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Abstract—Many systems are required to perform a series of mis-
sions with finite breaks between any two consecutive missions. In
such a case, one of the most widely used maintenance policies is a
selective maintenance in which a subset of feasible maintenance ac-
tions is chosen to be performed with the aim at achieving the subse-
quent mission success under limited maintenance resources. Tradi-
tional selective maintenance optimization reported in the literature
only focuses on binary state systems. Most systems in industrial ap-
plications, however, have more than two states in the deterioration
process. In this work, a selective maintenance policy for multi-state
systems (MSS) consisting of binary state elements is investigated.
Taking the imperfect maintenance quality into consideration, the
Kijima model is reviewed, and a cost-maintenance quality rela-
tionship which considers the age reduction factor as a function in
terms of maintenance cost is established. Moreover, with the as-
sistance of the universal generating function (UGF) method, the
probability of the repaired MSS successfully completing the sub-
sequent mission is formulated. In place of enumerative methods, a
genetic algorithm (GA) is employed to solve the complicated opti-
mization problem where both multi-state systems, and imperfect
maintenance models are taken into account. The effectiveness of
the proposed method is demonstrated via a case study of a power
station coal transportation system. Finally, a comparative anal-
ysis between the strategies with and without considering imperfect
maintenance is conducted, and it is concluded that incorporating
imperfect maintenance quality into selective maintenance achieves
better outcomes.

Index Terms—Genetic algorithm, imperfect maintenance, main-
tenance cost allocation, multi-state systems, selective maintenance,
universal generating function.
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NOTATION
Number of s-independent elements in the MSS
Number of states for element ¢
Set of possible performance rates of element ¢
Performance rate of element ¢ in state j
Set of state probabilities for element 7 at time ¢
Probability of element 7 staying at state j at time ¢

Random variable representing the performance
rate of element ¢ at time ¢
Number of states for the MSS

Set of possible system performance rates
Performance rate of the MSS in state j

Set of system state probabilities at time ¢
Probability of the MSS being in state j at time ¢

Random variable representing the system
performance rate at time ¢
MSS structure function

The #th possible demand level in the next mission

Probability of the demand level being equal to w;
in the next mission

Effective age of element 7 at the beginning of the
kth mission

Effective age of element ¢ at the end of the kth
mission

Binary variable representing the status of element
¢ at the beginning of the kth mission

Binary variable representing the status of element
¢ at the end of the kth mission

Duration of the kth mission

Fixed maintenance cost for element ¢

Corrective repair cost for replacement of the
failed element ¢

Preventive repair cost for replacement of the
functioning element ¢

Corrective/preventive repair cost allocated for the
failed/functioning element 7 after the k£th mission
Total maintenance cost allocated for element 4
after the kth mission

Age reduction factor of element ¢ resulting from
the maintenance subsequent to the kth mission
Scale parameter of the Weibull distribution of
element ¢
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Bi Shape parameter of the Weibull distribution of
element 4

m{ Characteristic constant associated with the
corrective repair cost of element ¢

m? Characteristic constant associated with the

preventive repair cost of element ¢

ri(k) Probability of element 7 surviving at the end of
the kth mission
R(k,w)  Probability of the entire MSS completing the kth

mission under demand w

I. INTRODUCTION

AINTENANCE is crucial to system performance and
M reliability in industry. Maintenance strategy is a hot
issue, with the aim at finding trade-offs between maintenance
expenditure and system risk or/and profits [1]. In many indus-
trial or military environments, it is very common that systems
are required to perform a sequence of missions with finite
breaks between any two consecutive missions. However, it
is often impossible to perform all the desirable maintenance
actions due to the limitations on maintenance resources, such
as maintenance budget, duration of maintenance time within
each break, and limited repairmen. In such cases, the deci-
sion-maker needs to identify a subset of activities among the
set of feasible maintenance actions, and this strategy is called
selective maintenance [2].

Rice et al. [3] first develop a mathematical programming
model to optimize the selective maintenance problem for a
parallel-series system with identical components. Cassady et al.
[2] state that selective maintenance is widely used in industry
as maintenance resources are limited. They establish a general
framework for selective maintenance with binary state compo-
nents by removing the structural restriction on subsystems, and
discuss the optimization models for the bridge system, and com-
plex systems with series, and parallel structures through general
optimization models. To make the problem more practical, Cas-
sady et al. [4] consider the case in which components’ lifetimes
follow a Weibull distribution, and multiple maintenance actions
can be selected, such as minimal repair, and corrective or
preventive replacement. A mathematical programming model
is adopted to solve the optimization problem. Schneider & Cas-
sady [5] deal with the selective maintenance problem for a fleet
aiming to maximize the probability that the fleet successfully
completes the missions under limited maintenance resources.
To improve efficiency of the optimization process, Rajagopalan
& Cassady [6] propose four improved enumerative procedures
that can reduce the CPU time. Lust et al. [7] emphasize that the
selective maintenance problem for systems with a large number
of components forms a complex combinatorial problem, and
the conventional enumeration method is no longer a feasible
way. They develop three new methods: a construction heuristic,
a heuristic based on the adaptation of Tabu search, and an exact
method based on a branch and bound procedure, then apply
them to various system configurations. More recently, Cassady
et al. [8] incorporate features such as acquiring additional
resources, establishing optimal constant resource capacities for
the sequential missions, integrating redundancy allocations, and

resource allocation in the system design phase. Schneider et al.
[9] analyse a corrective selective maintenance model in a finite
period with consecutive missions, and solve this multi-mission
problem via a stochastic dynamic program. They conclude that
the optimal selective maintenance policy for the single mission
rarely differs from the multi-mission case.

Our literature survey indicates that the reported selective
maintenance problems are mostly for binary state systems
having only two states: working, or failed. Most real systems
are multi-state systems (MSS), (see [10] for more examples of
MSS in industrial applications). The selective maintenance for
MSS has received an extensive amount of attention. Chen et
al. [11] discuss selective maintenance optimization for MSS.
They assume that a parallel-series system has M subsystems,
wherein each subsystem consists of [V; identical components
connected in parallel, and the component and system must be
in one of the K + 1 possible states. The model incorporated
maintenance cost and transition probability matrices to describe
the changes in the state.

In this paper, we study a selective maintenance policy for the
MSS as defined in Lisnianski & Levitin [10], [12], in which the
states of the system are divided according to possible perfor-
mance rates (levels). The MSS introduced here is distinct from
the one in [11]. For example, a power generation system may
have four states with respect to different power output capaci-
ties, say 0 MW, 50 MW, 80 MW, and 100 MW; and maintenance
can only be performed within the early morning every Sunday.
Because of the limited maintenance time interval, e.g. only four
hours from 01:00 a.m. to 05:00 a.m., a subset among the set
of feasible maintenance actions should be optimally selected
under this limitation to guarantee the power output meets the
user demand with maximum probability during the next week.
To incorporate maintenance quality into the maintenance deci-
sion, an imperfect maintenance model (Kijima type Il model) is
used to give flexibility in terms of maintenance action options.
A cost-maintenance quality relationship is constructed to reflect
the imperfect maintenance quality as a function of maintenance
cost, and it is more general than the approaches proposed in [4],
[11]. With the involving of MSS, and the imperfect maintenance
model, the simple non-linear 0-1 programming in the selective
maintenance optimization for binary state systems changes into
a complex non-linear continuous programming; and the enu-
merative methods proposed in the literature [2], [6] are ineffi-
cient, and time-consuming in this situation. A genetic algorithm
(GA) is used to solve the resulting optimization problem.

The remainder of this paper is organized as follows. Section II
gives a brief introduction to the concerned MSS in this paper,
as well as some assumptions regarding the model formulation.
Section III reviews the basic formula of the Kijima type II
imperfect maintenance model, and the relationship linking
maintenance quality to cost is investigated. The universal gen-
erating function method is introduced in Section IV to evaluate
the probability of the repaired MSS successfully completing
the next mission under random mission demand. The selec-
tive maintenance model is formulated in Section V. Section VI
briefly introduces the genetic algorithm technique, and its repre-
sentation and decoding process for the formulated optimization
problem. An illustrative example of a coal transportation
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system, as well as some comparative studies, is presented in
Section VII. Conclusions are followed in Section VIII.

II. SYSTEM DESCRIPTION & ASSUMPTIONS

A system that can have a finite number of performance rates is
called a MSS [10]. For example, if a flash memory chip in a com-
puter system fails, the system can continue to operate, but with
deteriorated memory capacity, and a power generating system
has more than two possible states with different power output
levels (e.g. 0 MW, 50 MW, 80 MW, etc.). There are various sit-
uations in which a system should be considered to be a MSS.
Two examples include

1) asystem consisting of different units that have a cumulative

performance effect on the entire system, and
2) asystem consisting of elements with variable performance
due to deterioration (fatigue, partial failures, etc.) and re-
pair actions.
To analyse MSS behavior, one has to know the characteristics
of its elements. Suppose the MSS consists of M s-independent
elements. Any system element i (¢ € {1,..., M}) can have n;
different states corresponding to its possible performance rates,
which are represented by the set

1 Gini }- ey

The performance rate G;(t) of element 7 at any instant (> 0) is
a random variable which takes its values from g; : G;(t) € g;.
Therefore, over the time interval [0, 7], the performance rate
of the element 7 needs to be modeled as a stochastic process.
The probability distribution associated with different states of
the MSS at any instant ¢ can be represented by the set

pz(t) = {pi,l(t)vpi,Q(t)v vy Ping (t)} 5 (2)

where p; ;(t)(1 < j < n;) represents the probability that
Gi(t) = g; ;. The state probabilities satisfy the condition
27:1 pij(t) = 1, because at any instant ¢, the element can
always be in one and only in one of n; states, and all the
states of the element compose the complete group of mutually
exclusive events.

The entire MSS may have N different states corresponding
to the cumulative performance rates, which is unambiguously
determined by the system configuration, and performance rates
of elements. Possible performance rates are represented by the
set Gs = {g1,...,9n.}. Thus, the MSS performance rate at
any time instant ¢ is also a random variable G(¢) which takes
values from the set G : G(t) € Gy, and is determined by

G(t) = ¢ (Gi(t),...,Gu(1)) - 3)

The instantaneous probabilities associated with the individual
system state can be denoted by the set

p(t) = {p1(t), p2(t), ..., pn, (1)}, 4)

where p;(t)represents the probability that G(t) = g;.
The MSS considered in this work is defined with some basic
assumptions as follows.
1) The MSS consists of M binary states elements, and per-
formance rates for each element ¢ (¢ € {1,...,M}) are

g =19i1.9i2,---
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denoted by the set g; = {gi,1,9i2}, where g; o(# 0) is a
nominal performance rate, and g; ; = 0 represents failure.
2) The MSS can be constructed by elements in arbitrary
configuration, such as series-parallel, bridge, complex
network, etc.
3) At the beginning of the kth mission, the status of element
1 is represented by binary variable X;(k), where

Xi(k) = { 1 if the element i is functioning
¢ 0 if the element iis in failure state.

After the kth mission is over, the status of element ¢ is given
by a binary variable Y;(k), where

Yi(k) = { 1 if the element i is functioning
! 0 if the element iis in failure state.

4) A;(k) represents the effective age of element 4 at the be-
ginning of the kth mission, and B; (k) is the effective age
of element ¢ when the kth mission is over.

5) The duration of the kth mission is denoted by L(k).

6) Any maintenance action can only be executed during the
break between two successive missions. In the break, there
exists limited resource (e.g. cost, time, repairmen, etc.)
to perform maintenance. Decision-makers need to deter-
mine how to allocate the maintenance resource to indi-
vidual element with the aim at restoring the entire MSS to
the state which maximizes the probability of successfully
completing the subsequent mission.

7) The probability of the system successfully completing a
mission is defined as the probability that the performance
rate of the MSS is not less than the demand level during
the whole mission.

8) Multiple maintenance actions can be chosen for both
failed, and functioning elements, including minimal
repair, corrective/preventive replacement (or perfect main-
tenance), and imperfect maintenance. The maintenance
quality relates with maintenance cost (or resources), and
their relationship can be measured statistically.

The problem, and assumptions presented above are realistic
in industrial fields [4]. Applications includes production and
power generation systems with weekly or monthly mainte-
nance, transportation and vehicle systems maintained between
jobs, and military systems recovered only between missions. In
these situations, systems have multiple performance rates due
to the degradation of elements, and the maintenance resources
might be under budget, or the maintenance time between
consecutive missions might be limited.

III. IMPERFECT MAINTENANCE QUALITY & RELATED COST

In the literature related to maintenance strategy, a system is
typically assumed to be restored to a condition either as good
as new, or as bad as old prior to failure. This assumption is not
realistic as discussed in [13]. It is more reasonable to assume
that maintenance restores a system to a condition somewhere be-
tween these two extreme states. This maintenance is referred to
as imperfect maintenance. A multitude of literature investigate
modeling imperfect maintenance in various fashions, and the
most relevant efforts among them are the (p, ¢) model (see Nak-
agawa [14], [15]), the (p(t), ¢(¢)) model (see Block et al. [16],
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—— b(k)=0.5,no0 failure happens (Case 1)
—+— b(k)=0.8,no failure happens (Case 2)
—— b(k)=0.5,but failures happen (Case 3)
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Fig. 1. Chronological time versus effective age in the Kijima type I model.

[17]), the (p(n,t), g(n,t), s(n,t)) model (see Makis & Jardine
[18]), the Kijima Type I and II models (see Kijima et al. [19],
[20]), the improvement factor method (see Malik [21]), the hy-
brid imperfect model (see Lin et al. [21]), the geometric process
(see Lam [23], [24]), and the quasi-renewal model (see Wang &
Pham [25]). Some applications of these imperfect maintenance
models can be found in [26]-[29]. Nevertheless, the literature on
imperfect maintenance deals with system models mainly based
on binary state characteristics [13]. In MSS context, Levitin et
al. [30], and Nahas et al. [31] apply the age reduction model
to MSS with binary performance rate elements, and the optimal
maintenance is determined for a finite horizon of time. The Ki-
jima type II model (see [19], [20]) is an appropriate way to de-
scribe imperfect maintenance for binary state elements, and it
is employed in this work as a specified imperfect maintenance
model to reflect the improvement caused by maintenance ac-
tivity via the effective age of the element.

In accordance with the Kijima type II age reduction model,
the effective age of any element ¢ after the maintenance subse-
quent to the kth mission is given by

Ai(k + 1) = b;(k)B;(k). ()

If the binary state element ¢ fails during the kth mission, its ef-
fective age will immediately stop increasing with chronological
time as shown in Case 3 in Fig. 1. In this figure, failures happen,
respectively, at the 2nd, and 7th days of chronological time; and
the effective age of the element is steady at the remaining mis-
sion time. b;(k)(0 < b;(k) < 1) is the age reduction factor
representing maintenance quality, and a smaller b;(k) means a
greater improvement as plotted in Fig. 1 (see Cases 1, and 2
where no failure happens). After finishing the kth mission, el-
ements may be either failed, or functioning. For the failed ele-
ment, if one sets b;(k) = 1, it means there is no age reduction
after the maintenance action, so that case corresponds to a con-
dition as bad as old, or minimal repair. And for the functioning
element, b;(k) = 1 means to do nothing. When b;(k) = 0, the
element becomes as good as new after maintenance; and it can

be considered as a corrective, and preventive replacement for
failed, and functioning elements, respectively.

Based on the effective age model, the conditional survival
probability after a maintenance activity is given by

R(z)=1-Pr{X —t < z|X >t}
Pr{it< X <z+1t}

 Pr{X >t}

_Pr{X >z +t}

- Pr{X >t}

(6)

while the element is functioning at the beginning of mission
with the effective age equal to £. When the failure distribution of
the element % follows the Weibull distribution while the element
is functioning at the beginning of the kth mission with cumula-
tive effective age A;(k), the probability of element 4 surviving
at the end of the kth mission is written as

(23 (3] o

In general, the more cost allocated for maintenance, the better
the maintenance quality. As mentioned in [32], the spent main-
tenance cost, and the age of the system are the two major in-
fluences on the improvement factor which is regarded as b; (k)
for each element in the present paper. If the spent maintenance
cost approaches zero, the improvement approaches zero; thus,
the repaired element would be in a condition as bad as old prior
to failure. Oppositely, if the maintenance cost approaches the
cost for replacement, the improvement would approach as good
as new. On the other hand, the system age is another impor-
tant factor which influences the improvement caused by main-
tenance. A great improvement may cost a little when the system
is young. However, as a system ages, the improvement may get
smaller, even at a large maintenance cost. Malik [21] proposes
to determine the maintenance improvement factor through ex-
pert judgment. Lie & Chun [32] implement a set of formulae
to represent the accurate relationship between the ratios of pre-
ventive maintenance cost to preventive replacement cost, and
the system improvement factor.

In this paper, we model this maintenance cost for any element
¢ after the kth mission as

ri(k) = exp

Let cff denotes the corrective repair cost for replacement of
failed element 7. The age reduction factor as a function of the
corrective repair cost is then defined as

bik) =1- (‘j?) - ©

7

where m{ (mf > 0) is a characteristic constant that determines

the exact relationship between corrective repair cost and age re-
duction factor through (9). It is related to the inherent charac-
teristic of the element and its age, and can be estimated via the
collected repair cost, and reliability/failure data of the element.
If ¢;(k) = 0, then b;(k) = 1, there is no reduction in age, and it
corresponds to the case where a minimal repair is performed on
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Fig. 2. The plot of b, (k) versus ¢;(k)/c7’ for different m .

the failed element ¢ between the break of the kth mission and the
(k+1)th mission. Only the fixed maintenance cost ¢! is involved
to restore the element to a condition as bad as old prior to failure.
Fig. 2 plots the trends of b;(k) versus ¢;(k)/c}’ for different
mzf values. It shows that the larger mzf is, the more efficient it is
when maintaining elements with a smaller amount of cost. The
larger mf is corresponding to the element with younger age, be-
cause most items (or parts) are new in a “young age” element,
and it is cheap and effective to repair a few failed parts of the
element. For the aged element where every part is old, even re-
newing some parts is still ineffective at renewing the element’s
condition, therefore the associated mf should be smaller than
that of younger elements. Thus, inherent characteristics of el-
ements and its age are both important factors to determine the
parameter mlf .

In the same manner, the age reduction factor as a function of
the preventive repair cost is defined as

bi(k) =1 <<k>>—

)

(10)

where ! (m! > 0) is a characteristic constant that determines
the exact relationship between preventive repair cost and the
corresponding age reduction factor through (10). If ¢; (k) = 0,
one has b;(k) = 1, and it denotes that no maintenance action is
performed on the functioning element 7 . Therefore, the mainte-
nance cost C; (k) is zero; otherwise, the total maintenance cost
of element ¢ is the preventive repair cost allocated, plus the fixed
maintenance cost.

Furthermore, with the assistance of the maximum likelihood
estimation (MLE) regression method, as well as artificial neural
networks (ANN), maintenance service data can be analysed to
fit any other model, instead of (9) and (10), to set up the exact
relationship between improvement and maintenance cost. Also,
instead of cost, maintenance time can be used as a measure of
maintenance quality because maintenance cost and time are re-
lated to each other.
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IV. PROBABILITY OF SUCCESSFULLY COMPLETING A MISSION

The probability of successfully completing a mission is de-
fined as the probability that the MSS performance rate is not
less than the mission demand level during the whole single mis-
sion period. The universal generating function (UGF) method is
employed to facilitate the probability assessment because it is a
general, efficient method to evaluate the reliability of different
types of MSS [10], [12].

The UGF represents the probability mass function of a dis-
crete random variable via a polynomial form. In our case, the
UGEF can define the element or system state distribution, and
all of the possible mutually exclusive states of the element or
system can be represented via relating the probability of each
state to the value that takes the random state variables corre-
sponding to the element or system in that state. For any binary
state element ¢, the performance rate distribution at any time in-
stant can be given by

2
ui(z,t) = me(t) 2963, (11
7j=1

And for a MSS, the performance rate distribution of the entire
system at any time instant can be written as

N,
Udz,t) =Y pji(t) - 2% (12)
j=1

Therefore, to derive the UGF of an arbitrary structure system,
one has to apply the composition operator ® recursively as
Us(z,t) = @ {ui(z,t),...,unm(z,t)}

2
=® Zplzjl(t)'zgl'“w"?

Jji=1

2
Z PM,ju (t) - ZIMIm
1

M=
M
<Hpi i (t) R ACIR R Y ))
1=1

2

1 Jm=1

Il
‘Mw

J1

2

=) pi(t)- 2.
1

13)

<.
Il

This polynomial Us(z,t) represents all of the possible mu-
tually exclusive combinations of realizations of the variables
by relating the probability of each combination to the value
of function ¢(G1(t),...,Gun(t)), which is determined by
both the system structure, and performance rates combination
property. For example, in the case of flow transmission type
system with two elements connected in series, the composition
function takes the form

¢ (G1(t), G(t)) = min {G1 (1), G2(t)} -

And for the case where two elements are connected in parallel,
the composition function is given by

(14)

¢ (G1(t), Ga(t)) = G1(t) + Ga(t). 15)
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Because the MSS is degrading with time, if the performance
rate of the MSS at the end of the next mission is not less than
demand level, the mission is successfully completed. For func-
tioning binary state element 7 with the survival probability de-
pending on the duration of the kth mission, its UGF of the state
distribution at the end of the kth mission takes the form

= 2_pi (L(K))

= (1 —ri(k)) 29 + r;i(k)z92.

. 29
(16)

It denotes that element 7 survives at the end of the kth mission
with probability r;(k), and fails with probability 1 — r;(k). If
the element’s lifetime follows the Weibull distribution, (7) can
be directly substituted into (16). The state distribution of the
MSS at the end of the kth mission is derived via UGF as

Us (2, L(k)) = ® {us (2, L(K)) , -

1=

sunm (2, L(k))}

22; (sz i

[
—_

a7

where p; 1(L(k)), and p; o(L(k)) are equal to the failure, and
survival probabilities of element ¢, respectively (as shown in
(16)). And p;(L(k)) is the probability that the MSS is staying at
state 7 at the end of the kth mission. Suppose the demand level of
the kth mission is w. The probability that the MSS completing
the subsequent single mission (the kth mission) can be written
as

w)>0), (18)

Z pl (gz

where 1(z) is an indication function, and F'(g;, w) = g; —w. If
the demand level for the kth mission is a random variable with
H possible values, the probability that the MSS successfully
completes the kth mission is given by

W)=Y a Y p (0)

Due to budget, not all the failed elements will be restored to
a functioning state before the kth mission. Let the 0-1 binary
vector X(k) = {X1(k),..., X (k)} represent the initial states
of the elements at the beginning of the kth mission. One com-
bines the initial states into the UGF of elements to formulate the
element’s ability (in a probabilistic sense) to survival in the kth
mission. The UGF of element 7 with considering the initial state
at the beginning of the kth mission is written as

U; (Xl(k) Z7t) = Xl(k> . qu(ZJ,) + (1 — X,(k)) .20 (20)

It is clear that u;(X;(k), z,t) = u;(z,t) for X;(k) = 1, repre-
senting that the element : is in a functioning state before the kth
mission starts, and u;(X;(k), z) = 2° for X;(k) = 0 represents
no contribution to the system performance rate during the kth
mission. For instance, the combination operation for the UGF
of two parallel-connected elements with incorporating their ini-
tial states can be written as

Up (Xl(]{,) Z,t) P(%'r U2 (XQ(k),Z,t)

= [X1(kyua(z, ) + (1 = Xy (k) 2°]

8 Xo(k)ua(z,t) + (1 — Xa(k)) 2°]
t

[
= [Xa (k) X2 (k)] ui(z,t P%uz(% )

)
+[(1 = X (k) Xo(R)] 2° ® ua(z,1)
+ [Xa (k) (1 = Xo(k ))]m(z t)
2 241 =X (k) (1= X (k)] ® 20 @1

Hence, the UGF of the MSS with the initial states of each ele-
ment at the beginning of the kth mission takes the form

Us (X(k> Z7t) :®(’LL1 (Xl(k)7 Z, t) yeo ey UM (X]W(k)7 2, t)) )

(22)
and it can be solved via the composition operator mentioned
above, recursively.

Because the selective maintenance for a MSS is executed be-
fore the next mission (the kth mission), the system UGF at the
end of the kth mission can be recursively determined according
to the initial state of each elements, and the UGF of the element
state distribution at the end of the kth mission. Therefore, the
probability of the MSS successfully completing its next mission

can be evaluated using (17) or (18).

V. MODELING OF SELECTIVE MAINTENANCE

A. Maintenance Cost

The total maintenance cost consists of two categories: PM
cost for the selected functioning elements, and CM cost for the
selected failed elements. Let binary decision variable V; (k) in-
dicates whether PM is executed on functioning element % or not
after the kth mission. If the functioning element : is subject to
PM action after the kth mission, then V;(k) = 1; otherwise,
Vi(k) = 0. The total PM cost is

:g[:[(c k) +c)

i=1

) Vilk)-Yi(R)] . (23)

which denotes that element ¢ can be selected to perform PM
only when the element is in a functioning state at the end of
the kth mission (Y;(k) = 1), and the decision variable V; (k) is
set to one. ¢; (k) represents the preventive repair cost allocated.
If the failed element ¢ is subjected to corrective maintenance
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action, the binary decision variable W; (k) is set to one; other-
wise, W; (k) = 0. The total cost of corrective maintenance cost
is given by

Cr(k) =" [(ei(k) + ) - Wik) - (1 - Yi(k))] |

=1

M

(24)
where (1 — Y;(k)) means the CM can only be executed on the
failed element at the end of the kth mission, and ¢; (k) represents
the corrective repair cost allocated. Thus, the total maintenance
cost for the MSS after the kth mission is formulated as

O(k) = C,.(k) + Cy (k). (25)

B. Selective Maintenance Modeling

Given the state Y;(k), and effective age B;(k) of each ele-
ment at the end of the kth mission, the selective maintenance
problem is twofold: identifying the element to be repaired (ei-
ther preventive or corrective), where the associated binary deci-
sion variable are V;(k), and W;(k); and determining how much
the maintenance cost should be allocated for each repair action,
where the corresponding decimal decision variables are ¢;(k).
Let the budget constraint on the total maintenance cost after the
kth mission be denoted by Cy (k). The non-linear programming
formulation to search the selective maintenance subset for max-
imizing the probability of successfully completing the (k+1)th
mission is developed as

H N,
max R(k+1,w) =Y ;Y _ p;(L(k+1))
i=1 j=1
1(F(g;,w;) >0) (26)
subject to C(k) < Co(k) 27
Wi(k) +Vi(k) <1 (28)
Wi(k) +Yi(k) <1 (29)
Vi(k) = Yi(k) <0 (30)
Ai(k+1) = b;(k) - Bi(k) @31
Xi(k+1) =Yi(k) + Wi(k) (32)
Xi(k +1),Yi(k), Wi(k), Vi(k) binary (33)

In the above formulations, the constraints given by (28)—(30) re-
strict that CM, and PM can only be selected to perform on failed,
and functioning elements, respectively. Constraint (31) is the
Kijima type II imperfect maintenance model, and the constraint
given by (32) sets the state of the elements at the beginning of
the (k£ + 1)th mission in accordance with its state at the end of
the £th mission, and the maintenance action taken. If mainte-
nance time is used instead of cost, the constraint will be similar
to that given by (27).

VI. GA OPTIMIZATION TECHNIQUE

Selective maintenance optimization for a MSS with imper-
fect maintenance is a complex, non-linear, continuous program-
ming problem as shown in (26)—(33). An exhaustive examina-
tion of all possible solutions is not realistic due to the compu-
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TABLE I
THE MAINTENANCE ACTION, AND COST CORRESPONDING TO S;
FOR FUNCTIONING ELEMENT ¢

S Maintenance action Maintenance cost C;(k)
0 Do Nothing 0

i Imperfect PM c,p +i- c,-”’/NL
N, Preventive Replacement & +cP

tational time limitation. Meta-heuristic algorithms, such as ge-
netic algorithm (GA), Tabu search, simulated annealing algo-
rithm, and ant colony optimization (ACO), are efficient, effec-
tive approaches to search the global optimal solution (or approx-
imate global optimal solution) of combinational, and non-linear
programming problems. These algorithms do not require deriva-
tive information to determine the next direction of the search,
and easily adapt well to other problems. Among these algo-
rithms, genetic algorithm (GA) is one of the most widely used
evolutionary methods. It is a popular, universal tool for solving
various optimization problems because of its advantages, and
has been successfully applied to an abundance of optimization
problems in reliability engineering (see Levitin [33]) as well as
maintenance optimization problems (see Levitin & Lisnianski
[30], [34]). Thus, GA is employed in this paper due to its flex-
ibility in representing any kind of design variable, and good
global optimization capability.

To apply the GA to a specific problem, solution representation
is an important procedure which must be defined first. Because
the amount of repair cost allocated to each element can be any
real value among the feasible region, to reduce the computa-
tional intensity, decision variables are transformed into integral
form, and the individual solution is represented by an integral
string

s = {s1,82,...,8M},

where s; is a decimal digit representing the discrete mainte-
nance quality level for element ¢, and 0 < s; < N, where N,
denotes the maximum maintenance quality level determined by
the decision-maker. For functioning, and failed elements respec-
tively, the value of s; represents different maintenance action,
and quality; and its corresponding costs are defined in Tables I
and II. Based on the decoding solution, the binary variables in
(26)-(33) are determined as, for functioning element 7,

si=0, onehasY(k)=1,X(k+1)=1,
Vi(k) = 0,Wi(k) =0
$;>0, onehasY(k)=1,X(k+1)=1,

Vi(k) = 1, Wi(k) = 0

and for failed element 7,

$;=0, onehasY(k)=0,X(k+1)=0,
Vi(k) = 0,Wi(k) = 0
$; >0, onehasY(k)=0,X(k+1)=1,

For example, consider a MSS consisting of four elements, with
the states at the end of the kth mission being {failed, failed,
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TABLE II
THE MAINTENANCE ACTION, AND COST CORRESPONDING TO $;
FOR FAILED ELEMENT i

s; Maintenance action Maintenance cost C;(k)
0 Do Nothing 0
1 Minimal Repair ey
i Imperfect CM ¢ +(i=1)-cf (N, -1)
Ny Corrective Replacement A+ e’
S T A
1 6
4 9 = 12—
2 7 :|> [
5 10 13
3 8
Feeder 1 Conveyor 1 Stacker-reclaimer Feeder 2 L
(Subsy )] (Sub 2)  (Subsy 3) ( 4) Conveyor 2

(Subsystem 5)

Fig. 3. Reliability block diagram of the coal transportation system.

good, good}. The fixed maintenance cost for these elements is
$5. The corrective repair cost for replacement are respectively
$30, and $40 for elements 1, and 2; while the preventive re-
pair cost for replacement are respectively $25, and $20 for el-
ements 3, and 4. Let N, = 10. A specified individual solu-
tion s = {1,6,0,10} denotes that minimal repair is executed
on element 1 with maintenance cost equal to $5, and imperfect
CM is performed on element 2 with maintenance cost equal to
$5+ (6 — 1) x $40/(10 — 1) = $27.22. No action is executed
on element 3, and element 4 is preventively replaced by a new
one with maintenance cost equal to $5+ $20 = $25. The binary
variables in (26)-(33) are

Yi(k)=0,X1(k+1)=1,Vi(k) =0, Wi(k) =1,
Ya(k) =0, Xo(k+1) = 1,Va(k) = 0, Wy(k) = 1
Ys(k) =1, X3(k+1) =1,V3(k) = 0, Ws(k) = 0,and
Yi(k) =1, X4(k+1)=1,Vy(k) = 1,Wy(k) =0

The effective age at the beginning of the (k + 1)th mission is
determined by (5) according to the effective age of the element
at the end of the kth mission. The age reduction factor relating
to the repair cost allocated can be computed by (9), and (10).

VII. ILLUSTRATIVE CASE

The system is a coal transportation system in a power station
that supplies a boiler, and consists of five basic subsystems as
shown in Fig. 3. Feeder 1 loads the coal from the bin to conveyor
1. Conveyor 1 transports the coal to the stacker-reclaimer that
lifts the coal up to the burner level. Feeder 2 loads conveyor 2
that supplies the burner feeding system of the boiler [35].

Each element is considered as a unit. Every subsystem con-
sists of binary state elements. The values of parameters for each
element, e.g. nominal performance rate (ton/hour), parameters

TABLE III
PARAMETERS OF ELEMENTS, WHERE PERFORMANCE RATE IS IN TONS/HOUR,
TIME IS IN DAYS, AND COSTS ARE IN $1,000 UNITS

D g, W B ml P om af & Bk Yk
1 55 1.5 25 25 15 25 25 3 35 1
2 80 2.4 38 22 20 20 32 4 24 0
3 120 1.6 28 26 25 3.0 35 3 45 0
4 90 2.6 40 22 20 32 35 5 35 0
5 145 1.8 28 1.8 25 40 34 2 28 1
6 70 24 34 24 15 32 20 3 36 1
7 95 25 26 28 24 3.0 30 6 44 0
8 80 2.0 28 23 20 28 35 5 28 0
9 95 1.2 26 2.0 18 25 28 3 38 1
10 130 14 35 25 20 28 35 6 15 0
11 50 2.8 40 32 22 3.0 32 7 30 0
12 75 1.5 35 26 25 22 35 4 22 1
13 85 24 30 28 18 28 36 6 38 1
14 95 22 45 22 15 26 38 3 35 0
TABLE 1V

MISSION DEMANDS

Demand (ton/hour) 120 90 60 30 10
Probability 0.1 0.25 0.35 0.2 0.1

of the Weibull life distribution, maintenance cost, effective age,
and status after last mission (the kth mission), are tabulated
in Table III. The units of time, and cost are days, and $1,000,
respectively. The uncertain demand for the (k + 1)th mission
is distributed as shown in Table IV, with the required demand
levels, and their corresponding probabilities. Suppose the dura-
tion of the (k + 1)th mission is L(k + 1) = 10 days. Although
the system is still functioning at the end of the last mission (the
kth mission) without any maintenance action, the probability
of it successfully completing the next mission (the (k + 1)th
mission) is only 0.006. Given the maintenance budget Co(k) =
$200, 000 in the break after the kth mission, one has to optimally
allocate the maintenance cost to each element to maximize the
probability of successfully completing the (% + 1)th mission.

As stated in previous sections, the selective maintenance op-
timization is no longer a simple non-linear 0-1 programming
problem. The GA method proposed in Section VI is used to
search the global optimal solution with N, = 7, and the best
maintenance strategy is presented as Scenario 1 in Table V. The
optimal allocations of repair cost are listed in column “Cost”
with the related fixed maintenance cost in parentheses.

From Table V (Scenario 1), one can see that all the elements
are functioning at the start of the (k + 1)th mission, only ele-
ments 3 and 7 are subjected to corrective replacement, and ele-
ment 5 is subjected to preventive replacement. All of the other
failed elements are imperfectly repaired before the next mission
is executed, and some functioning elements (elements 6 and 13)
are subjected to imperfect PM. The probability of successfully
completing the (k + 1)th mission is 0.77342, and total main-
tenance cost is $199,880. The optimal decision based on the
method proposed in [4] which involves only minimal repair, pre-
ventive, and corrective replacement (Scenario 2) are also tabu-
lated in Table V. The probability of successfully completing the
mission is 0.7336, and corresponding total maintenance cost is
$199,000. As shown in Table V, although the maintenance cost
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TABLE V
OPTIMAL SOLUTIONS AND COMPARISON*

With imperfect maintenance (Scenario 1)

Without imperfect maintenance (Scenario 2)

Element ID

Action Cost X;(k+1)  A4;(k+1)  Action Cost X;(k+1) A;(k+1)
1 = 0 1 35 PR 15(3) 1 0
2 IC 533(4) 1 14.2 CR  32(4) 1 0
3 CR 35(3) 1 0 MC 0(3) 1 45
4 IC 175 (5) 1 6.82 CR  35(5 1 0
5 PR 25.0(2) 1 0 - 0 1 28
6 1P 8.57 (3) 1 7.49 - 0 1 36
7 CR 30 (6) 1 0 CR 30 (6) 1 0
8 IC 5.84 (5) 1 13:23 MC 0(5) 1 28
9 - 0 1 38 PR 18 (3) 1 0
10 IC 5.83 (6) 1 7.89 MC 0 (6) 1 15
1 IC 534(7) 1 13.49 MC 0(7) 1 30
12 - 0 1 22 - 0 1 22
13 P 5.14(6) 1 13.71 PR 18(6) 1 0
14 IC 6.33 (3) 1 17.43 MC 0(3) 1 35
C(k+1) $199.880 $199,000
R (k+1,%) 0.77342 0.7336

*The value in “Cost” column is the allocated repair cost with the fixed maintenance cost in parentheses, where costs are in $1,000 units. Symbols denotation:
“-”-Do Nothing; IC-Imperfect Corrective repair; CR-Corrective Replacement; IP-Imperfect Preventive repair; PR-Preventive Replacement; MC-Minimal

Corrective repair.
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Fig. 4. Maximum probability of successfully completing mission versus cost
constraint.

in Scenario 1 is slightly higher than Scenario 2 ($880 or 0.44%),
the probability of successfully completing the mission in Sce-
nario 1 remarkably increases by nearly 5.43%. If maintenance
resources are unlimited, and either corrective or preventive re-
placement is performed on each element before the next mission
(Scenario 3), the probability of mission success is 0.8947 with
a total maintenance cost of $448,000. It indicates the mainte-
nance cost in Scenario 1 decreases by 55.38% as compared with
Scenario 3, while the probability of successfully completing the
mission in Scenario 1 decreases by only 13.56%.

Generally, the more maintenance cost is incurred, the higher
the probability of successfully completing the mission will
be achieved. The curves of budgets versus the probabilities of
successfully completing the mission are plotted in Fig. 4. The

curve with cross marks represents the maximum achievable
probability obtained by enumerative methods without con-
sidering imperfect maintenance actions (Scenario 2) at each
budget constraint, and the other curve with circular marks
corresponds to Scenario 1, that imperfect maintenance actions
are considered and solved through the proposed GA method. It
is observed that, in the early phase (cost constraint is approxi-
mately less than $25,000), these two scenarios have the same
maximum probability of successfully completing the mission
with identical maintenance actions, as tabulated in Tables VI
and VII, where two cases with budgets equal to $10,000, and
$25,000 are presented as illustrative examples. The improve-
ment from considering imperfect maintenance (Scenario 1)
is greater at the middle phase of the curves (budget is from
$50,000 to $200,000), and approaches zero at the last phase
(budget is more than $350,000). The maximum improvement
of mission success probability is 0.1453 when the budget is
equal to $65,000, and the average success probability improved
from Scenario 2 to Scenario 1 is 0.0307 (or 4.57% on the
average increasing ratio). Moreover, if only minimal repair is
performed on all the failed elements, the sum of the cost is
$39,000 with corresponding mission success probability equal
to 0.1963, while the same cost can achieve higher mission
success probability 0.33287 for Scenario 1, and 0.2416 for
Scenario 2. In the case where the budget constraint is equal to
$50,000, Tables VI and VII show that, to do minimal repair for
failed element 4 and 7 while replacing element 6 is less effec-
tive than allocating more repair cost on both elements 4 and
6 (with approximately 41% improvement on mission success
probability). Additionally, the curve for Scenario 1 is smoother
than for Scenario 2, and approximating the curve with the re-
gression technique becomes feasible. One may use a specified
high-order polynomial function (or ANN, etc.) as a regression
model to represent the trend that the probability varies with
cost constraints. Based on the trend, the decision-maker might
get more insights on determining the trade-off between the



LIU AND HUANG: OPTIMAL SELECTIVE MAINTENANCE STRATEGY FOR MSS UNDER IMPERFECT MAINTENANCE

365

TABLE VI
OPTIMAL SELECTIVE MAINTENANCE STRATEGY AT DIFFERENT COST CONSTRAINT FOR SCENARIO 1*

Element  C,=510,000 C,=525,000 C,=$39,000 C,=850,000
ID Act. Cost X; Act. Cost X; Act. Cost X; Act. Cost X;
1 - 0 1 - 0 1 - 0 1 - 0 1
2 MC 4 1 MC 4 1 MC 4 1 MC 4 1
3 - 0 0 - 0 0 MC 3 1 MC 3 1
4 MC 5 1 MC 5 1 1C 8.9 1 1C 16.7 1
5 - 0 1 - 0 1 - 0 1 - 0 1
6 - 0 1 - 0 1 IP 9 1 1P 11.6 1
7 - 0 0 - 0 0 - 0 0 - 0 1
8 - 0 0 MC 5 1 MC 5 1 MC ) 1
9 - 0 1 - 0 1 - 0 1 - 0 1
10 - 0 0 MC 6 1 MC 6 1 MC 6 1
11 - 0 0 - 0 0 - 0 0 - 0 0
12 - 0 1 - 0 1 - 0 1 - 0 1
13 - 0 1 - 0 1 - 0 1 - 0 1
14 - 0 0 MC 3 1 MC 3 1 MC 3 1
R(k+1,w) 0.049 0.1485 0.33287 0.38895
Ck+D) $9,000 $23,000 $38,900 $49,300

*The value in “Cost” column is the summation of the fixed maintenance cost and allocated repair cost, where costs are in $1,000 units. Symbols denotation:
“-”-Do Nothing; IC-Imperfect Corrective repair; CR-Corrective Replacement; IP-Imperfect Preventive repair; PR-Preventive Replacement; MC-Minimal

Corrective repair. .X; is short for X;(k + 1).

TABLE VII
Optimal Selective Maintenance Strategy at Different Cost Constraint for Scenario 2*

Element C,=$10,000 C,=%$25,000 C,=$39,000 C,=$50,000
ID Act. Cost X; Act. Cost X; Act. Cost X; Act. Cost X;
1 - 0 1 = 0 1 - 0 1 = 0 1
2 MC 4 1 MC 4 1 MC 4 1 MC 4 1
3 - 0 0 - 0 0 MC 3 1 MC 3 1
4 MC 5 1 MC 5 1 MC 5 1 MC 5 1
5 . 0 1 - 0 1 . 0 1 - 0 1
6 = 0 1 - 0 1 PR 18 1 PR 18 1
7 < 0 0 = 0 0 - 0 0 MC 6 1
8 . 0 0 MC 5 1 5 0 0 MC 5 1
9 = 0 1 % 0 1 . 0 1 = 0 1
10 = 0 0 MC 6 1 MC 6 1 MC 6 1
11 2 0 0 s 0 0 5 0 0 . 0 0
12 2 0 1 = 0 1 e 0 1 = 0 1
13 - 0 1 - 0 1 - 0 1 - 0 1
14 - 0 0 MC 3 1 MC 3 1 MC 3 1
R(k+1,w) 0.049 0.1485 0.2416 0.2759
C(k+1) $9,000 $23,000 $39,000 $50,000

*The value in “Cost” column is the summation of the fixed maintenance cost and allocated repair cost, where costs are in $1,000 units. Symbols denotation:
“-”-Do Nothing; IC-Imperfect Corrective repair; CR-Corrective Replacement; IP-Imperfect Preventive repair; PR-Preventive Replacement; MC-Minimal

Corrective repair. X; is short for X;(k + 1).

budget constraint and the required probability of successfully
completing subsequent mission.

To analyse the influence from the mission demand level,
curves presenting the relationship between the probability of
successfully completing the mission and the mission demand
level, with a budget of $200,000, are illustrated in Fig. 5. We
plot the maximum probability corresponding to the demand
level from O to 240 for Scenario 1 (the curve with circular
marks), and 2 (the curve with cross marks). The probability
definitely decreases while the demand increases, and the
probability changes at the same point in these two scenarios
(e.g. probabilities in these two scenarios both change at points
where demand is equal to ..., 70, 75, 80, 85, 90, 95, 95,
120, ...). The mission demands at these points are equal to

the states’ performance rate of the entire MSS. However, the
probability of successfully completing the mission in Scenario
1 is always higher than for Scenario 2. From these curves, the
maximum improvement of the mission success probability is
0.0515 where mission demand is equal to 125, and the average
improvement of mission success probability from Scenario 2 to
Scenario 1 is 0.0255 (or 5.51% on the average increase ratio).
Furthermore, the improvement from Scenario 1 to Scenario 2 is
slight when demand is less than 100, and greater improvements
occur when demand level is in ranges 100 ~ 140, and 160 ~
230. The mission demand level is an important factor affecting
the improvement of considering imperfect maintenance actions
in selective maintenance. In addition, if the case that the prob-
abilities of Scenario 1 and 2 are approximately the same (like
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Fig. 5. Maximum probability of successfully completing mission versus de-
mand level.

the situations that demand level is less than 100) happens, one
may consider maintaining the MSS without considering the
imperfect maintenance action. It is more convenient to maintain
the unit with only minimal, and replacement actions.

VIII. CONCLUSIONS

In this paper, the selective maintenance problem in MSS
context is addressed. Imperfect maintenance based on the
Kijima type II model is used to formulate the improvement
after maintenance, and a relationship linking maintenance
quality with cost is proposed. Universal generating function
is employed to facilitate the evaluation of the probability of
successfully completing the next mission. Furthermore, the
simple non-linear 0-1 programming in selective maintenance of
binary state systems becomes a complex, non-linear continuous
programming problem, which is impossible to solve through
enumerative algorithms developed in earlier literature. GA is
employed to solve the resulting optimization problem, and
the comparisons are given between the proposed model, and
the earlier method where imperfect maintenance quality is not
accounted for. Incorporating imperfect maintenance action into
selective maintenance yields better results.

Nevertheless, the limitation of this work is that every ele-
ment is assumed to be a binary state element. To overcome
this deficiency, the imperfect maintenance models for both
multi-state elements, and MSS need to be further investigated.
Meanwhile, it is worth considering the different consequences
among the different kinds of imperfect maintenance models,
such as Kijima type I and II models, for they own the different
properties as mentioned in [36]. The trade-off between the
mission success probability and budget, as well as other limited
maintenance resources (e.g. maintenance time, repairmen,
etc) needs addressing through multi-objective optimization
approaches. Additionally, simulating the dynamic probability
of successfully completing missions with considering the op-
timal maintenance resource allocation for multiple subsequent
missions will be explored in our future work.
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