or the maximal 
grade points subtracting the relevant MPPPs of the 
previous iteration are the shifts of variables whose mean 
values or maximal grade points are continuous. The 
shifts of variables whose mean values or maximal grade 
points are discrete can be expanded according to the 
values of their means or maximal grades subtracting the 
relevant MPPPs of the previous iteration and discrete 
increments or decrements. With the examples shown, 
RFCDV-MDO-SORA can solve RFCDV-MDO 
problems efficiently in a few iterations. It seems that the 
RFCDV-MDO-SORA with the first kind of shift vector 
is more efficient than that with the second kind of shift 
vector. However, the reason needs to be further studied.  

From the number of iterations of the disciplinary 
analysis in the two examples, we see that the hybrid 
discrete-continuous algorithm can solve the discrete-
continuous optimization problem efficiently. As the 
consistency requirements among disciplines are added 
as additional design variables, the size of the problem 
becomes much larger than that of the original 
optimization problem.  

Our future work will focus on developing more 
accurate measures to deal with these two kinds of 
uncertainty simultaneously in design inputs, construct 
more efficient frameworks to deal with RFCDV-MDO, 
and develop more efficient and accurate discrete-
continuous optimization algorithms. 

Nomenclature 

c: continuous design variable/parameter subscript 
d: discrete design variable/parameter subscript 
f: fuzzy design variable/parameter subscript 
g: common constraints 
i: discipline i subscript 
(i): discipline i superscript 
k: kth iteration superscript 
nd: the total number of disciplines 
r: random design variable/parameter subscript 
s: sharing design variable subscript 
v: standard fuzzy variables 
M: mean value or maximal grade point superscript 
X: design variable 
d: the vector of deterministic design variables, which 
may be discrete or continuous 
P: the vector of design parameters, containing random 
and fuzzy design parameters, which may be discrete or 
continuous 
U: the vector of standard normal random 
variables/parameters in the U-space corresponding to 
random continuous variables/parameters in the X-space 
V: the vector of standard fuzzy variables/parameters in 
the V-space corresponding to the fuzzy 
continuous/continuous variables/parameters in the X-
space 
X: the vector of uncertain design variables, containing 
random and fuzzy design variables, which may be 
discrete or continuous 
Y.i: the vector of coupling variables, input of discipline i 

( )iG : probability/possibility constraints of discipline i 
,( ),( 1)i k P : the vector of MPPP of P  in the ith discipline 

of the (k-1)th iteration 
,( ),( 1)i k X : the vector of MPPP in the ith discipline of 

the (k-1)th iteration 
,( )i
i

Y : the vector of linking variables, corresponding to 

the probability/possibility constraint in discipline i; 
*: the most probable/possible point (MPPP) superscript 
fXrc/fPrc: joint probability density function of random 
continuous design variables X/design parameters P 
FXrd/FPrd: joint cumulative distribution function of 
random discrete design variables X/design parameters P 

f f X P : membership function of fuzzy design 

variables X/design parameters P 

 ( , ) 0 tG   X P : failure possibility with the failure 

mode defined as ( , ) 0G X P  
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t : target possibility of failure 

t : target reliability index 
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