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The success of a new product depends on both engineering decisions (product reliability) and marketing decisions (price, warranty).
A higher reliability results in a higher manufacturing cost and higher sale price. Consumers are willing to pay a higher price only if
they can be assured about product reliability. Product warranty is one such tool to signal reliability with a longer warranty period
indicating better reliability. Better warranty terms result in increased sales and also higher expected warranty servicing costs. Warranty
costs are reduced by improvements in product reliability. Learning effects result in the unit manufacturing cost decreasing with total
sales volume and this in turn impacts on the sale price. As such, reliability, price and warranty decisions need to be considered jointly.
The paper develops a model to determine the optimal product reliability, price and warranty strategy that achieve the biggest total
integrated profit for a general repairable product sold under a free replacement-repair warranty strategy in a market and looks at
two scenarios for the pricing and warranty of the product. The model assumes that the sale rate increases as the warranty period
increases and decreases as the price increases. The maximum principle method is used to obtain optimal solutions for dynamic price
and warranty situations. Finally, numerical examples are given to illustrate the proposed model.

Keywords: Warranty cost, reliability, cumulative sales, warranty policy, maximum principle

1. Introduction

Products are becoming increasingly complex resulting in
customers often being uncertain about the performance of
these products. The willingness of a consumer to pay a high
price depends on he/she being convinced about product
quality. A warranty is seller’s assurance to a buyer that a
product is as has been represented. It may be condidered
to be a contractual agreement between buyers and sellers
that is entered into on the sale of the product (Blischke and
Murthy, 1996). A warranty can be viewed as a signal that
conveys information about product reliability and as such
it serves as an important marketing tool.

Servicing a warranty involves additional costs to the
manufacturer and this has an impact on the profit levels.
The warranty cost is a function of the product reliabil-
ity and can be reduced through the use of various tech-
niques to improve product reliability (such as reliability
improvement through development and redundancy pro-
cesses). However, this improvement generally involves in-
curring additional costs and as a result the manufacturing
cost increases, which may imply a higher selling price. The
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design phase must incorporate marketing variables and the
design and marketing decisions must be made jointly.

In this paper, we develop a model to determine the op-
timal sale price, warranty period and product reliability to
maximize the discounted profit for a repairable product sold
with a free replace-repair warranty policy. We assume that
the learning effects result in the unit manufacturing cost de-
creasing with total sales volume. We consider two scenarios
for the pricing and warranty. In the first scenario the price
and warranty period are constant whereas in the second sce-
nario they change over the product life cycle. The outline of
this paper is as follows. Section 2 presents a brief literature
review on marketing and/or technical strategy decisions in-
volving pricing and/or warranty. In Section 3, we give the
mathematical details of the model formulation. Section 4
examines the optimal policies for the proposed model. Sec-
tion 5 deals with illustrative numerical examples. Finally,
in Section 6, we draw conclusions and highlight of some
extensions worthy of future investigation.

2. Review of the literature

There are many different aspects to warranty decisions that
have been studied by researchers from diverse disciplines
because of their importance. Blischke and Murthy (1996)

0740-817X C© 2007 “IIE”

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

lb
er

ta
] 

at
 1

3:
26

 1
2 

O
ct

ob
er

 2
01

2 



820 Huang et al.

have highlighted several of these issues and a review of the
literature published in the last 10 years has been performed
by Murthy and Djamaludin (2002). Many researchers have
investigated optimal strategies that link engineering issues
(such as reliability improvement through redundancy and
development, maintenance, testing policies, burn-in, etc.)
with warranty to either maximize the manufacturers’ profit
or minimize the total cost. In this context we highlight the
papers of Murthy and Nguyen (1987), Mi (1997), Monga
and Zuo (1998), Pohl and Dietrich (1999), Hussain and
Murthy (2003) and Shue and Chien (2005).

Many researchers have used sales models that consider
the determination of optimal marketing and/or technical
strategies, such as advertising, price, quality, etc. We high-
light the papers of Dockner and Gaunersdorfer (1996),
Mendez and Narasimhan (1996), Teng and Thompson
(1996), Zhao and Zheng (2000), Chen and Chu (2001) and
Kamrad et al. (2005). Price and warranty are two major
commercial variables that influence sales decisions and ul-
timately the profit levels. Glickman and Berger (1976) pre-
sented a model to determine the optimal price and warranty
period that maximizes a manufacturer’s profit for a failure-
free warranty policy. Nguyen and Murthy (1988) developed
a model for obtaining the optimal reliability allocation tak-
ing into account the manufacturing and warranty costs.
Murthy (1990) developed a model to obtain the optimal
price, warranty period and product reliability to maximize
a manufacturer’s profit. In these models, the manufactur-
ing cost and the price are assumed to be constant over the
product life cycle. Teng and Thompson (1996) considered
the optimal price and quality policies for the introduction
of a new product. They assumed that the unit cost declines
along the learning curve and investigated the dynamics be-
tween price and quality for the new product. Lin and Shue
(2005) and Wu et al. (2006) modified the Teng-Thompson
price-quality model into a price-warranty decision model
in which the warranty length replaces the quality level. Wu
et al. (2006) derived a normal lifetime distributed product
whereas Lin and Shue (2005) investigated numerous basic
lifetime distributions. DeCroix (1999) presented a game-
theoretic model that represents firms in an oligopoly that
choose warranty, reliability and price levels for their goods
and examines the Nash equilibria for this game.

3. Model formulation

3.1. Nomenclature and Notation

θ = reliability parameter (design variable);
F(t, θ ) = cumulative distribution function for the first

time to failure;
f (t, θ ) = probability density function associated with

F(t, θ );
r (t, θ ) = hazard function associated with F(t, θ );
P(t) = unit sale price at time t (marketing variable);
W (t) = duration of warranty period for products sold

at time t (marketing variable);

ω(W, θ ) = expected warranty cost per unit sold;
c(t, θ ) = total manufacturing cost of unit product,

which includes unit development cost and pro-
duction cost – to indicate that this is a function
of θ ;

cm(t, θ ) = unit production cost – to indicate that this is a
function of θ ;

cr = expected cost of servicing a warranty claim;
δ = discount rate;
L = product life cycle;
q(t) = sales (production) rate at time t , 0 ≤ t < L;
Q(t) = accumulated sales in [0, t ], 0 ≤ t < L;
Q0 = parameter characterizing past sales or produc-

tion experience;
QM = maximum sales potential;
ψ = parameter to reflect the relative influence of

innovators in the sales model;
S(t, θ ) = expected number of failures for an item over

the interval [0, t);
πL = expected discounted integral profit during the

interval [0, L).

3.2. Product warranty policy

Manufacturers provide many types of warranty policies
for different products. In this paper, we consider the Free
Replace-repair Warrenty (FRW) policy which was defined
as follows by Blischke and Murthy (1996).

“Under the policy, the seller agrees to repair or provide
replacements for failed items free of charge up to a time
W from the time of the initial purchase. FRW is widely
applied, which include consumer products (such as auto-
mobiles, refrigerators, TVs, electronic components) and in-
dustrial/commercial products (such as pumps, trucks, of-
fice equipment).”

3.3. Product failure model

Let F(t, θ ) denote the cumulative failure distribution func-
tion for the first time to failure. Let f (t, θ ){= dF(t, θ )/dt}
and r (t, θ ){= f (t, θ )/[1 − F(t, θ )]} denote the failure den-
sity and hazard functions associated with F(t, θ ). The pa-
rameter θ is a design variable and an indicator of product
reliability with a smaller value of θ implying better prod-
uct quality. For an exponential failure distribution, θ is the
failure rate, and for Weibull and gamma distributions it
is the scale parameter. We assume that manufacturers can
choose any θ in the interval [θmin, θmax] with θmin and θmax
representing the achievable limits. The design reliability θ

is decided before the launch of a product, so it is constant
over the product life cycle.

The possibility of a second failure occuring after an ini-
tial failures has occured depends on the action taken to rec-
tify the problem under the warranty terms. The number of
failures under a warranty is a random variable and Blichke
and Murthy (1996) looks at the following three cases:
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Optimal reliability, warranty and price for new products 821

Case (1): Replace failed item with a new one.
If the replacement times are negligible in relation to the

mean time between failures, then failures over time occur
according to a renewal process associated with F(t, θ ). The
expected number of failures over [0, t), S(t, θ ), is given by
M(t, θ ), the renewal function associated with F(t, θ ),

M(t, θ ) = F(t, θ ) +
∫ t

0
M(t − x, θ )f (x, θ )dx. (1)

Case (2): The repaired items have a distribution G(t, θ )
which is different from F(t, θ ).

In this case the failures over the warranty period occur
according to a delayed renewal process, then the expected
number of failures over [0, t) (under the assumption that
repair times are negligible), S(t, θ ), is given by the delayed
renewal function Md(t, θ ) which is obtained by solving the
following integral equation:

Md(t, θ ) = F(t, θ ) +
∫ t

0
MG(t − x, θ )f (x, θ )dx. (2)

where MG(•) is the ordinary renewal function associated
with G(t, θ ). Note that when G(t, θ ) equals F(t, θ ), the de-
layed renewal process reduces to an ordinary renewal pro-
cess.

Case (3): The failed item is rectified through minimal re-
pair.

In this case the hazard function after repair is the same
as that just before item failure. This type of rectification
model is appropriate for multicomponent products where
item failure is due to the failure of a single or only a few
components. Only the failed components are either repaired
or replaced and they have a negligible effect on the hazard
function of the item as a whole. Under the assumption that
repair times are negligible failures over rime occur accord-
ing to a nonhomogeneous Poisson process with an intensity
function given by the failure rate function r (t, θ ) so that ex-
pected number of failures over [0, t),S(t, θ ), is given by

S(t, θ ) =
∫ t

0
r (t, θ )dt . (3)

3.4. Sales model

The product sales volume depends on many factors, such as
marketing variables (e.g., price, advertising, product qual-
ity), the competitive environment, and so on. A number of
mathematical models have been used to investigate prod-
uct sales. Customers often use warranty information to as-
sess the quality of a product and to decide if the price is
appropriate. Thus, price and warranty are the two major
factors that decide the sales volume of a product. In the
Glickman–Berger model (Glickman and Berger, 1976), de-
mand is represented by a displaced log-linear function of
the form q(p, W ) = k1P−a(W + k2)b, where k1 > 0, k2 > 0,
a > 1 and 0 < b < 1. Product reliability cannot be directly
observed, so it has no impact on the purchase decision.

Bass’ growth model (Bass, 1969; Robinson and Lakhani,
1975) is an epidemic model which can only be applied to ini-
tial purchases. The Bass model assumes that the purchasers
are divided into innovators and imitators based upon the
timing of adoption by the various groups. The innovators
decide to adopt an innovation independently of the deci-
sions of other individuals in a social system. The volume
of sales to this group is simply proportional to the number
of potential customers who do not already own the prod-
uct. However, the imitators are influenced in the timing of
adoption by the pressures of the social system, the pressure
increasing for later adopters with the number of previous
adopters. Sales to the second group are again proportional
to the number of people who do not have the product, but
it is also proportional to the number of people who do have
the product.

In this paper, we refer to the sales models presented by
Bass (1969), Robinson and Lakhani (1975) and Glickman
and Berger (1976) and consider both price and warranty
length as the decision variables that are to be determined
dynamically to maximize the overall profit. Assume that the
demand is decreasing in price and increasing in warranty
so that a longer warranty signals a more reliable product.
This assumption can be justified by a number of empiri-
cal studies. For example, Wiener (1985) states that in the
markets for appliances and motor vehicles, warranties are
accurate signals of product reliability. Douglas et al. (1993)
found that a more intensive warranty is associated with
a higher-quality product in the US automobile market. Of
course other attributes such as style, size, performance, etc.,
will also influence consumer demand, but these factors are
suppressed in our analysis to allow us to focus on the vari-
ables of interest. In modern society, many products evolve
so rapidly that the useful life of the product is much longer
than the product life cycle. As a result, repeat purchases
for these products are insignificant. Thus, we confine our
attention to first purchase sales and the sales rate, q(t), is
modeled as follows:

q(t) = dQ(t)
dt

= k1(W (t) + k2)αP(t)−β

[
1 − Q(t)

QM

]

×
[
ψ + Q(t)

QM

]
, Q(0) = Q0, (4)

where Q(t) is the accumulated sales volume over [0, t ].
The salient features of the model are as follows.

1. The square brackets reflect the concept of sales as a diffu-
sion process involving innovators and imitators as in the
Bass model (Bass, 1969; Robinson and Lakhani, 1975).
The parameter ψ reflect the relative influence of innova-
tors. For example, Bass’ study indicates that the constant
ψ is typically a few hundredths for consumer durables.
This indicates that innovators are only a dominant
factor in the marketplace during the short period
required to achieve the first few percent of market pen-
etration (Robinson and Lakhani, 1975).
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822 Huang et al.

2. The term before the square bracket captures the effect
of price and warranty on the sales rate. The parameter α

(0 < α < 1) is the displaced warranty elasticity parame-
ter and the parameter β (> 1) is the price elasticity. Note
the warranty period has a positive effect (with the sale
rate increasing as the warranty period increases) and the
sale price has a negative effect (with the sales rate de-
creasing as the price increases).

3. The parameter k1 is a scale factor, to reflect the competi-
tor and other market influences, such as the number of
potential consumers, the consumer purchasing power,
etc. We assume that k1 is constant. It is a valid approx-
imation because the market factors frequently exert the
same influence on both a new product and its existing
competitors and if a competitor changes its selling strat-
egy, then the new product will also change in response.
k2 is a constant of time displacement which allows for
the possibility of nonzero demand when t is zero.

We consider two scenarios for the sale price and warranty
period.

Scenario 1: Stable market conditions. In this case the price
and warranty period are constant over the
product life cycle so that P(t) = P0, W (t) =
W0.

Scenario 2: P(t) and W (t) change over time. We assume
that the changes occur at discrete points along
the time axis so that it is a discontinuous
function.

The accumulated sales volume, Q(t), is given by

Q(t) = Q0 +
∫ t

0
q(t)dt, (5)

where Q0 is a parameter which captures the past experience
at t = 0, and is obtained from research and development
and pilot plant operations, and QL = Q(L) is the total sales
volume over the life cycle.

3.5. Manufacturing cost model

Optimal product development strategies involving a war-
ranty are typically developed and used under the assump-
tion that the manufacturing unit costs are constant. Firms
enjoy large cost reductions as they gain experience in the
production of a product. Learning curves are often used to
mathematically represent this concept but can only be ap-
plied to situations where the production rate has stabilized.
The total manufacturing cost is the sum of the research
and development cost (to improve reliability) and the pro-
duction cost. The development cost is incurred before the
launch of the product. It usually depends on the develop-
ment time and work effort, etc. In general, the smaller the
value of θ , the higher the manufacturing process costs.

In general, the development cost is a monotonically in-
creasing function of product reliability. Generally the larger

the development costs to achieve the same improvement,
the better is the initial reliability. This means that it is easier
to e.g., increase the reliability of a component from 70 to
75% than to increase its reliability from 90 to 95%. Thus,
the derivative of the cost function (with respect to reliabil-
ity) is a monotonically increasing function. In this paper,
we refer to the model presented by Mettas (2000), which
takes an exponential behavior and is modeled as follows:

c(θ ) = A1 + B1 exp
(

k
θmax − θ

θ − θmin

)
, A1, B1, k > 0, (6)

where θ is the product reliability parameter. The constant k
represents the difficulty in increasing reliability, which de-
pends on the design complexity, technological and resource
limitations, etc. Clearly, the more difficult it is to improve the
product reliability (the parameter k is bigger), the greater
the cost is. As expected, when θ decreases (the product be-
comes more reliable), the development cost increases.

The production cost depends on the total number pro-
duced the product reliability, etc. The first reported use of
a learning curve was by Wright in 1936 (Loerch, 1999),
and since then numerous papers have reported its use in
industrial applications (see, e.g., Mazzola and McCardle
(1997), Loerch (1999) and Smunt (1999)). Many forms exist
to mathematically depict learning effects. Probably the most
popular are the “power” or “exponential” forms which re-
late the cost of an item to its place in the sequence of items
produced. In this paper, the production cost is given by

cm(t, θ ) = Kcm0(θ )
[

Q0

Q(t)

]µ

, (7)

where cm(t, θ ) denotes the production cost per item at time
t , cm0(θ ) is the initial production cost per item, i.e., cm(0, θ ),
Q(t) is the accumulated sales volume until time t , and the
learning parameter µ (0 < µ < 1) is a constant. The pa-
rameter K represents the influence of various factors such
as inflation and production rate. For example, Lee (1997)
incorporated the production rate into the computation of
learning curve costs. We assume that the initial production
cost cm0(θ ) depends on product reliability, has the form:

cm0(θ ) = A2 + B2θ
−i, (8)

where A2, B2 and i are positive-valued parameters. Note
that this form matches the relationship that the produc-
tion cost cm0(θ ) is decreasing in the failure parameter θ ,
and satisfies the intuitive properties: cm0(θ ) is convex in θ ,
cm0(θ ) → ∞ as θ → 0 and cm0(θ ) → A2 as θ → ∞.

As a result, the total manufacturing cost per item is given
by

c(t, θ ) = c(θ )
QL

+ cm(t, θ )

= A1 + B1 exp(k((θmax − θ )/(θ − θmin)))
QL

+ K(A2 + B2θ
−i)

[
Q0

Q(t)

]µ

. (9)
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Optimal reliability, warranty and price for new products 823

3.6. Expected warranty cost model

When an item is returned for repair under warranty, the
manufacturer incurs many costs, such as transportation
costs, administrative costs, material costs and labor costs,
etc. We aggregate all of these costs into a single cost termed
the “repair cost” for each claim. Because some of the costs
are uncertain, this cost is a random variable (Blischke and
Murthy, 1996). Let cr denote the expected value of this cost.
The expected warranty cost for unit product, ω(W, θ ) is
given by

ω(W, θ ) = crS(W, θ ), (10)

where cr is the cost of each replacement or repair.
As discussed in Section 3.3, the number of claims over

the warranty period S(W, θ ) depends on the type of repair
action required and this in turn determines the warranty
costs.

3.7. Expected profit

The expected discounted profit over the life cycle of the
product, π depends on: (i) the sales volume; (ii) the unit
manufacturing cost; (iii) the sale price; and (iv) the expected
warranty cost. This is given by

π =
∫ L

0
[P(t) − c(t, θ ) − ω(W, θ )]q(t)e−δt dt. (11)

The objective of the manufacturer is to select the relia-
bility parameter θ , the warranty period W (t) and the price
P(t) which maximize the expected discounted profit π given
by Equation (11). Let P∗, W ∗ and θ∗ be the optimal values
of P, W and θ which maximize π . To improve clarity, we
will in future omit the function arguments when this does
not cause confusion.

4. Model optimization analysis

4.1. Stable market (scenario 1)

When the price and warranty period are constant over the
product life cycle, a necessary condition for P∗, W ∗ and θ∗
to be optimal is that they satisfy (a subscript on a variable
denotes partial differential with respect to that variable):

πP = 0,

πW = 0, (12)
πθ = τ ;

where τ is an arbitrary constant with sign given as follows:

τ =




≤ 0 if θ∗ = θmin

0 if θmin < θ < θmax

≥ 0 if θ∗ = θmax

, (13)

4.2. Dynamic market (scenario 2)

Under dynamic market conditions we face a dynamic opti-
mization problem. To obtain the optimal solution, we ap-
ply the maximum principle (Sethi and Thompson, 1981).
The following analysis procedures follows that in Teng and
Thompson (1996). The current value Hamiltonian function
is given as follows:

H = [P(t) − c(t, θ ) − ω(W, θ ) + λ(t)]q(t), (14)

where λ(t) is the current value adjoint variable which satis-
fies the following differential equation (for convenience, a
dot above a variable denotes the first derivative with respect
to time):

λ̇(t) = δλ(t) − HQ

= δλ + cQq − [P − c − ω + λ]qQ, (15)

with the transversality condition at t = L, λ(t) = 0.
The following necessary conditions hold for an optimal

solution:

HP = 0 ⇒ P − c − ω + λ = −q/qP, (16)
HW = 0 ⇒ P − c − ω + λ = ωW q/qW , (17)

and the second-order conditions for H-maximization are:

HPP < 0 ⇒ 2qP −
(

q
qP

)
qPP < 0, (18)

HWW < 0 ⇒ −ωWW q − 2ωW qW + ωW q
qW

qWW < 0, (19)

HPPHWW − (HPW )2 > 0, (20)

where

HPW = HWP = qW − ωW qP − q
qP

qPW . (21)

We can obtain the following result from Equations (16)
and (17):

ωW = −qW

qP
. (22)

According to Sethi and Thompson (1981), the eco-
nomic interpretations of the Hamiltonian function in Equa-
tion (14) can be derived. Multiplying Equation (14) by dt
gives:

Hdt = [P − c − ω]qdt + λdQ. (23)

The first term [P − c − ω]qdt represents the current
profit from time t to t + dt . The second term λ(t) repre-
sents the future benefit (at time t) of having one more unit
produced. Therefore, the second term λdQ represents the
future benefit of the incremental sales dQ. Thus, Hdt can
be interpreted as the total profit of the manufacturer from
the interval t to t + dt .

We followed the proof procedures of Lemmas 1, 2 and
3 of Teng and Thompson (1996) to derive the following
lemmas:
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824 Huang et al.

Lemma 1. If HWW + ωW HPW > 0, then HPW > 0 and
HPW + ωW HPP < 0.

Lemma 2. If HPW + ωW HPP > 0, then HWP > 0 and
HWW + ωW HPW < 0.

Lemma 3. If HPW = HWP < 0, then HPW + ωW HPP > 0
and HWW + ωW HPW < 0.

The condition HPW > 0 indicates that the total profit will
increase following the simultaneous increase (or decrease)
of both price and warranty. Therefore, the best combined
policy for both price and warranty should be to increase
or decrease both at the same time. On the contrary, when
HPW = HWP < 0, the best policy is to change price and
warranty in opposite directions; i.e., when one is increased
the other one must be decreased.

When the sales function is given by Equation (4), which
is separable in cumulative sales, we simplify as follows:

q = F(W, P)G(Q). (24)

In order to analyze the relationship between optimal
price and warranty policy, we take the time derivative of
the optimal price given by Equation (16), substitute Equa-
tion (15) for λ̇ and Equation (22) for ωW and rearrange
terms. Thus, the system of equations that characterizes the
optimal solution is given as follows:

HPPṖ + HPW Ẇ = −δλFPG − F2GQG, (25)

(HPW + ωW HPP)Ṗ + (HWW + ωW HPW )Ẇ = 0. (26)

Thus, we can obtain:

Ṗ = HWW + ωW HPW

HPPHWW − H2
PW

(−δλFP − F2GQ)G,

Ẇ = HPW + ωW HPP

H2
PW − HPPHWW

(−δλFP − F2GQ)G. (27)

For the case where the discount rate δ > 0 and there is a
learning effect on production cost, using Lemmas 1, 2 and
3 and Equations (27) and (4), we can calculate the optimal
policies given in Table 1.

When the discount rate is zero, i.e., δ = 0, which can be
an approximation in situations where the discount rate is
relatively low, we can obtain the results in Table 2.

Table 1. Optimal policies for a positive discount rate and learning
effect on production cost

Conditions

δλβ < k1
(W(t) + k2)α

P(t)1−β (1−ψ)QM−2Q
Q2

M

δλβ > k1
(W(t) + k2)α

P(t)1−β (1−ψ)QM−2Q
Q2

M

HWW + ωW HPW > 0 Ṗ < 0 and Ẇ < 0 Ṗ > 0 and Ẇ > 0
HPW + ωW HPP > 0 Ṗ > 0 and Ẇ > 0 Ṗ < 0 and Ẇ < 0
HPW = HWP < 0 Ṗ > 0 and Ẇ < 0 Ṗ < 0 and Ẇ > 0

Table 2. Optimal policies for a zero discount rate

Conditions
Diffusion phase

(qQ > 0)
Saturation phase

(qQ < 0)

HWW + ωW HPW > 0 Ṗ < 0 and Ẇ < 0 Ṗ > 0 and Ẇ > 0
HPW + ωW HPP > 0 Ṗ > 0 and Ẇ > 0 Ṗ < 0 and Ẇ < 0
HPW = HWP < 0 Ṗ > 0 and Ẇ < 0 Ṗ < 0 and Ẇ > 0

5. Numerical example

Let the product failure distribution be an exponential dis-
tribution with parameter θ , so that F(t, θ ) = 1 − e−θ t . We
consider that failed items under warranty are repaired min-
imally and let the expected cost of each minimal repair
cr=30. Thus we have that ω(W, θ ) = crθW = 30 θW .

We assume that the research and development cost
is given by c(θ ) = 50 000 + 50 000 exp((0.4 − θ )/(θ − 0.1)).
Let the initial unit manufacturing cost be given by cm0(θ ) =
10 + 30θ−0.5, 0.1 < θ ≤ 0.4, indicating the limits of achiev-
able reliability. We assume past production experience mod-
eled (through Q0) is given by Q0 = 2000. We consider the
production cost to follow a curve corresponding to a 25%
decline every time the accumulated volume, Q(t), doubles.
This corresponds to µ = 0.4. As a result, the manufacturing
cost model is given by

c(t, θ ) = 5 × 104 + 5 × 104 exp((0.4 − θ )/(θ − 0.1))
QL

+ (10 + 30θ−0.5)
[

2000
Q(t)

]0.4

.

For the sales model given by Equation (4), let α = 0.10,
β = 2, k1 = 3 × 109, k2 = 0.1, QM = 25 000. This implies:

q(t) = 3 × 109(W + 0.1)0.10P−2

×
[

1 − Q(t)
25 000

][
ψ + Q(t)

25 000

]
.

Finally, the discount rate δ = 0.15. The expected dis-
counted integral profit is given by

πL =
∫ L

0
[P(t) − c(t, θ ) − ω(W, θ )]q(t)e−δt dt

=
∫ L

0

[
P(t) − 50 000 + 50 000 exp((0.4 − θ )/(θ − 0.1))

QL

Table 3. Optimal price, warranty and reliability for different L
(scenario 1)

L P∗
0 W ∗ θ∗ ω(W ∗, θ∗) Q(L) πL

2 231.9 0.87 0.40 10.40 22 031 3567 000
4 334.7 0.385 1.35 15.58 22 035 4653 000
6 418.4 2.09 0.319 19.97 22 033 5073 500
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Table 4. Optimal solutions for different α values (scenario 1, L =
2 years)

α P∗ W ∗ θ∗ ω(W ∗, θ∗) Q(L) πL

0.10 231.9 0.87 0.40 10.40 22 031 3567 000
0.15 243.2 1.61 0.355 17.17 21 902 3591 300
0.20 263.2 3.00 0.283 25.47 21 758 3693 600

− (10 + 30θ−0.5)
[

2000
Q(t)

]0.4

− 30[θW ]
]

× 3 × 109(W + 0.1)0.10P−2
[

1 − Q(t)
25 000

]

×
[
ψ + Q(t)

25 000

]
e−0.15t dt.

Given the complex nature of the integrand, numerical
integration methods are used to evaluate the optimal price,
warranty and reliability using the MATLAB program.

Scenario 1: Stable market (P(t), W (t) constant)

We consider ψ = 0. Table 3 gives the optimal price, war-
ranty and reliability for L = 2, 4 and 6 years. As can be
seen, when L is short, W ∗ is low and θ∗ high. This is to be
expected, since the manufacturer aims to maximize prof-
its based solely on sales over a short period. θ∗ is high
in order to reduce the manufacturing cost. As a conse-
quence, W ∗ must be low to reduce the warranty cost. As
L increases, in order to attract more consumers W ∗ must
increase. As a result θ∗ must decrease (implying a more re-
liable product) to reduce warranty cost and maximize prof-
its. As a result we see that W ∗ increases with L whereas θ∗
decreases.

We now carry out a sensitivity analysis for the case where
L = 2 years by varying one parameter at a time (for the
following parameters α, β) whilst holding the remaining
parameters at their nominal values for scenario 1 (stable
market). Table 4 shows the results for variations in α (0.10,
0.15, 0.20), Table 5 shows the results for variations in β (1.8,
2.0, 2.1). From Table 4, we see that as α increases, because
the warranty is more efficient than price in increasing prof-
its, W ∗ increases to attract more consumers. As a result θ∗
must decrease (implying a more reliable product) to reduce
warranty cost and P∗ increases. From Table 5, we see that
as β increases, the optimal price is more efficient. So the
price decreases to increase the sales. As a result warranty

Table 5. The optimal solutions for different β values (scenario 1,
L = 2 years)

β P∗ W ∗ θ∗ ω(W ∗, θ∗) Q(L) πL

1.8 463.2 2.89 0.287 24.87 21 508 7364 000
2.0 231.9 0.87 0.40 10.40 22 031 3567 000
2.2 136.0 0.5 0.40 6.00 22 451 1877 300

Table 6. Optimal price, warranty and reliability for L = 5 (sce-
nario 2)


π(t)
θ∗ P∗

i W ∗
i ω(W ∗, θ∗) c(t, θ) Q(t) ×105

i = 1 0.16 404.0 4.11 19.73 182.3 3573 3.06
i = 3 355.3 3.60 17.28 160.4 9552 5.08
i = 5 334.8 3.39 16.27 151.1 16 847 4.16
i = 7 327.3 3.31 15.89 147.7 21 542 1.96
i = 9 324.5 3.28 15.74 146.5 23 676 0.71

period decreases and θ∗ increases to reduce the warranty
cost.

Scenario 2: Dynamic market (P(t) changes over time)

We consider ψ = 0.03. We assume that the price and
warranty period change every half-year and consider the
case L = 5 years. The price and warranty period are
constant over each half-year period. Let P0, P1, . . . , P9,
W0, W1, . . . , W9 denote the prices and warranty periods
in the ten half-year periods. The optimal reliability is de-
termined before the product is launched and it does not
change over the life cycle. In this case we have an optimiza-
tion problem involving 21 variables: the P0, P1, . . . , P9, θ

and W0, W1, . . . , W9 that need to be selected optimally. We
obtain the optimal values using a two-stage process. First
we fix θ , then use a dynamic programming approach to get
the optimal dynamic pricing and warranty. Note that there
is need for only one state variable—the accumulated sales at
the start of each period. The optimal decision variables (sale
price and warranty length in the period) are obtained as a
function of this taking into account the optimal prices and
warranty length for the later periods. We assume some ac-
cumulated volume at the end of the planning period, Q(5).
We use Equation (11) to determine P∗

9 and W ∗
9 , which op-

timizes the discounted profit obtained in the last half-year,

πL(5). We then have Q(4.5) = Q(5) − q(5)/2. The process
is repeated to obtain the price P∗

8 and W ∗
8 , to optimize the in-

tegral profit for the last two half years, 
πL(4.5) + 
πL(5).
This process is repeated until the entire optimum solution
corresponding to a given final accumulated volume, Q(5),
has been obtained. The entire procedure can be repeated for
many values of Q(5) until we obtain the optimum scenario
corresponding to Q(0) = 2000. This is repeated for differ-
ent values of θ to yield the optimal value for the parameter.
This can be carried out by MATLAB programming. The
values displayed in Table 6 are the optimal values at the start
of the second half of each year over the life cycle. As the
sales volume increases with time, the price P∗(t)decreases
in order to attract more consumers as is to be expected. To
decrease the product cost, the warranty period decreases to
reduce the warrant cost.

This basic procedure can also be used to seek the optimal
scenario for general failure distribution and any constraint
which a manager may wish to impose.
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6. Conclusions

In this paper, we have developed a model which integrates
marketing aspects into the design phase for new products.
The model involves optimally selecting the waranty period
and the price (marketing variables) and product reliability
(engineering design variable) to maximize the discounted
expected profit for a product sold with a FRW policy. We
have looked at two scenarios for price and warranty—a
stable market (with constant price and warranty period)
and a dynamic market (with the price and warranty period
changing over the product life cycle) and incorporated the
effect of the manufacturing cost decreasing with the volume
produced (learning curve).

The model can be extended in several different direc-
tions. The first direction is to incorporate repeat purchases
by satisfied customers. This will involve building models for
customer satisfaction and the resulting repeat purchase. An-
other extension is to incorporate the effects of warranty as
an advertising tool so that it affects some of the parameters
(such as ψ in the diffusion model). The effects of market
factors (such as competitor strategies) are important for
products sold in competitive markets. The proposed model
needs to be modified to take these into account. Finally, the
study of these problems with different types of warranties
is another topic for future research.
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