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Maintenance policies for multi-state systems (MSS) are often analyzed under infinite horizon assump-
tions. In practice, it is important to consider maintenance policies under a finite horizon because the life
cycles of most systems are finite. In this paper, we consider a finite life-cycle MSS that is subject to both
degradation and Poisson failures. We study two classes of maintenance policies – preventive replace-
ments and corrective replacements, and their effectiveness in controlling the customer’s expected dis-
counted maintenance cost (EDMC). For both policies, replacement decisions are modelled via two
control parameters – a threshold on the current system state and a threshold on the residual life cycle,
which is measured as the time span from present to the end of life cycle. We derive close-to-explicit
forms of the cost models under each of the policy. Methodologies for optimizing the maintenance thresh-
olds are further proposed. Computational results verify that preventive replacements outperform correc-
tive replacements typically when the downtime cost per failure is relatively high compared to the repair
cost.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The ageing processes of a system are often modelled as contin-
uous and deterministic functions of time (e.g. failure rate function).
However, this might not be realistic for many systems when the
processes depend not only on the elapsed operational time, but
also the system status, such as vibration level, efficiency, number
of random shocks on the system, etc., any of which causes perfor-
mance degradation. For such multi-state degradation systems, the
sojourn times at each state are typically uncertain and therefore
result in uncertainty in the state-dependent failure rates. The basic
concepts of stochastic multi-state degradation models can be
found in Barlow and Wu (1978), El-Neweihi, Proschan, and Sethur-
aman (1978) and Ross (1979), which defined the system structure
function and its properties. The corresponding performance analy-
sis (e.g. reliability, availability, mean time-to-failure, redundancy,
etc.) were addressed by Xue and Yang (1995), Pham, Suprasad,
and Misra (1997), Wu (2005), Zuo and Tian (2006), Tian, Yam,
Zuo, and Huang (2008a, 2008b) and Tai and Chan (2010).

Optimization of maintenance policies for multi-state systems
(MSS) is a natural extension of the maintenance studies for the bin-
ary systems which utilize many results from the reliability model-
ling of MSS. The majority of the current literatures assume that
maintenance actions for MSS are planned based on an infinite
operating horizon and after any replacement or restoration, the
ll rights reserved.
system is renewed and the same process is assumed to repeat
indefinitely. Characteristics of a system, such as the current state,
the age and the elapsed operating time during each state, are often
selected as the optimality criterions and used to minimize the
long-run average maintenance cost rate function. Reviews of work
in this area can be found in Kao (1973), Sim and Endrenyi (1993),
Yeh (1996), Levitin and Lisnianski (2000), Grall, Berenguer, and
Dieulle (2002), Moustafa, Abdel Maksoud, and Sadek (2004) and
Kim and Makis (2009).

In practice, however, the useful life cycle of most systems are fi-
nite in nature. For instance, in military applications, a missile
launching system is only required to be functioning within the des-
ignated mission time. Different from an infinite-horizon mainte-
nance problem, residual life cycle for such system, which is
measured from the present time to the end of the mission, is typ-
ically finite and decreases over time. When the mission is close to
end, replacement of a functioning system becomes less necessary
and traditional maintenance strategies, such as those merely rely-
ing on the information of the current system state, could turn out
to be very costly to the stakeholders. Considering the improper
planning horizon, though bringing technical convenience, may
not be realistic under these circumstances (Nakagawa & Mizutani,
2009). On the other hand, compared to the vast amount of litera-
ture in infinite-horizon maintenance planning, existing work
showed very limited options for maintaining MSS with finite life
cycles. Su and Chang (2000) proposed a periodic maintenance pol-
icy for MSS and derived the optimal number of maintenance activ-
ities that minimized the total life-cycle cost. Zuo, Liu, and Murthy
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(2000) investigated the optimal replacement policy for multi-state
products under warranty such that the manufacturer’s expected
warranty cost was minimized. Ivy and Pollock (2005) and Maillart
and Zheltova (2007) analyzed maintenance and inspection policies
for a discrete-time Markov system over a finite horizon given that
perfect observations of systems states were not available. Ding, Lis-
nianski, Frenkel, and Khvatskin (2009) studied the optimal correc-
tive maintenance planning for the MSS subject to availability
constraints. Among these studies, very few further considered
maintenance optimization with multiple optimality criterions.

In this paper, we assume that the ageing process of the system
is modelled as a continuous-time Markov process that is subject to
both degradation and Poisson failures. We assume that the system
can fail randomly from any of the operational states (Poisson fail-
ures) and can be rectified by minimal repair which returns the sys-
tem to its previous working state. Any unexpected (Poisson) failure
is assumed to result in an extra downtime cost that is borne by the
customer. We propose two MSS maintenance policies for control-
ling the customer’s expected discounted maintenance cost (EDMC)
over a finite system life cycle. The first policy conducts preventive
system replacement, i.e. a system may be replaced while still oper-
ational. In contrast the second policy allows only corrective
replacements, i.e. system replacements are only made when the
system suffers a random failure. For both policies, the EDMC is de-
rived as a function of two control parameters, namely, a threshold
level on the current state of the system, and a threshold level on
the residual life cycle (measured from present time to the end of
life cycle). We further propose two different methodologies for
the optimization of maintenance thresholds. The first method uti-
lizes the Laplace transform and inversion techniques, while the
second method directly approximates the EDMC and optimizes
the maintenance thresholds on the time domain. The applications
of both methods are illustrated using a numerical case. Through
computational examples, we demonstrate that preventive replace-
ment outperforms corrective replacement when the downtime
cost per failure is relatively high compared to the repair cost. Un-
like past works, our studies incorporate many realistic factors, i.e.
multiple system states, discounted economic values, finite plan-
ning horizon, and easy-to-implement maintenance policies. As
such, our work should be of interest to both theoreticians and
practitioners.

The rest of the paper is organized as follows. In Section 2, we
present the system descriptions and propose the maintenance pol-
icies for the MSS. Section 3 derives the EDMC for the customer un-
der both Policies A and B. Methodologies for analyzing the optimal
maintenance policies are further proposed in Section 4. Section 5
demonstrates the applicability of the foregoing analysis with
numerical examples. Conclusions are made in Section 6.

2. Model formulation

Acronym

MSS
 multi-state system

EDMC
 expected discounted maintenance cost

Policies O, A, B
 maintenance options to the customer

Notation

L
 length of the finite life cycle

t
 residual life cycle

y
 elapsed system lifetime

d
 discounted factor

N, 2N + 1
 number of degradation stages, number

of system states

X
 {1, 2, 3, . . . ,N}
S1 = {2i � 1, i 2X}
 operational states of the MSS

S2 = {2i, i 2X}
 (Poisson) failure states of the MSS

{2N + 1}
 complete failure state

S1 [ S2 [ {2N + 1}
 entire set of the system sates

ai, ki (i 2X)
 degradation rate from State 2i � 1 to

2i + 1, failure rate from State 2i � 1 to 2i

mi, di (i 2X)
 minimal repair and downtime cost for

the Poisson failures from State 2i � 1

ri (i 2X)
 replacement cost at State 2i � 1 and 2i

d2N+1, r2N+1
 downtime and replacement cost when

the system reaches a complete failure

pi(y)(gi(y))
 probability density function of the time

to first failure (degradation) for a 1-
stage degradation system that initially
works under State 2i � 1
(J,s)
 maintenance thresholds on the current
system state and the residual life cycle
CðOÞi ðtÞ; eC ðOÞi ðtÞ
 the exact value and numerical
approximation of EDMC for Policy O
when the system is in operational State
2i � 1 and the residual life cycle is t
CðAÞi ðtjJ; sÞ; eC ðAÞi ðtjJ; sÞ
 the exact value and numerical
approximation of EDMC for Policy A
under (J,s) when the system is in
operational State 2i � 1 and the
residual life cycle is t
CðBÞi ðtjJ; sÞ; eC ðBÞi ðtjJ; sÞ
 the exact value and numerical
approximation of EDMC for Policy B
under (J,s) when the system is in
operational State 2i � 1 and the
residual life cycle is t
(J*,s*)
 optimal maintenance thresholds that

minimize eC ðAÞ1 ðLjJ; sÞ; eC ðBÞ1 ðLjJ; sÞ
n o
2.1. System description

Consider a multi-state system (MSS) that initially works under a
perfect condition. The system can have N stages of degradation be-
fore reaching a complete failure and let X = {1, 2, 3, . . . ,N} repre-
sent the set of all these stages. We define three disjoint sets of
the states which fully characterize the MSS – the operational states
S1 = {2i � 1, i 2X}, the (Poisson) failure states S2 = {2i, i 2X} and
the complete failure state {2N + 1}. State 1 represents the perfect
functioning state and the degree of deterioration increases with
each subsequent operational state. In particular, once the system
degrades to State 2N + 1, it is considered as completely failed and
can only be rectified by a replacement. Here the ith stage degrada-
tion is defined as the transition period from State 2i � 1 to
2i + 1 (i 2X) and is characterized by a degradation rate ai. In addi-
tion to the degradation process, the system is also subject to ran-
dom (Poisson) failure process from any operational state 2i � 1
(i.e. 2i � 1 ? 2i, i 2X) and can be rectified by repair. The failure
from operational state 2i � 1 (i 2X) to failure state 2i is character-
ized by a failure rate ki.

Let ri (i 2X) represent the replacement cost for the system
when the system is either operating in State 2i � 1 or failed from
State 2i � 1, and let mi(i 2X) represent the corresponding minimal
repair cost during this stage. For each (unexpected) Poisson failure,
we assume that there is an additional downtime cost di associated
with mi which is borne by the customer. Also, let rN+1 and dN+1 rep-
resent the replacement and downtime cost for the system when it
reaches a complete failure (i.e. State 2N + 1).
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Fig. 1. System description. (a) Description for an N-stage deteriorating MSS; (b) Description for an isolated 3-state MSS.
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A graphical description of the above system is given in Fig. 1a. In
order to complete our model formulation, the following assump-
tions are made.

(1) The system is replaced with a new one once it degrades to
the complete failure state (2N + 1).

(2) The system is minimally repaired after Poisson failures. The
repair returns the system to the operational state right
before the failure.

(3) All the transition rates ais and kis (i 2X) are constant but
state-dependent. In particular, we assume k1 < k2 < � � � <
kN�1 < kN to describe the ageing of the system.

(4) The average repair and replacement time is very small com-
pared to mean time between failures and therefore is
negligible.

(5) The system becomes more costly to repair and replace when it
ages, i.e. m1 < m2 < � � � < mN�1 < mN and r1 < r2 < � � � < rN�1 < rN

< rN+1.
(6) No downtime cost is incurred or associated with preventive

replacement when the system is still functioning.
(7) The current state of the system is always known (observed)

for certain by continuous monitoring.

2.2. System replacement policies

We denote L as the finite planning horizon, or the system life
cycle, and d as the continuous discounted factor over the cycle. It
is important to notice that maintenance cost is not incurred at
the stage of maintenance planning but rather spent in future and
allocated over the system life cycle. Therefore, incorporating (J,d)
in the cost forecasting will have practical meanings, in particular
for those managerial circumstances such as budget allocation
and balance-sheet reporting where the accuracy of cost estimation
is crucial to the decision makers. As an endeavour to minimize the
EDMC for the customer, we propose the following two mainte-
nance policies (A and B), both of which rely on two threshold
parameters (J,s), where 0 6 J < N and 0 6 s 6 L.

Policy A (preventive replacement): If the system operates in
State 2i � 1 (i 2X) and the residual life cycle is t (0 < t 6 L), it is
then replaced by a new one if and only if j + 1 6 i 6 N and t P s;
otherwise, no replacement is made.

Policy B (corrective replacement): If the system fails from State
2i � 1 (i 2X) and the residual life cycle is t (0 < t 6 L), it is then re-
placed by a new one if and only if J + 1 6 i 6 N and t P s; other-
wise, it is minimally repaired.

Both policies utilize the information of the current system state
and the residual life cycle. The system is replaced only when its
deterioration level is heavier than the threshold parameter J and
the residual life cycle is longer than s. Such policies can avoid
expensive replacements when the system is still relatively healthy
or when the system is close to retirement. Policy A requires preven-
tive replacement for the system when it is still functioning. On the
other hand, Policy B implements corrective replacement for the sys-
tem only upon (Poisson) failures.

For comparison purpose, the base case of no corrective or pre-
ventive replacement is also defined (i.e. Policy O). Note that when
s = L, both Policies A and B reduce to Policy O.

Policy O: No corrective or preventive replacement.

3. Model development

In this section, we derive the close-to-explicit forms of the EDMC
for the customer under Policies O, A and B. The discounted cost
models are presented in recursive forms and solved iteratively.

We present some preliminary results for a 1-stage degradation sys-
tem before proceeding to the analysis of N-stage degradation system.

3.1. Preliminary results

Consider a 3-state Markov system (i 2X) in Fig. 1b that is iso-
lated from Fig. 1a. In contrast to Fig. 1a, we assume that both State
2i and 2i + 1 are absorbing states. The objective is to derive the sys-
tem state transition (degradation) and time-to-failure distributions
that are useful in subsequent analysis.

Let I(Y) represent the system state after an elapsed lifetime y.
We assume that the system initially operates at State 2i � 1, i.e.
I(0) = 2i � 1. Define Qi(y) = Pr {I(y) = 2i � 1jI(0) = 2i � 1}, Pi(y) = Pr
{I(y) = 2ijI(0) = 2i � 1} and Gi(y) = Pr [I(y) = 2i + 1jI(0) = 2i � 1]. Also,
define pi(y) = dPi(y)/dy and gi(y) = dGi(y)/dy as the corresponding
probability densities of system failure and degradation at time y.
The Chapman–Kolmogorov equations for such a simple Markov
system can be written as

dQiðyÞ
dy ¼ �ðai þ kiÞQ iðyÞ

dPiðyÞ
dy ¼ kiQ iðyÞ

dGiðyÞ
dy ¼ aiQ iðyÞ

8>>><>>>: ð1Þ

with the initial conditions satisfying Qi(0) = 1, Pi(0) = 0 and Gi(0) = 0
(i 2X). Solutions for (1) are explicitly given as QiðyÞ ¼ e�ðaiþkiÞy;

PiðyÞ ¼ ki½1� e�ðaiþkiÞy�=ðai þ kiÞ and GiðyÞ ¼ ai½1� e�ðaiþkiÞy�=ðai þ kiÞ.
Therefore, piðyÞ ¼ kie�ðaiþkiÞy and giðyÞ ¼ aie�ðaiþkiÞy.

3.2. The EDMC model for Policy O

Here we investigate the EDMC model for the N-stage degrada-
tion system under Policy O.

Let Cð0Þi ðtÞ represent the EDMC under Policy O when the system
is in State 2i � 1 (i 2X) and the residual life cycle is t. The objective
is therefore to obtain Cð0Þ1 ðLÞ. Note that without preventive or cor-
rective replacement, the system is automatically replaced by a
new unit when it degrades to State 2N + 1, until the end of its life
cycle. Using the expressions for pi(t) and gi(t) and incorporating the
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discounted factor d, the recursive form of the cost model is pre-
sented as follow:

CðOÞi ðtÞ ¼
R t

0 mi þ di þ Cð0Þi ðxÞ
h i

e�dðt�xÞpiðt � xÞdx

þ
R t

0 Cð0Þiþ1e�dðt�xÞgiðt � xÞdx

¼
R t

0 mi þ di þ CðOÞi ðxÞ
h i

kie�ðaiþkiþdÞðt�xÞdx

þ
R t

0 Cð0Þiþ1ðxÞaie�ðaiþkiþdÞðt�xÞdx
for i ¼ 1;2; . . . ;N � 1

Cð0ÞN ðtÞ ¼
R t

0 mN þ dN þ CðOÞN ðxÞ
h i

kNe�ðaNþkNþdÞðt�xÞdx

þ
R t

0 rNþ1 þ dNþ1 þ Cð0Þ1 ðxÞ
h i

aNe�ðaNþkNþdÞðt�xÞdx

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð2Þ

The analytical form of Cð0Þ1 ðLÞ can be obtained by solving (2) iter-
atively using Laplace transform. We present the results in the fol-
lowing proposition. Define a0 = 1, and

ei ¼
kiðmi þ diÞ for i ¼ 1;2; . . . ;N � 1
kNðmN þ dNÞ þ ðrNþ1 þ dNþ1ÞaN for i ¼ N

�
ð3Þ
Proposition 1. For an N-stage degradation system that initially
works under a perfect condition, the close-to-explicit form of the
EDMC for Policy O is given as

CðOÞ1 ðLÞ ¼ L�1

PN
j¼1

Qj�1
k¼0ak � ej �

QN
k¼jþ1ðsþ ak þ dÞ

h i
s
QN

j¼1ðsþ aj þ dÞ �
QN

j¼1aj

h i
24 350@ 1A������

t¼L

ð4Þ
Proof. Define CðOÞi ðsÞ ¼L Cð0Þi ðtÞ
h i

as the Laplace transform of
CðOÞi ðtÞ ði 2 XÞ. We then have

Cð0Þi ðsÞ ¼
ei

sðsþaiþdÞ þ Cð0Þiþ1ðsÞ
ai

sþaiþd for i ¼ 1;2; . . . ;N � 1

Cð0ÞN ðsÞ ¼
eN

sðsþaNþdÞ þ CðOÞ1 ðsÞ
aN

sþaNþd

8<: ð5Þ
CðAÞ1 ðLjJ; sÞ ¼ L�1

PJ�1
j¼1

Qj�1
k¼0ak ej þ sCðOÞj ðsÞ

� �QJ
k¼jþ1ðsþ ak þ dÞ

h i
þ
QJ�1

k¼0akðeJ þ rJþ1aJ þ sCðOÞJ ðsÞÞ

s
QJ

j¼1ðsþ aj þ dÞ �
QJ

j¼1aj

h i
24 350@ 1A������

t¼L�s

ð10Þ
After simplification,

CðOÞ1 ðsÞ ¼
PN

j¼1

Qj�1
k¼0ak � ej �

QN
k¼jþ1ðsþ ak þ dÞ

h i
s
QN

j¼1ðsþ aj þ dÞ �
QN

j¼1aj

h i ð6Þ

From (6), Proposition 1 is easily obtained. h

Remarks: Eq. (6) is considered as close-to-explicit because
obtaining the inverse transform for Cð0Þ1 ðtÞ requires a numerical sol-
ver (e.g. Matlab) except for some simple cases. The application of
such inversion techniques for the maintenance optimization will
be illustrated shortly. Note that when Cð0Þ1 ðtÞ is obtained, we can
further obtain Cð0Þi ðtÞ for a system starting at any degraded state
(i.e. i > 1) using the following:

CðOÞi ðtÞ ¼
1

ai�1

dCðOÞi�1ðtÞ
dt

þ ðai�1 þ dÞCðOÞi�1ðtÞ � ei�1

" #
; i ¼ 2;3; . . . ;N

ð7Þ

3.3. The EDMC model for Policy A

In this section, we investigate the EDMC model for Policy A when
the maintenance thresholds (J,s) are given. We assume that when
the system is preventively replaced, no downtime cost is incurred.
One of the justifications for this is that a warm-standby may be ini-
tiated before shutting down the old unit for replacement. Let
CðAÞi ðtjJ; sÞ represent the EDMC under (J,s) when the system is work-
ing in State 2i � 1(i 2X) and the residual life cycle is t. Again,
piðtÞ ¼ kie�ðaiþkiÞt and giðtÞ ¼ aie�ðaiþkiÞt . Two cases are further ana-
lyzed: t 6 s and t > s.

� When t 6 s

In this case, no preventive replacement is required under Policy
A. CðAÞi ðtjJ; sÞ is calculated in the same way as Policy O, i.e.

CðAÞi ðtjJ; sÞ ¼ CðOÞi ðtÞ; t 6 s; i 2 X ð8Þ

� When t > s

Note that for this case, the deterioration of the system is no hea-
vier than 2J � 1(1 6 J < N); otherwise, the system should have been
preventively replaced under Policy A. Consequently, we have

CðAÞi ðtjJ;sÞ¼ e�ðaiþkiþdÞðt�sÞCðOÞi ðsÞ

þ
R t
s miþdiþCðAÞi ðxjJ;sÞ
h i

kie�ðaiþkiþdÞðt�xÞdx

þ
R t
s CðAÞiþ1ðxjJ;sÞaie�ðaiþkiþdÞðt�xÞdx for i¼1;2; . . . ; J�1

CðAÞJ ðtjJ;sÞ¼ e�ðaJþkJþdÞðt�sÞCðOÞJ ðsÞ

þ
R t
s mJþdJþCðAÞJ ðxjJ;sÞ
h i

kJe�ðaJþkJþdÞðt�xÞdx

þ
R t
s rJþ1þCðAÞ1 ðxjJ;sÞ
h i

aJe�ðaJþkJþdÞðt�xÞdx

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð9Þ

Since s 6 L, the analytical form of CðAÞ1 ðLjJ; sÞ is determined by (4)
and (9). We present the results in the following Proposition.

Proposition 2. For an N-stage degradation system that initially
works under a perfect condition, the close-to-explicit form of the
EDMC for Policy A under maintenance thresholds (J,s) is given as
Proof. Let u = t � s(u P 0) and define HðAÞi ðujJ; sÞ ¼ CðAÞi ðtjJ; sÞ for
any t P s. Eq. (9) can be rewritten as

HðAÞi ðujJ;sÞ¼ e�ðaiþkiþdÞuCðOÞi ðsÞ

þ
R u

0 miþdiþHðAÞi ðxjJ;sÞ
h i

kie�ðaiþkiþdÞðu�xÞdx

þ
R u

0 HðAÞiþ1ðxjJ;sÞaie�ðaiþkiþdÞðu�xÞdx for i¼1;2; . . . ; J�1

HðAÞJ ðujJ;sÞ¼ e�ðaJþkJþdÞuCðOÞJ ðsÞ

þ
R u

0 mJþdJþHðAÞJ ðxjJ;sÞ
h i

kJe�ðaJþkJþdÞðu�xÞdx

þ
R u

0 rJþ1þHðAÞ1 ðxjJ;sÞ
h i

aJe�ðaJþkJþdÞðu�xÞdx

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð11Þ

Define HðAÞi ðsjJ; sÞ ¼L HðAÞi ðujJ; sÞ
h i

as the Laplace transform of
HðAÞi ðujJ; sÞ. We then have

HðAÞi ðsjJ; sÞ ¼
eiþsCðOÞ

i
ðsÞ

sðsþaiþdÞ þ HðAÞiþ1ðsjJ; sÞ
ai

sþaiþd for i ¼ 1;2; . . . ; J � 1

HðAÞJ ðsjJ; sÞ ¼
eJþrJþ1aJþsCðOÞ

J
ðsÞ

sðsþaJþdÞ þ HðAÞ1 ðsjJ; sÞ
aJ

sþaJþd

8>><>>:
ð12Þ
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After some simplification, HðAÞ1 ðsjJ; sÞ is given as
HðAÞ1 ðsjJ; sÞ ¼
PJ�1

j¼1

Qj�1
k¼0ak ej þ sCðOÞj ðsÞ

� �QJ
k¼jþ1ðsþ ak þ dÞ

h i
þ
QJ�1

k¼0ak eJ þ rJþ1aJ þ sCðOÞJ ðsÞ
� �

s
QJ

j¼1ðsþ aj þ dÞ �
QJ

j¼1aj

h i ð13Þ
Since CðAÞ1 ðLjJ; sÞ ¼ HðAÞ1 ðL� sjJ; sÞ, from (13), Proposition 2 is
therefore obtained. h
3.4. The EDMC model for Policy B

In this section, we investigate the EDMC model for the customer
under Policy B, i.e. corrective replacements. Similarly, let CðBÞi ðtjJ; sÞ
represent the EDMC under (J,s) when the system is working in
State 2i � 1 (i 2X) and the residual life cycle is t. Again, two cases
are further considered: t 6 s and t > s.

� When t 6 s

For this case, no corrective replacement is conducted. We sim-
ply have

CðBÞi ðtjJ; sÞ ¼ CðOÞi ðtÞ; t 6 s; i 2 X ð14Þ

� When t > s

Under Policy B, the system may deteriorate to any of the oper-
ational states. Therefore we have

CðBÞi ðtjJ; sÞ ¼ e�ðaiþkiþdÞðt�sÞCðOÞi ðsÞ

þ
R t
s mi þ di þ CðBÞi ðxjJ; sÞ
h i

kie�ðaiþkiþdÞðt�xÞdx

þ
R t
s CðBÞiþ1ðxjJ; sÞaie�ðaiþkiþdÞðt�xÞdx for i ¼ 1;2; . . . ; J

CðBÞi ðtjJ; sÞ ¼ e�ðaiþkiþdÞðt�sÞCðOÞi ðsÞ

þ
R t
s ri þ di þ CðBÞ1 ðxjJ; sÞ
h i

kie�ðaiþkiþdÞðt�xÞdx

þ
R t
s CðBÞiþ1ðxjJ; sÞaie�ðaiþkiþdÞðt�xÞdx

for i ¼ J þ 1; J þ 2; . . . ;N � 1

CðBÞN ðtjJ; sÞ ¼ e�ðaNþkNþdÞðt�sÞCðOÞN ðsÞ
þ
R t
s rN þ dN þ CðBÞ1 ðxjJ; sÞ
h i

kNe�ðaNþkNþdÞðt�xÞdx

þ
R t
s rNþ1 þ dNþ1 þ CðBÞ1 ðxjJ; sÞ
h i

aNe�ðaNþkNþdÞðt�xÞdx

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:
ð15Þ

To further derive the analytical form of CðBÞi ðLjJ; sÞ, we follow
similar procedures as Proposition 2.

Proposition 3. For an N-stage degradation system that initially
works under a perfect condition, the close-to-explicit form of the
EDMC for Policy B under maintenance threshold (J,s) is given as

CðBÞ1 ðLjJ; sÞ ¼ L�1 UðsjJ; sÞ
VðsjJ; sÞ

� �� 	����
t¼L�s

ð16Þ

where fi ¼ kiðri �miÞ;uiðsÞ ¼ ei þ sCð0Þi ðsÞ ði 2 XÞ, and

UðsjJ;sÞ¼
XJ

j¼1

Yj�1

k¼0

ak

 !
�ujðsÞ �

YJ

k¼jþ1

ðsþakþdÞ
 !"

�
YN

k¼Jþ1

ðsþakþkkþdÞ
 !#

þ
XN

j¼Jþ1

Yj�1

k¼0

ak

 !
�ðujðsÞþ fjÞ �

YN

k¼jþ1

ðsþakþkkþdÞ
 !" #

ð17Þ
VðsjJ;sÞ¼ s
YJ

j¼1

ðsþajþdÞ
 ! YN

j¼Jþ1

ðsþajþkjþdÞ
 !"

�
XN

j¼Jþ1

Yj�1

k¼0

ak

 !
�kj �

YN

k¼jþ1

ðsþakþkkþdÞ
 !" #

�
YN

j¼0

aj

#
ð18Þ
Proof. Let u = t � s(u P 0) and define HðBÞi ðujJ; sÞ ¼ CðBÞi ðtjJ; sÞ for
any t P s. The remaining procedure is identical to (11)–(13) in
Proposition 2. h
4. Optimization of the maintenance thresholds

In the foregoing analysis, we have derived the close-to-explicit
forms of the EDMC for Policies A and B when the maintenance
thresholds (J,s) are given. Here we further consider the methodol-
ogies for optimizing (J,s) under each of the policies.

4.1. Method 1: optimizing (J,s) using Laplace inversion

A straightforward way for optimize (J,s) is to obtain the time-
domain functions of the EDMC using the Laplace inversion tech-
nique and repeat the same process over the domain of J and s. Note
that the frequency-domain functions in the brackets of (4), (10)
and (16) have a simple form that both the numerator and the
denominator are rational polynomial functions of s and the degree
of the numerator (in terms of s) is smaller than that of the denom-
inator. For such functions, the fundamental theory for conducting
the inversion is to apply the Heaviside’s expansion theorem. Details
of the theorem can be found in any textbook of complex analysis.
Note that manually implementing the expansion technique is often
cumbersome. Alternatively, scientific computing software, such as
Matlab, has the embedded function for implementing such tech-
nique and is very easy to use. On the other hand, as we will see
in the following numerical session, the number of inversions for
each policy is entirely determined by the domain of J (i.e.
J = 1,2, . . . ,N � 1) (Cð0Þi ðsÞ; i 2 X are considered as symbolic values
during the inversion). In other words, both Policies A and B re-
quires merely N � 1 times of inversion. By further optimizing these
N � 1 time-domain functions for each of the policy, optimal main-
tenance thresholds (J�,s�) can be easily obtained.

Note that nowadays almost all types of the numerical solvers
are able to conduct calculations for any pre-specified number of
significant digits required. Consequently, the advantage of the
above method is that it provides the de facto ‘‘analytical” form of
the EDMC in a very efficient way, which subsequently guarantees
the accuracy of the optimization process. On the other hand, how-
ever, the issue of numerical stability associated with existing (La-
place) inversion techniques (Kwok & Barthez, 1989) may surface
when the probability of the root-overlapping in the frequency-do-
main function becomes significantly high, which for our case may
only be observed in the MSS with large number of states (reflected
by the degree of s in the denominator). Theoretically, such issue
can still be addressed by increasing the computational efforts.
But clearly this will compromise the efficiency of the numerical
inversion. Therefore, in the following we consider an alternative
method that can approximate the EDMC and optimize (J, s) directly
on the time domain.
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4.2. Method 2: optimizing (J,s) using discretization in the time domain

We first discretize the integral operator in (2), (9) and (15) be-
fore approximating the EDMC in the time domain.

Set tj = jh(j = 0,1,2, . . . ,h) and L = th = hh, where h is the minimal
step of the approximation. Further set s = lhs(l = 0,1, . . . ,L/hs) as the
threshold of the residual life cycle. Note that hs may not necessarily
equal to h. It could be multiples of h and depend on the accuracy
requirements of the optimization.

Let eC ð0Þi ðtÞ; eC ðAÞi ðtjJ; sÞ and eC ðBÞi ðtjJ; sÞ represent the numerical
approximations of Cð0Þi ðtÞ;C

ðAÞ
i ðtjJ; sÞ, and CðBÞi ðtjJ; sÞ respectively.

For Policy O:

eC ð0Þi ðtjÞ ¼
Pj�1

k¼0

R tkþ1
tk

mi þ di þ Cð0Þi ðxÞ
� �

kie�ðaiþkiþdÞðtj�xÞdx
�

þ
R tkþ1

tk
cð0Þiþ1ðxÞaie�ðaiþkiþdÞðtj�xÞdx

�
�
Pj�1

k¼0
h � e�ðaiþkiþdÞðtj�tkÞ � ei þ ki

eC ð0Þi ðtkÞ þ ai
eC ð0Þiþ1ðtkÞ

h i
for i ¼ 1;2; . . . ;N � 1eC ð0ÞN ðtjÞ �

Pj�1

k¼0
h � e�ðaNþkNþdÞðtj�tkÞ � eN þ kN

eC ð0ÞN ðtkÞ þ aN
eC ð0Þ1 ðtkÞ

h i

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð19Þ

To further reduce the computational complexity, Eq. (19) is
rewritten in such a linear form that the EDMC with residual time
t = tj only relies on the EDMC at t = tj�1:

eC ð0Þi ðtjÞ � e�ðaiþkiþdÞh eC ð0Þi ðtj�1Þð1þ hkiÞ þ ai
eC ð0Þiþ1ðtj�1Þhþ eih

h i
for i ¼ 1;2; . . . ;N � 1eC ð0ÞN ðtjÞ � e�ðaNþkNþdÞh eC ð0ÞN ðtj�1Þð1þ hkNÞ þ aN

eC ð0Þ1 ðtj�1Þhþ eNh
h i

8><>:
ð20Þ

For Policy A:
For j = 0,1,2, . . . , lhs/h and any i 2X, we haveeC ðAÞi ðtjjJ; sÞ ¼ eC ð0Þi ðtjÞ ð21Þ

For j = lhs/h + 1, lhs/h + 2, . . . ,h, we present (9) in a similar form
as (20):
eC ðAÞi ðtjjJ;sÞ� e�ðaiþkiþdÞh eC ðAÞi ðtj�1jJ;sÞð1þhkiÞþai
eC ðAÞiþ1ðtj�1jJ;sÞhþeih

h i
for i¼1;2; . . . ; J�1

eC ðAÞJ ðtjjJ;sÞ� e�ðaJþkJþdÞh eC ðAÞJ ðtj�1jJ;sÞð1þhkJÞþaJ
eC ðAÞ1 ðtj�1jJ;sÞhþðeJþ rJþ1aJÞh

h i
8><>: ð22Þ
For Policy B:
For j = 0,1,2, . . . , lhs/h and any i 2XeC ðBÞi ðtjjJ; sÞ ¼ eC ð0Þi ðtjÞ ð23Þ

For j = lhs/h + 1,lhs/h + 2, . . . ,h

eC ðBÞi ðtjjJ;sÞ� e�ðaiþkiþdÞh eC ðBÞi ðtj�1jJ;sÞð1þhkiÞ
h

þai
eC ðBÞiþ1ðtj�1jJ;sÞhþeih

i
for i¼1;2; . . . ; J

eC ðBÞi ðtjjJ;sÞ� e�ðaiþkiþdÞh eC ðBÞi ðtj�1jJ;sÞð1þhkiÞ
h

þai
eC ðBÞiþ1ðtj�1jJ;sÞhþðeiþ fiÞh

i
for i¼ Jþ1;2; . . . ;N�1

eC ðBÞN ðtjjJ;sÞ� e�ðaNþkNþdÞh eC ðBÞN ðtj�1jJ;sÞþðkNþaNÞ
h

þeC ðBÞ1 ðtj�1jJ;sÞhþðeNþ fNÞh
i

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð24Þ
An algorithm for optimizing (J,s)

Step 1: Select h and let L = hh. Set eC ð0Þi ðt0Þ ¼ eC ð0Þi ð0Þ ¼ 0 for any
i 2X.

Step 2: Calculate eC ð0Þi ðtjÞ for j = 1,2, . . . ,h and any i 2X following
(20).

Select hs. For each s = khs(k = 0,1, . . . ,L/hs) and J = 1,2, . . . ,N � 1
Step 3: Set eC ðAÞi ðtjjJ; sÞ ¼ eC ðBÞi ðtjjJ; sÞ ¼ eC ð0Þi ðtjÞ for any i 2X and

j = 0,1, . . . ,khs/h.
Step 4: Calculate eC ðAÞi ðtjjJ; sÞ and eC ðBÞi ðtjjJ; sÞ for any i 2X and

j = khs/h + 1,khs/h + 2, . . . ,h following (22) and (24)
respectively.

Step 5: Repeat Step 3–4.
Step 6: Select the optimal (J*,s*) that minimize the value of

minfeC ðAÞ1 ðLjJ; sÞ; eC ðBÞ1 ðLjJ; sÞg.

Remarks: (1) The main advantage of the above method is that it is
stable and can deal with a wide range of system configurations,
which can be subsequently used for the sensitive analysis of the
maintenance optimization. In addition, it can be directly applied
(without any change) for maintaining a MSS that is not perfect
functioning initially since both eC ðAÞi ðLjJ; sÞ and eC ðBÞi ðLjJ; sÞði – 1Þ
are automatically calculated in the algorithm. (2) The main draw-
back of the method is that the optimization process is relatively
time-consuming and less accurate. Reducing h, though enhancing
the accuracy of the optimization, will further increase the compu-
tational efforts significantly. Therefore, h needs to be properly
selected to balance the accuracy and efficiency of the algorithm.
(3) The EDMC is approximated at the lower limit of the integration
and therefore is always smaller than the exact result.
5. Numerical example

In this section we illustrate the optimization process with an
example using both methods.

Consider the following parameters for a MSS with 4-stage deg-
radation (N = 4). Let L = 5 year and d = 0.05/year. The transition
rates for degradation are a1 = 0.9/year, a2 = 0.8/year, a3 = 0.9/year
and a4 = 1.1/year. The Poisson failure rates are k1 = 0.4/year,
k2 = 0.6/year, k3 = 1.0/year and k4 = 1.2/year. The replacement costs
are r1 = 200, r2 = 240, r3 = 360, r4 = 520 and r5 = 720. To further
investigate the impact of different cost structures on the optimal
policies, we consider the following three scenarios.

Scenario 1: ri
mi
¼ 4ði ¼ 1;2;3;4Þ and di = 20(i = 1,2,3,4,5), i.e. low

repair and downtime cost.
Scenario 2: ri

mi
¼ 4ði ¼ 1;2;3;4Þ and di = 80(i = 1,2,3,4,5), i.e. low

repair cost and high downtime cost.
Scenario 3: ri

mi
¼ 2ði ¼ 1;2;3;4Þ and di = 80(i = 1,2,3,4,5), i.e.

high repair and downtime cost.

Results: First of all, the de facto ‘‘analytical” forms of the EDMC
as functions of (J,s) are derived and listed in Appendix using La-
place inversion techniques (Method 1). Note that we only show
the results for Scenario 1 because it is sufficient for the demonstra-
tion purpose. Here Cð0Þi ðsÞ ði 2 XÞ are treated as symbolic values



Table 1
Selecting a proper minimal interval h.

Scenario ri
mi

di Cð0Þ1 ðLÞ h = 0.1 h = 0.01 h = 0.001

eC ð0Þ1 ðLÞ Err% eC ð0Þ1 ðLÞ Err% eC ð0Þ1 ðLÞ Err%

1 4 20 799.5 429.6 46.3 747.7 6.5 794.1 0.7
2 4 80 1023.2 566.3 44.7 959.5 6.2 1016.7 0.6
3 2 80 1279.6 720.6 43.7 1202.0 6.1 1271.7 0.6
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during the inversion for Policies A and B and the number of
inversions under each of the policies is simply 3(=N � 1). For Meth-
od 2, we first select a proper minimal interval h to guarantee the
accuracy of the approximation. Table 1 illustrates that h = 0.001
is potentially a good choice since the error between eC ð0Þ1 ðLÞ (using
Method 2) and Cð0Þ1 (L) (using Method 1) is less than 1%. From the
efficiency point of view, further reducing h, say, from 0.001 to
0.0001, barely improves the accuracy of the approximation; for
our case, it will increase the system run time from 10 min to hours.
Therefore, h = 0.001 is considered cost-effective here and is applied
thereafter.

Optimal maintenance thresholds (J*,s*) using both methods are
presented in Figs. 2–4 with different values of the cost parameters.
It is not surprising that the results given by Method 2 when
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Fig. 3. The EDMC as a functio
h = 0.001 almost overlap with those using Method 1, which always
appear to be slightly higher. Based on the results using the Laplace
inversion (Method 1), the following observations are made.

For Scenario 1, Policy B is a better choice for the customer and
the minimum EDMC over the 5 years is 655.9 under J* = 2 and
s* = 0.9 year. In other words, the system is always correctively re-
placed when it fails during the 3rd stage degradation and the resid-
ual life cycle is longer than 0.9 year. For Scenario 2, Policy A (or
preventive replacement) should be enforced and the minimum
EDMC over the 5 years is 804.8 under J* = 2 and s* = 1.2 year. The
optimal choice for Scenario 3 is Policy B and the minimum EDMC
over the interval is 909.1 under J* = 1 and s* = 0.6 year. From the
above results, we conclude that Policy A outperforms Policy B typ-
ically when the downtime cost is considerably high compared to
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the minimal repair cost. In addition, the optimal s* under Policy A
is larger than the value under Policy B. The interpretation is that for
Policy A, more stringent requirements on s* are necessary as a bal-
ance for more aggressive replacement strategies – preventive
replacement, when compared with the corrective replacement
strategies under Policy B. Furthermore, the results in Scenario 3
also indicate that when both repair and downtime cost are high,
the system should be correctively replaced upon failure even when
it is working under a relatively good condition (e.g. the 2nd degra-
dation stage for Scenario 3). Finally, we use Method 2 for the sen-
sitivity analysis of another cost parameter – the discounted factor
d. Results do not show a substantial impact on (J*,s*) (we therefore
do not list the results here). Alternatively, it could be important in
more practical situations, say, when the cost estimation is also cru-
cial to the decision makers. (Note that for the current case, the
minimum cost is 10–20% higher if d = 0.)
6. Conclusion

In this paper, we considered a finite life-cycle MSS that is sub-
ject to both degradation and Poisson failures. We study two classes
of maintenance policies, that of preventive replacements and cor-
rective replacements. For both policies, the EDMC is derived as a
function of two control parameters – a threshold level on the cur-
rent state of the system, and a threshold level on the residual life
cycle. In order to obtain the optimal maintenance thresholds to
minimize the EDMC, two different methodologies are proposed
which utilizes Laplace transform (inversion) techniques and
time-domain numerical approximation respectively. The applica-
tions of both methods are illustrated using a numerical case.
Through computational examples, we demonstrate that preventive
replacements outperform corrective replacements typically when
the downtime cost of each failure is relatively high compared to
the repair cost. The two proposed replacement policies can effec-
tively detect necessary replacements for the condition when the
system has already experienced heavy deterioration and the
remaining service time is still long, but can also avoid the excessive
replacements for the condition when the system has only experi-
enced minor deterioration.

Our work can be further extended in the following directions.
First, rather than using a continuous-time Markov process model
to describe the system aging as in this paper, more general models
can be developed (e.g. semi-Markov), but this is expected to in-
crease computational efforts substantially. Second, we assumed
that imperfect repair is not available to the customer. More general
results can be derived when the repair restores the system to one
of the previous operational states other than merely ‘minimal’
(Soro, Nourelfath, & Ait-Kadi, 2010). Third, we assume that the sys-
tem is under continuous and perfect monitoring. Such services
may not be available in practice. More general situations like ‘silent
failures’ or imperfect inspections may be considered. Finally, some
systems are under certain forms of service contracts, e.g. mainte-
nance service contract, (extended) warranty service, etc. For these
cases, part of the maintenance cost of the customer (e.g. minimal
repair cost during warranty) may be shared by the manufacturer
or the service provider. As a result, the replacement policies for
the customer could be very different when such extra services
are considered. The situation may become even more complicated
when deciding whether the replacement of the system will renew
the service contract or not.
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Appendix A

The ‘‘analytical” form of the EDMC for Scenario 1 is given as:
Policy O

Cð0Þ1 ðsÞ ¼ 4772:3� 5098:8e�0:05s þ 100:0e�1:90s

þ ð226:5 cos 0:91sþ 201:6 sin 0:91sÞe�0:97s

Cð0Þ2 ðsÞ ¼ 5006:3� 5098:8e�0:05s � 105:6e�1:90s

þ ð198:2 cos 0:91s� 235:2 sin 0:91sÞe�0:97s

Cð0Þ3 ðsÞ ¼ 5259:2� 5098:8e�0:05s þ 138:7e�1:90s

� ð299:1 cos 0:91sþ 189:4 sin 0:91sÞe�0:97s

Cð0Þ4 ðsÞ ¼ 5429:1� 5098:8e�0:05s � 146:6e�1:90s

� ð183:8 cos 0:91s� 308:4 sin 0:91sÞe�0:97s
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Policy A

CðAÞ1 ðLj1;sÞ¼4880:0þ Cð0Þ1 ðsÞ�4880:0
� �

e�0:05ðL�sÞ

CðAÞ1 ðLj2;sÞ¼3728:0þ 0:47Cð0Þ1 ðsÞþ0:53Cð0Þ2 ðsÞ�3821:2
� �

e�0:05ðL�sÞ

þ 0:53Cð0Þ1 ðsÞ�0:53Cð0Þ2 ðsÞþ93:2
� �

e�1:75ðL�sÞ

CðAÞ1 ðLj3;sÞ¼4027:8

þ 0:32Cð0Þ1 ðsÞþ0:36Cð0Þ2 ðsÞþ0:32Cð0Þ3 ðsÞ�4224
� �

e�0:05ðL�sÞ

þ 0:68Cð0Þ1 ðsÞ�0:36Cð0Þ2 ðsÞ�0:32Cð0Þ3 ðsÞþ196:2
� �h

cos0:75ðL�sÞ

� 0:02Cð0Þ1 ðsÞ�0:58Cð0Þ2 ðsÞþ0:56Cð0Þ3 ðsÞ�109:2
� �
sin0:75ðL�sÞ�e�1:35ðL�sÞ

Policy B
CðBÞ1 ðLj1;sÞ¼3691:8þ 0:50Cð0Þ1 ðsÞþ0:32Cð0Þ2 ðsÞþ0:13Cð0Þ3 ðsÞþ0:05Cð0Þ4 ðsÞ�3822:8
� �

e�0:05ðL�sÞ

þ 0:13Cð0Þ1 ðsÞ�0:08Cð0Þ2 ðsÞþ0:07Cð0Þ3 ðsÞ�0:12Cð0Þ4 ðsÞþ52:2
� �

e�2:88ðL�sÞ

þ 0:38Cð0Þ1 ðsÞ�0:24Cð0Þ2 ðsÞ�0:20Cð0Þ3 ðsÞþ0:06Cð0Þ4 ðsÞþ78:7
� �

cos1:00ðL�sÞ
h

þ 0:15Cð0Þ1 ðsÞþ0:24Cð0Þ2 ðsÞ�0:18Cð0Þ3 ðsÞ�0:21Cð0Þ4 ðsÞþ135:8
� �

sin1:00ðL�sÞ
i
e�1:88ðL�sÞ

CðBÞ1 ðLj2; sÞ ¼ 3663:0þ 0:36Cð0Þ1 ðsÞ þ 0:40Cð0Þ2 ðsÞ þ 0:17Cð0Þ3 ðsÞ þ 0:07Cð0Þ4 ðsÞ � 3828:8
� �

e�0:05ðL�sÞ

þ 0:10Cð0Þ1 ðsÞ � 0:05Cð0Þ2 ðsÞ þ 0:05Cð0Þ3 ðsÞ � 0:10Cð0Þ4 ðsÞ þ 47:6
� �

e�2:77ðL�sÞ

þ 0:23Cð0Þ1 ðsÞ þ 0:20Cð0Þ2 ðsÞ � 0:21Cð0Þ3 ðsÞ � 0:22Cð0Þ4 ðsÞ þ 158:4
� �

sin 1:02ðL� sÞ
h

þ 0:54Cð0Þ1 ðsÞ � 0:36Cð0Þ2 ðsÞ � 0:22Cð0Þ3 ðsÞ þ 0:04Cð0Þ4 ðsÞ þ 118:2
� �

cos 1:02ðL� sÞ
i
e�1:64ðL�sÞ

CðBÞ1 ðLj3; sÞ ¼ 4107:9þ ð0:28Cð0Þ1 ðsÞ þ 0:32Cð0Þ2 ðsÞ þ 0:28Cð0Þ3 ðsÞ þ 0:11Cð0Þ4 ðsÞ � 4346:0Þe�0:05ðL�sÞ

þ ð0:11Cð0Þ1 ðsÞ � 0:06Cð0Þ2 ðsÞ þ 0:03Cð0Þ3 ðsÞ � 0:08Cð0Þ4 ðsÞ þ 45:2Þe�2:64ðL�sÞ

þ 0:60Cð0Þ1 ðsÞ � 0:26Cð0Þ2 ðsÞ � 0:31Cð0Þ3 ðsÞ � 0:03Cð0Þ4 ðsÞ þ 192:9
� �

cos 0:96ðL� sÞ
h

þ 0:09Cð0Þ1 ðsÞ þ 0:47Cð0Þ2 ðsÞ � 0:30Cð0Þ3 ðsÞ � 0:26Cð0Þ4 ðsÞ þ 169:8
� �

sin 0:96ðL� sÞ
i
e�1:20ðL�sÞ
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