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Optimal Replacement Policy for Multi-State
System Under Imperfect Maintenance

Yu Liu and Hong-Zhong Huang, Member, IEEE

Abstract—A multi-state system (MSS) has more than two dis-
crete states corresponding to different performance rates. Usually,
MSS is viewed as in a failure state once its performance rate falls
below user demand, and maintenance is carried out immediately.
Generally, the repaired system cannot be regarded as good as new,
and oftentimes the system restoration is stochastic. We introduce
an optimal replacement policy for MSSs, called policy . Under
this policy, a MSS is replaced whenever its failure number reaches

. We assess the dynamic element state probabilities of each aging
multi-state element (MSE) using a stochastic process model which
is identified as a non-homogeneous continuous time Markov model
(NHCTMM), and we evaluate the state distribution of the entire
MSS via the combination of the stochastic process, and the uni-
versal generating function (UGF). To quantify the quality of imper-
fect maintenance, a quasi-renewal process is used to describe the
stochastic behavior of each individual MSE after repair. Moreover,
we derive an explicit expression of the long-run expected profit per
unit time, and determine the optimal failure number to replace
the entire system. The proposed models are demonstrated via an il-
lustrative case, followed by some comparative studies.

Index Terms—Imperfect maintenance, maintenance policy,
multi-state systems, non-homogeneous continuous time Markov
model, quasi-renewal process, universal generating function.

ACRONYMS

MSS multi-state system

MSE multi-state element

MTTF mean time to failure

UGF universal generating function

NHCTMM non-homogeneous continuous time Markov
model

NOTATION

Number of the -independent element in the MSS

Number of possible states for element

Performance rate of element in state

Set of all possible performance rates of element

Random variable representing the performance
rate of element at time
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Probability of element in state at time in the
first repair cycle

Set of probabilities associated with different states
of element

Intensity of element transiting from state to
state at time in the first repair cycle

Instantaneous transition intensity matrix of
element

Number of possible system states

Performance rate of MSS in its state

Probability of MSS in state at time in the first
repair cycle

Probability of MSS in state at time in the th
repair cycle

Random variable representing the performance
rate of MSS at time

MSS structure function

User demand

Unity function: , and

Operator used in UGF to calculate MSS reliability

Operator used in UGF to calculate the expected
performance rate

System reliability at time under the user demand

System failure probability density function under
user demand

System failure rate under the user demand

System failure probability density function in the
th system repair cycle under user demand

System reliability function in the th system repair
cycle under user demand

System failure rate in the th system repair cycle
under user demand

UGF of the element in the th repair cycle

UGF of the entire MSS in the th repair cycle

Random time of the element sojourning in its
state in the th system repair cycle

Quasi-renewal parameter for the lifetime random
variable of element

Quasi-renewal parameter for the repair time
random variable of element
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Working reward of system per unit performance
rate per unit time

Repair cost per unit time

Complete replacement cost for the entire system

Replacement cost per unit time

Random time of system sojourning in state in
the th repair cycle

Random lifetime of system in the th repair cycle

Random repair time of element in the th repair
cycle

Random repair time of system in the th repair
cycle

Time duration of the th replacement cycle

Number of system failures before complete
replacement

Optimal number of system failures before
complete replacement

Long run expected profit per unit time under
policy

Maximum long run expected profit per unit time
under the optimal policy

Mean time to system failure in the th repair cycle

Mean time for element repair in the th repair
cycle

Mean time for system repair in the th repair cycle

Mean time of system sojourning in state during
the th repair cycle

Expectation operator

I. INTRODUCTION

V ARIOUS kinds of systems suffer deterioration, and unex-
pected shock damages after being launched. A complex

system consisting of multiple elements deteriorates gradually
with the failure and degradation of its elements. For the non-re-
pairable system, replacement is carried out once it fails; while
most repairable systems, such as aircrafts, power generators, nu-
clear systems, and computing systems, can be restored to a func-
tioning state through a specific maintenance activity. Therefore,
selecting cost efficient, effective maintenance actions and strate-
gies to improve the reliability and physical performance of com-
plex systems is important work.

Generally speaking, maintenance activities can be classified
into two major categories: corrective (un-planed), and preven-
tive (planned) [1]. Corrective maintenance (CM) refers to any
action that restores the failed system to its working state; preven-
tive maintenance (PM) is defined as a maintenance action car-
ried out when the system is still functioning, with the goal to re-
store the system to a specified better condition through system-
atic detection, correction of slight flaws, inspection, and other
activities that will prolong system life.

To measure the quality of maintenance activities, Pham et al.
[1] classify maintenance into five widely accepted categories

according to its impact on the system or element condition: per-
fect, minimal, imperfect, worse, and worst. In most cases, main-
tenance does not make a system “as good as new” (perfect main-
tenance), or “as bad as old” (minimal maintenance). It is more
realistic to consider that maintenance restores a system to some-
where between these two extremes, and that activity is called
imperfect maintenance. A large amount of literature models im-
perfect maintenance for traditional binary state systems with ei-
ther completely working or totally failed state, and the most
significant among these models include the model (see
Nakagawa [2]), the model (see Block et al. [3]), the

model (see Makis & Jardine [4]), the
Kijima Type I and II models (see Kijima et al. [5] and Kijima
[6]), the improvement factor method (see Malik [7]), the hy-
brid imperfect model (see Lin et al. [8]), the geometric process
(see Lam [9]), and the quasi-renewal model (see Wang & Pham
[10], [11]). Some applications of these imperfect maintenance
models can be found in [11]–[16]. A comprehensive survey of
maintenance policies in binary state systems is presented by
Wang [17]. For systems with more than two states, there exist
some papers discussing the optimal maintenance strategy for
the system with discrete degraded states resulting from cumu-
lative damage [18]–[23]; or state transition [24]–[26]. Most of
these papers assume maintenance action is perfect, or minimal.
Imperfect maintenance for a multi-failure-state system is devel-
oped in [12], [27]–[29]; and is extended to a multi-working and
failure-state system in [30].

The multi-state system (MSS) concerned in the present paper
is defined as a system that has a range of performance levels,
from perfectly functioning to complete failure, resulting from
the degradation or/and failure of some elements in the system
[31]. Such a MSS is usually viewed as in a failure state once its
performance rate falls below the user demand. With these prop-
erties, reliability assessment and optimizing methodology in the
MSSs framework becomes more complicated than in traditional
binary state systems; meanwhile, maintenance modeling in a bi-
nary state system context might be problematic when directly
applied to such MSSs.

There are some efforts focusing on the maintenance problem
for the aforementioned MSSs. For example, Nourelfath et al.
[32], [33] discuss redundancy optimization under limited main-
tenance repairmen. To achieve the required system availability
with minimal lifecycle cost, Levitin & Lisnianski [34] formu-
late a joint redundancy and replacement schedule optimization
problem in which the element version, redundancy level, and
replacement interval are optimized simultaneously. Liu &
Huang [35] studied the optimal replacement policy for MSE
under fuzzy uncertainty. However, these works only assume
that the maintenance action is either perfect, or minimal. Taking
imperfect maintenance into consideration, Levitin et al. [36],
and Nahas et al. [37] generalize a maintenance optimization
problem to a MSS with binary capacity elements intervened
by imperfect PM. The imperfect maintenance model with
age reduction characteristic was directly employed to reflect
the improvement of element condition resulting from the PM
separately performed on each element. The authors assume that
repair or PM is executed immediately when any element fails,
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or the system reliability reaches the fixed threshold. With the
aim to minimize the total maintenance cost while providing the
desired system reliability, an optimization is therefore formu-
lated to find the optimal sequence of PM actions chosen from
a set of available actions. Nevertheless, the restriction of the
proposed age reduction model is that the model is only feasible
if every MSE is a binary capacity element. In reality, many
MSEs cannot be categorized or simplified to binary capacity
elements.

In [38], authors propose a practical model for MSSs pre-
dictive maintenance, and the “system perspective” maintenance
strategy is first introduced. The “system perspective” means that
the maintenance schedules are predicted or arranged based on
the system state, or performance trend, rather than the states
of individual elements. It is realistic that, in many situations,
one may only be concerned with the whole system performance
trend, and not consider restoring the failed element until system
performance does not satisfy user demand. The main reason
is that, usually, performing maintenance for individual failed
elements requires turning off the whole system, which would
incur too much product lost [39]. For example, oftentimes, re-
pairing the failed element (the element could be a machine or
subsystem) in the manufacturing line, with no buffer among
subsystems, requires someone to turn off the whole system.
Also, special facilities and/or repairmen usually have to be con-
tracted to repair the failed element [46]. Instead of contracting
for these resources every time when individual elements fail,
it is more cost effective to contract only when system perfor-
mance is unacceptable. Furthermore, for some systems, only
total system performance can be monitored directly, and dis-
tinguishing the failed element becomes infeasible except under
elaborate, expensive inspection involving disassembly. In all of
these cases, maintenance actions are only executed whenever
the total system performance falls into an unacceptable region,
and then the whole system will have a comprehensive recovery.
Based on the “system perspective” concept, [38] introduces a
random restoration factor (RF) to describe the imperfect restora-
tion of the whole system after repair, and the impact from the
RF on the time to replacement (TTR) is demonstrated via the
studied cases. Regarding some possible errors and misunder-
standings in [38], we have published a critical paper to present
some comments to their current methodology in [40], and the
authors’ reply is available in [41].

Motivated by [38], we propose a new approach to investi-
gate the optimal replacement strategy from the “system perspec-
tive” for MSSs incorporating imperfect maintenance quality.
Different from the method proposed in [38] which may cause
definition conflict on MSSs if the RF is used [40], we assume
that, after repair, each individual MSE would be restored to its
best functional state, but not in “as good as new” condition.
The transition intensities between element states will propor-
tionally increase after repair, which means that MSEs degrade
more rapidly to a lower performing state. Similar to the imper-
fect maintenance model in traditional binary state systems, the
quasi-renewal process introduced in [10] is employed to de-
scribe the imperfect maintenance quality after repair through
an element state probability function. Furthermore, considering

the age effect, the non-homogeneous continuous time Markov
model (NHCTMM), where the state transition intensity varies
with time, is applied to model the aging MSE. An optimal failure
number can be obtained by minimizing the long-run ex-
pected system profit per unit time.

The remainder of this paper is organized as follows.
Section II briefly introduces the definition of MSSs, aging
MSEs, NHCTMM, and the universal generating function
(UGF). Basic concepts of the quasi-renewal process in binary
state systems is reviewed in Section III. Assumptions, the
formulations of the quasi-renewal process for individual aging
MSE, and the expression of the long-run expected profit per
unit time under policy are presented in Section IV. The
proposed models are demonstrated via an illustrative case of a
three-element series-parallel MSS in Section V, and followed
by discussion, and conclusion in Section VI.

II. MSS DEFINITION AND RELIABILITY ASSESSMENT

A. Definition of MSS, and MSE

A system that can have a finite number of discrete perfor-
mance rates is called a MSS [31]. To analyse MSS behavior,
one has to know the characteristics of its elements. Any system
element can have different states corresponding to the per-
formance rates, represented by the set

(1)

The performance rate of element at any instant
is a random variable taking a value from . There-
fore, for the time interval , where is the MSS opera-
tion period, the performance rate of element forms a stochastic
process. The state distribution of element at any instant can
be represented by the set

(2)

where represents the probability that .

B. NHCTMM for Aging MSE

To describe the degradation process of individual MSE, Lisni-
anski & Levitin [31], [42] employ the homogeneous continuous
time Markov model. Basically, it assumes the time of transition
between any two states follows a negative exponential distribu-
tion, and thus the deteriorating process of MSE has the memo-
ryless property [43]. The hypothesis that the transition intensity
to the next state only depends on the current state is, however,
only applicable to elements having no age effect [44], [45]. In
fact, it is more realistic to consider the case that an element’s
deterioration process is not only related to the current element
state, but also to the age of the element [45], [46]. Taking this
concept into account, the NHCTMM is utilized in this paper
to derive the stochastic behavior of individual aging elements
through considering the age-related increasing state transition
intensity.

For a non-repairable aging MSE, the element transits from the
states with greater performance rate to states with lower perfor-
mance rate. A typical state-space diagram of an aging MSE is
illustrated in Fig. 1.
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Fig. 1. A typical state-space diagram of an aging MSE �.

For element , this performance degradation is characterized
by the stochastic process . The intensity ,

of any transition from state to state
is a monotonically increasing function with respect to element
age. The element state probability is written as

(3)

Similar to [44], and [45], the instantaneous transition intensity
matrix of element is written as (4) at the bottom of the
page, where

(5)

Distinct from the homogeneous continuous time Markov model
proposed in [31], [42], solving the NHCTMM is a complicated
challenge [44]–[47]. How to solve a NHCTMM in an efficient
manner is outside the scope of this paper, and the formulations
given in [44], and [45] are directly used here to obtain the dy-
namic state probability of individual elements. For example,
with the initial conditions , and for

, the probability that element is in its best state
is expressed asd

(6)

and the probability that element is in its state is expressed
as

(7)

The element state distribution satisfies the condition
because, at any time instant , the ele-

ment can always be in one and only in one of states, and all
the states of individual elements compose the complete group
of mutually exclusive events.

C. MSS Reliability Evaluation

Given the MSE state distribution
solved from the NHCTMM, the

element state distribution can be expressed via the universal
generating function (UGF), which is written in the polynomial
form [31], [48]

(8)

The system performance distribution at any time instant can
be determined based on the element state distribution, and it is
written in the same UGF fashion as

(9)

Suppose the MSS consists of MSEs. To obtain the UGF of
arbitrary system structure based on the element UGF, one needs
to apply the composition operations recursively as [31]

(10)

State is the best state with the maximum performance rate,
whereas state 1 is the worst one. This polynomial rep-
resents all of the possible mutually exclusive combinations of
realizations of the variables by relating the probabilities of each
combination to the value of function ,
which is determined by both the system structure, and perfor-
mance rates’ combination property. For example, in the case of

...
...

. . .
...

...
(4)
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a flow transmission type system with two elements connected
in series, one may have

(11)

and for the case of a series-connected time processing system,
one has

(12)

Generally, the UGF approach is a general, efficient method
to evaluate the state probability, and performance rate in many
cases; and it can deal with different kinds of dependencies be-
tween system performance rate, and element performance rate
[49]. With the assistance of the combination of the UGF ap-
proach with the stochastic process identified as a NHCTMM
for individual aging MSE, the system state distribution can be
computed in an efficient way, as stated in [42]. Due to the age
effect on the individual elements, the deterioration process of
the entire MSS is age-related also.

Furthermore, the MSS reliability that, at time instant , the
system has not reached any of the states with the performance
rate less than the specified user demand , is defined using the
operator as

(13)

where the expected performance rate with respect to any instant
is equal to

(14)
The MSS reliability is a summation of probabilities of all the

acceptable states. All the unacceptable states can be regarded as
failed states, and the failure probability is a sum of probabili-
ties of all the unacceptable states. From this perspective, a MSS
under the user demand context can also be regarded as a binary
state system, because one groups all the acceptable states as a
working state, and unacceptable states as a failed state. With the
same manner as in the traditional binary state system, the failure
rate of the MSS is formulated as

(15)

which represents the transition intensity of MSS from accept-
able states to unacceptable states under the user demand , and
the mean time to failure (MTTF) can be written as

(16)
Therefore, with known system failure rate and MTTF, one can
clearly quantify the degradation trends after system repairs, and
further gets more insights to make maintenance decision.

III. QUASI-RENEWAL PROCESS DEFINITION

Wang & Pham introduced quasi-renewal processes [11] to
model the imperfect maintenance of binary state systems. Later
on, a comprehensive application of this theory in maintenance
and warranty issues is summarized in [10].

The original definition of a quasi-renewal process is elabo-
rated as follows. Let be a counting process, and

be a random variable denoting the time between the th
and th event of the process, where . Observing the se-
quence of nonnegative random variables , the
counting process is said to be a quasi-renewal
process with parameter with the first inter-arrival time if

, , , where are i.i.d.,
and . For , the quasi-renewal process becomes the
ordinary renewal process; when , it is called a de-
creasing quasi-renewal process, which can be used to model the
successive system lifetime after repair; is known as an
increasing quasi-renewal process that represents the successive
increasing repair time, and cost in every maintenance activity.

Let’s assume, in a binary state system, that the random vari-
able denotes the system lifetime between the th
and th repair, and form a quasi-renewal
process with parameter . According to [10], one may have

(17)

(18)

(19)

(20)

where , , , and are the failure probability
density function, failure probability function, reliability func-
tion, and failure rate of a new system respectively; , ,

, are the equivalent for the system in the th repair
cycle, respectively. Moreover, the expected value, and variance
of the lifetime between each repair can be given as

(21)

(22)

The quasi-renewal process is an effective method to model
imperfect maintenance because it directly describes the de-
creasing trend of the lifetime after each repair through a
sequence of monotone random variables. However, the original
quasi-renewal process is only successfully adopted to model
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the imperfect maintenance for binary state systems. The details
of using quasi-renewal processes in MSEs are described next.

IV. GENERAL MAINTENANCE MODEL, AND POLICY

In this section, we describe the studied MSS with some as-
sumptions, and propose models to determine the optimal re-
placement strategy.

Assumption 1: A new MSS is installed at time 0, and the
whole system will eventually be replaced by a -identical one
at replacement time.

Assumption 2: The studied MSS might consist of an arbitrary
number of aging MSE connected in an arbitrary structure. The
state probability function of the MSS at any time instant
can be assessed through the NHCTMM of MSE, and the UGF
method as presented in Section II.

Assumption 3: All the MSEs in the MSS, either failed or
working, are restored to their best state after repair. Therefore,
the MSS will return to its best state (state ) also. However,
even if every MSE is restored to its best state, the repaired MSE
cannot be viewed as in a completely new condition. It is more re-
alistic to consider that repair activities restore the MSE to some-
where between “as good as new” and “as bad as old” conditions.
This characterization is true because every MSE degrades with
its usage, even if it is recovered to its best state after repair. The
state transition intensities increase proportionally after repair.
Hence, the pace of degradation from best state to lower state
can become faster with repair times. We use the quasi-renewal
process to describe the degradation trend at the element level for
each repair cycle as follows.

Let us define a sequence of nonnegative random
variables , where ,

denotes the random
time that the MSE sojourns in the th state in the th repair
cycle. If , ,
where random variables , are i.i.d., and

, the counting process , which
represents the cumulative times that MSE falls from the
best state into the worst state 1 after repair, is said to be a
decreasing quasi-renewal process with the parameter once
the transition rates among any pair of states somehow increases
proportionally after each repair activity. Thus, suppose the
state probability of the MSE at the first repair cycle is denoted
as , , which can be obtained via the
NHCTMM mentioned in Section II, or another stochastic
process modeling method, such as a homogeneous Markov
model, or Monte Carlo simulation. The state probability of this
repaired MSE in the th repair cycle is written as ,

. We also assume that the repair activity has
the identical recovery ability whichever elements state the MSE
stays in. In other words, the state probability function of each
repair cycle only depends on the number of repairs, but not
the element state in which the repair activity is executed. The
smaller is, the lower the maintenance quality. Apparently,
if , the quasi-renewal process becomes the ordinary
renewal process, and the repaired MSE can be regarded as a
completely new element in the next repair cycle.

Assumption 4: From the “system perspective,” the MSS is re-
garded as in a failure state whenever its performance rate does

not satisfy the user demand. Repair is triggered once the MSS
falls into one of the unacceptable performance states, where the
performance rate is less than the user demand. Any element state
transition or element failure will not trigger maintenance unless
these element state transitions result in a system transition from
an acceptable state to an unacceptable state under a user demand
context. After repair, all the MSE in the MSS, either failed or
working, are restored to their best state, but with accelerated
state transition rates, which is described via imperfect mainte-
nance as given in Assumption 3. The system state distribution
in the th repair cycle therefore can be computed via the UGF
operations as follows.

(23)

If the performance rates of the states below state (from state
to state 1) cannot satisfy user demand, then the probability

function (or reliability defined in (13)) that the MSS does not fall
into any unacceptable state in the th repair cycle is written as

(24)

In accordance with (15), the failure rate in the th repair cycle
is given by

(25)

Let a sequence of random variables
represent the random

lifetimes of the MSS in each repair cycle. Then the expected
mean time to failure for the first repair cycle is formulated as

(26)

Thus, according to (16) and (24), the expected mean time to
failure in the th failure cycle is

(27)
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The expected mean time of the MSS sojourning in acceptable
state during the th repair cycle is

(28)

Specifically, if the repair activity has identical impact on each
of the MSE in the MSS, i.e. , , then
the UGF of the entire system in the th repair cycle becomes

(29)

Then, instead of (24) and (25), one has

(30)

(31)

Moreover, . In the
same manner, one can also have

. And the sequence of random variables
, which represents the random

lifetimes of MSS in each repair cycle, forms a decreasing
quasi-renewal process. However, these properties don’t hold
once the , are not identical.

Assumption 5: The element repair time doesn’t depend on
the state in which the element stays currently, but only depends
on the number of the repair cycle. We assume that the repair
time of the MSE follows an increasing quasi-renewal process
with parameter , and the repair time is represented by
a sequences of nonnegative random variables .
The expected repair time for the MSE in the th repair cycle
is given by

(32)

If there is only one maintenance facility and team, then the total
repair time required for the entire system in the th repair cycle
is given by

(33)

On the other hand, if there are multiple facilities and teams
working simultaneously, then the total repair time required is
given by

(34)

where is the number of facilities/team. Or the total repair
time required is equal to the maximum time among all of the
repair time for individual MSE,

(35)

The time duration for eventual replacement of the entire system
is denoted by the random variable , where .

Assumption 6: Random variables , , and , for
, , and , are -inde-

pendent random variables.
Assumption 7: We use , , , and to represent the

working reward of MSS per unit performance rate at per unit
time, the cost of per unit time under repair when failed, the re-
placement cost per unit time, and the fixed replacement cost of
the system, respectively. Without loss of generality, let
[12].

The replacement policy being considered is called policy ,
in which whether we replace the whole system or not is based
on the system failure number. The MSS is regarded as failed
when its performance falls below the demand , and the system
is replaced by a -identical, new one when the total number
of failure reaches . Our objective is to determine the optimal
value to maximize the long run expected profit per unit time.

Let be the first replacement time of the MSS under
policy , and be the time duration between the

th replacement and th replacement of the system. Then
forms a renewal process, and the end

time of the replacement forms a renewal point between each re-
placement cycle. We use to denote the long run expected
profit per unit time of the MSS under policy . Thus, we have

(36)

where

(37)

(38)

(39)

and

(40)

Especially, if , and for , instead
of (38)–(40), we have

(41)

(42)
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Fig. 2. MSS structure, and elements’ state-space diagrams.

TABLE I
PARAMETERS FOR EACH ELEMENT

and

(43)

Thus, the optimal policy can be solved via

(44)

V. AN ILLUSTRATIVE CASE

We consider a type of flow transmission MSSs with flow dis-
persion, say a water pipe system [38]. As shown in Fig. 2, the
MSS consists of three aging MSEs, where element 1 and ele-
ment 2 are connected in parallel with each other, while the ele-
ment 3 is connected in series with the others.

The age-related transition intensities in the first repair cycle,
which are linear or quadratic functions in terms of time instant ,
are in Table I. The associated performance rate at each element
state, and the parameters for imperfect repair are also given.

A. Elements and System Performance Rates, and State
Distributions

According to the NHCTMM presented in Section II-B, the
element state distribution can be formulated as follows.

For element 1,

For element 2,

For element 3,

Following Section II-C, the UGFs for the individual elements
in the first repair cycle are expressed as

According to the system structure function and performance rate
combination property, the output performance rate of the entire
MSS is defined as

Using the composition operations , and , the UGF for the

MSS in the first repair cycle is given by

One can obtain the UGF of the entire MSS with the output per-
formance distributions in the first repair cycle following
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TABLE II
PERFORMANCE RATES AND STATE PROBABILITIES OF MSS

TABLE III
REPAIR AND REPLACEMENT PARAMETERS

Fig. 3. Expected profit per unit time, corresponding to � .

where , and in terms of element state distributions are in
Table II.

Assuming the user demand , the reliability of the
MSS in the first repair cycle is given by

Instead of using the NHTCMM to obtain the element state prob-
ability for the new elements, other stochastic process modeling
methods, such as Monte Carlo simulation [50], can also facil-
itate the evaluation of the element state probability. With the
combination of the stochastic process model for individual MSE
with the UGF method, the reliability of the entire MSS can be
assessed efficiently to avoid the dimensionality explosion issue
[42].

B. Maintenance Policy

With the assumption that the user demand is tons/
min, states 2 and 1 are regarded as failure states, and the re-
pair activity is triggered whenever the MSS falls into these two
states. Thus, according to (26), the of the MSS in the
first repair cycle is equal to

Furthermore, the expected time that the MSS sojourns in state 5
within the first repair cycle is equal to

where the numerical integral with interval ,
and rectangle integral function are adopted. Further, one has

According to Assumption 3, the system state probability
function in the th repair cycle is

The integral in (27) and (28) can be approximately solved using
the numerical integral method. Suppose there is only one re-
pair facility available, and the associated parameters, e.g. the
expected repair time, the repair fee per unit time, as well as the
complete replacement cost, are tabulated in Table III. The total
repair time required per repair cycle can be calculated via (33).
Thus, the expected profit per unit time corresponding to is
shown in Fig. 3.

As shown in Fig. 3, the optimal number of failures before re-
placement is , with the maximum expected profit per
unit time .
The reliability, and failure rate in each repair cycle are plotted
in Figs. 4 and 5, respectively. At any fixed point in time in each
repair cycle, the reliability becomes lower with the index of the
repair cycle increasing, and the failure rate is also increasing
with the index of the repair cycle. The results illustrate that the
MSS in each repair cycle has a worse condition than the pre-
vious cycle, and the repair action can not completely restore the
MSS to the “as good as new” condition. It can only recover the
failed MSS to its best state after repair, but with a faster de-
terioration process in the next cycle.

The expected total performance reward and repair cost are
plotted in Fig. 6 with respect to policy to show the trend.
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Fig. 4. System reliability in each repair cycle.

Fig. 5. System failure rate in each repair cycle.

Fig. 6. Tendency of cost, corresponding to policy � .

Obviously, the repair cost is increasing exponentially with .
The increasing rate of performance reward decreases because
the shortens as increases.

TABLE IV
OPTIMAL � , AND ��� � VS. DEMAND �

Fig. 7. System reliability comparison for the 3rd and 6th repair cycle.

C. Some Comparisons

We change the user demand from 3.5 to 1.5 tons/min, and
fix the other parameters. The optimal policy , and are
tabulated in Table IV.

From Table IV, one observes that, although the optimal
failure number is the same for different user demands, the
expected profit per unit time is increasing with the demand
decreasing. Under the lower demand, more system states can
be accepted, and the is thus longer, while more per-
formance rewards can be obtained during each repair cycle.
Actually, a lower demand does not mean a higher expected
profit per unit time. Although a lower demand would lead to
a longer average length of repair cycle, the expected profit per
unit time might become even lower if the system stays at states
with lower performance rates for most of a repair cycle.

To demonstrate the impact from the imperfect repair param-
eters , and , we examine some special cases where ,
and for . Suppose (Case 2),

(Case 3), and . We plot the reliability,
and failure rate of the 3rd, and 6th repair cycles respectively in
Figs. 7 and 8, and compare to the case in the previous subsection
where , , and (Case 1).

From Figs. 7 and 8, one can find that as the index of repair cy-
cles is increasing, the reliability is decreasing, while the failure
rate is increasing. Further, because the repair quality of case 1
is between that of case 2 and case 3, it can be observed that, for
the 3rd and 6th repair cycles, both the reliability, and the failure
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Fig. 8. System failure rate comparison for the 3rd and 6th repair cycle.

TABLE V
OPTIMAL � , AND ��� � VS. �, AND � WHERE � � �, � � �, AND

� � ��� ���	�
��

rate of case 1 are somewhere between those of case 2 and case
3.

More detailed comparisons about effect from the imperfect
repair parameters and are tabulated in Table V when

. With a fixed , both , and decrease as
the value of decreases. This relation is true because a smaller

will lower the of the entire MSS in each repair cycle,
and the expected reward from the performance rate simultane-
ously decreases. Therefore, a smaller will maximize the ex-
pected profit per unit time. If one fixes , and increases , the
expected repair time, and cost both increase monotonously. The
expected profit per unit time, and the optimal policy de-
crease because more repair time is required in each repair cycle
when is large. In other words, instead of performing imperfect
repair, which would be much more cost expensive after several
repair cycles, replacing the entire MSS is more cost efficient.

To illustrate the impact from changing the imperfect repair
parameter of individual elements, we only change one of the
parameters in Case 1, and the corresponding optimal results

TABLE VI
OPTIMAL � , AND ��� � VS. � , AND �

are shown in Table VI. One observes that items #3, and #5 in
Table VI have a lower expected profit per unit time compared
with Case 1, which is $48.35. The imperfect repair parameters

, and have a large impact on the maximum expected profit
per unit time, and it is worth allocating more effort and main-
tenance resources to improve the repair quality with the aim to
restore elements 2 and 3 to a better condition. On the other hand,
we can see from items #2, and # 4 that imperfect repair param-
eters , and have the least impact, and less effort and re-
sources are necessary to reduce their values.

VI. DISCUSSION, AND CONCLUSION

In this paper, we introduce an optimal replacement policy for
MSSs. Maintenance activities are taken into account based on
the overall performance degradation trend. This maintenance
strategy would be efficient in the case where the strategy of sep-
arately performing inspection and maintenance for MSEs is ex-
pensive, or involves too much product lost. Through the com-
bined NHCTMM and UGF method, the state performance rate,
and associated state probabilities of the whole MSS are easily
obtained. The MSS is regarded as failed when its total perfor-
mance rate is lower than the user demand. A comprehensive re-
pair is triggered immediately whenever the MSS fails, and it re-
stores all the elements to their best state. However, this kind of
repair restores the element to somewhere between the “as good
as new” condition and the “as bad as old” condition. An imper-
fect maintenance model using a quasi-renewal process is pro-
posed to model the degradation trend of the aging MSE after
each repair action. The , and failure rate of the entire
MSS under certain demand are formulated, and their trends in
each imperfect repair cycle are demonstrated in the illustrative
case. With the aim to maximize the long-run expected profit per
unit time of the entire MSS, an explicit expression involving
the maintenance cost and performance reward is formulated to
obtain the optimal replacement policy . The user demand,
and quasi-renewal parameters impact the optimal policy sig-
nificantly. These parameters need to be carefully determined
according to field data in practical problems before decision
making.

However, the proposed method has some restrictions.
1) Only one kind of repair action is considered in this work.

In reality, preventive maintenance may intervene at pre-set
time intervals to restore MSEs to a certain state to avoid
a sudden failure. Incorporating the PM into the current re-
placement policy is worth investigating.
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2) The user demand may not be a fixed value all the time. In
some cases, such as in a power station or a water supply sta-
tion, demands are stochastic, and the optimal maintenance
policy needs to be further researched with considering the
random uncertainty from user demand.

3) The imperfect repair parameters are pre-determined in our
studied case. It would be more reasonable to regard these
parameters as decision variables which can vary depending
on how many maintenance resource are allocated. This ap-
proach will provide more flexibility in maintenance deci-
sion making.
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