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This paper presents a sequential imperfect preventive maintenance policy for a degradation system. Two kinds of
activity, called continuous preventive maintenance (PM) and minimal repair, are simultaneously considered when
arranging discrete imperfect preventive maintenance schedules. In order to obtain the maximum benefit in a finite
lifetime, an expected benefit model is formulated based on maximal/equal cumulative-hazard rate constraints, and
the optimal PM intervals are obtained using a genetic algorithm (GA). It is usually difficult to determine fixed
maintenance quality after performing maintenance activities. This problem is addressed in the present paper by
assuming that the reduction factor is a stochastic variable following probability distributions at fixed times. It is
more rational to describe the fluctuation and trend of quality of discrete preventive maintenance during a lifetime;
this makes optimisation results more robust and insensitive to the randomness of the crucial parameters in imperfect
PM models. A numerical case is presented to illustrate the proposed model and some discussions are summarised.

Keywords: degradation system; sequential preventive maintenance; imperfect maintenance; reduction factor; genetic
algorithm

1. Introduction

Many of today’s system have become increasingly
complicated. The importance of ensuring systems
operate properly requires a level of reliability capable
of avoiding failure, reducing costly breakdown and
ensuring security. Preventive maintenance (PM) is
necessary to restore/keep a repairable system func-
tional. For this reason, research on optimal preventive
maintenance policies is a hot issue, and one that is very
important for academic research and industrial appli-
cation. PM seeks to provide maximum system relia-
bility and safety with a minimum of maintenance
resources (cost, time, staff, etc.). How to assess the
quality/effect of preventive maintenance and how to
arrange its activities to meet one’s satisfaction have
been studied in practice since the 1960s.

Researchers generally focus on the feasibility and
cost of maintaining a repairable system. A huge
number of maintenance policies have been proposed
in the literature (see Murthy and Hwang 1996,
Dedopoulos and Smeers 1998, Ben-Daya and
Alghamdi 2000, Tsai et al. 2001). In particular, in
aviation or the semiconductor industry, because a fault
in an airplane can be disastrous and any flaw in a
semiconductor product line may seriously affect
product quality and lead to an enormous cost increase,

system reliability should be emphasised. The optimisa-
tion of maintenance policies is, therefore, worthy of
study. Furthermore, repairable systems commonly
have a finite and fixed lifetime (see Nakagawa and
Mizutani 2009), so it is crucial that effective PM
strategies need to be found to achieve maximum
benefits in each system’s finite lifespan.

Generally, maintenance activity falls into two main
categories: corrective (unplanned) and preventive
(planned), corresponding to corrective maintenance
(CM) and preventive maintenance (PM), respectively
(see Pham and Wang 1996). To distinguish the degree
or quality of maintenance, Pham and Wang (1996)
classified it as perfect, minimal, imperfect, worse and
worst; these five classifications are now widely
accepted. Generally speaking, maintenance does not
make a system ‘as good as new’, but younger. It is
commonly held that maintenance restores an item to
somewhere between ‘as good as new’ (perfect) and ‘as
bad as old’ (minimal), the sort of imperfect main-
tenance that settles for keeping an item pretty much in
the condition it was. Much of the literature discusses
modelling imperfect maintenance and its application; a
comprehensive survey of this is presented by Pham and
Wang (1996). The maintenance quality/degree that
describes the effect (such as age reduction or failure
rate decrement) obtained by maintenance actions is
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a critical factor in imperfect maintenance optimisation
problems. Existing research usually regards the para-
meters related to maintenance quality/degree as fixed
values; these values need to be determined based on a
large volume of maintenance data (see Ben-Daya and
Alghamdi 2000, Tsai et al. 2001). Wu and Clements-
Croome (2005) arrived at an optimal maintenance
policy in finite time by assuming that the parameters
that affect the quality of maintenance follow a certain
probability distribution. It is, however, more rational
to consider the relative parameters affecting main-
tenance quality as stochastic variables, because the
mean of maintenance quality is monotonic, decreasing
as the system ages.

This problem is tackled in the present paper by
assuming that the age reduction factor, which
represents the quality of an imperfect preventive
maintenance action, is a stochastic variable following
a certain probability distribution at a certain time.
The approach suitably describes the fluctuation and
reduction-factor trend as the system ages. For the
purpose of maximising profit, this paper considers the
optimisation of preventive maintenance policy in a
finite lifetime. Our maintenance quality model is
introduced in detail and an optimal mathematical
model is developed in x2. The maximal cumulative-
hazard strategy and the equal cumulative-hazard
strategy are then investigated. In x3, the basic
procedure of a genetic algorithm (GA) is introduced,
and the representing and decoding processes are
presented. A numerical case is given in x4 to illustrate
the proposed model and algorithm, and the
results are tabulated to quantify the difference
between the maximal cumulative-hazard and equal
cumulative-hazard strategies. A brief conclusion is
given in x5.

2. Mathematical formulation

We begin our formulation with the following
assumptions:

(1) Maintenance is performed on a degradation
system with a finite lifespan. In other words, as
time passes, the failure rate of a system will
monotonically increase as the reliability de-
creases (if no PM intervenes).

(2) Discrete and continuous PM actions are
simultaneously carried out in the life cycle.
CM is performed immediately upon failure
during discrete PM intervals, and is regarded as
minimal repair that restores the system to ‘as
bad as old’ condition (without changing the
current failure rate and effective age). The
duration of CM can be ignored.

(3) It is assumed that the cost for discrete PM
actions is a fixed value, but not a decision
variable.

(4) The salvage value of the system decreases as the
number of failures increases.

2.1. Continuous preventive maintenance

Actually, maintenance staff often perform minimal PM
during operation time, clearing, calibrating, lubricat-
ing, locking tight, checking, etc. If, however, a system
is subjected to such inspection and service within very
short intervals, relative to the time between failures,
one can regard these actions as occurring continuously
over time. Without reducing the operation time of the
system, they can lower the occurrence of failures; even
prolong the life of the system. In other words, these
actions have effects that slow down the failure rate.
Referring to Murthy and Hwang (1996), if u(t)
represents the maintenance effort rate (such as work
hours per unit time) expended at time t, and the
original failure rate function, r(t), of the system is a
differentiable function, then the derivative function,
r0(t), of failure rate function, r(t), under continuous
PM can be expressed as:

dr 0ðtÞ
dt
¼ v0ðtÞ � buðtÞ ð1Þ

and

0 < bU < v0ð0Þ: ð2Þ

In these equations, v0(t) represents the differential
function of failure rate without considering continuous
PM effort, U represents the maximum continuous PM
effort and b is a constant. We can see from Equation
(2) that the failure rate function, r 0(t), increases
monotonically, even if continuous PM is performed.
As a result, the continuous PM cost, C, after a working
hour, t, is given by:

C ¼ cc

Z t

0

uðtÞdt; ð3Þ

where cc represents the cost per unit of maintenance
effort.

2.2. Imperfect discrete preventive maintenance

In this paper, discrete PM actions are carried out at
scheduled time intervals, pi(i ¼ 1,2, . . . ,N–1). It is
assumed that the system will be resold after the interval
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pN. Generally speaking, a PM action has an imperfect
effect on the effective age of the system. Imperfect
discrete PM does not affect the failure rate function; it
just reduces the effective age of the system (see Kijima
et al. 1988, Kijima 1989). Assuming that it costs tp time
at each imperfect discrete PM action and the reduction
factors after each discrete PM are represented by
Y1,Y2,. . .Yn, the effective age, o�1 , just before the first
discrete PM and the effective age, oþ1 , just after the first
PM can be written as:

o�1 ¼ p1 and oþ1 ¼ ð1� Y1Þf1p1; ð4Þ

where fi represents the environment effect factor at
each epoch. Thus, the effective age before and after
the second and third discrete PM actions can be
derived as:

o�2 ¼ oþ1 þ p2 ¼ ð1� Y1Þf1p1 þ p2;

oþ2 ¼ ð1� Y2Þðoþ1 þ f2p2Þ
¼ ð1� Y2Þðð1� Y1Þf1p1 þ f2p2Þ
¼ ð1� Y1Þð1� Y2Þf1p1 þ ð1� Y2Þf2p2; ð5Þ

o�3 ¼ oþ2 þ p3 ¼ ð1� Y1Þð1� Y2Þf1p1
þ ð1� Y2Þf2p2 þ p3;

oþ3 ¼ ð1� Y3Þðoþ2 þ f3p3Þ
¼ ð1� Y1Þð1� Y2Þð1� Y3Þf1p1
þ ð1� Y2Þð1� Y3Þf2p2 þ ð1� Y3Þf3p3: ð6Þ

If that is the case, the effective age before and after
the nth imperfect discrete PM action can be formulated
iteratively as:

o�n ¼
Xn�1
j¼1

Yn�1
i¼j
ð1� YiÞfjpj

" #
þ pn

and

oþn ¼
Xn
j¼1

Yn
i¼j
ð1� YiÞfjpj

" #
: ð7Þ

The cumulative failure rate in each discrete PM
interval can be determined as:

EðniÞ ¼
Z o�i

oþ
i�1

rðtÞdt; ð8Þ

where the failure rate function, r(t), can be obtained by
the integral of Equation (1).

2.3. Stochastic maintenance quality model

Much published work focuses on modelling imperfect
maintenance; there is, for example, the (p,q) rule by
Nakagawa (1979), the types I and II age reduction
models in Kijima et al. (1988) and Kijima (1989), the
geometric process model by Zhang et al. (2002), the
quasi-renewal process model in Wang and Pham
(2006) and a survey of imperfect maintenance models
by Pham and Wang (1996). These models measure
maintenance quality/degree through relevant para-
meters that are regarded as fixed values and can be
estimated by field data and statistics (see Dedopoulos
and Smeers 1998). As mentioned in Wu and Clements-
Croome (2005), in real-world environments, it is
usually difficult to specify precisely the quality of a
maintenance action. This is due to differences in
improvement between individual systems, even in
response to the same maintenance action and also to
a lack of maintenance data. This uncertainty makes it
hard to optimise maintenance policy, because some
optimisation results are very sensitive to the para-
meters related to maintenance quality and to the
selected imperfect maintenance models (see Bartholo-
mew-Biggs et al. 2009). It can, therefore, be more
practical to obtain the parameters combining estima-
tions of experts in real applications, and assume that
these parameters vary in a given interval according to
certain probability distributions. For example, many
maintenance engineers working with building service
systems do not specify the return date as being 2 years
after maintenance; rather, they specify intervals
between 1 and 3 years in accordance with a uniform
probability distribution (see Evans et al. 1998).

This paper extends the work of Wu and Clements-
Croome (2005) by assuming that the reduction factors
in Equations (4) to (7) are stochastic variables. It is
reasonable to consider the average effect of discrete
PM degradation using the system age increment. The
degradation path of reduction factors and the prob-
ability distribution corresponding to certain working
times can be estimated by domain experts using
maintenance data. This approach makes the optimisa-
tion results more robust and insensitive to the
randomness of the crucial parameters in imperfect
PM models.

If the reduction factor, Yi, of the ith discrete
PM action follows a probability distribution denoted
by Fi (y j t) at time t, and if the density function of Yi is
given by:

fiðyjtÞ ¼
dFiðyjtÞ

dy
; ð9Þ

the probability distribution can be estimated by
domain experts and statistical results, and the
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expected value of the reduction factor at time t can be
obtained:

EðYijtÞ ¼
Z yUi

yL
i

yfiðyjtÞdyi; ð10Þ

where yUi and yLi are the upper and lower boundaries of
Yi, respectively.

This paper assumes that the possible values for the
reduction factor fall within ½yLi ; yUi � at time t and follow
a normal distribution. To correlate quality degradation
of discrete PM with a system’s age, we propose using
the following mean value of reduction factors:

@m tð Þ=@t < 0; ð11Þ

where m(t) ¼ E(Yijt) and m(t) is a monotonic decreas-
ing function, respect to t. This indicates that the
quality of discrete PM worsens with age of system.

2.4. Salvage value

Consider that the system is resold immediately at the
end of its life cycle, T, and that the resale price of the
system is given by:

SAðTÞ ¼ cmexp ð�A0T� A1NðTÞÞ; ð12Þ

where cm is the price once it is purchased and offered
for resale without further use. The resale price is lower
than the original purchase price, c0, and A0, A1 are
positive constants. N(T) is the expected number of
failures in a finite life cycle and is given by:

NðTÞ ¼
XN
i¼1

E nið Þ; ð13Þ

where E(ni) is obtained using Equation (8). This
indicates that the failure history and the use of the
system will affect the resale price simultaneously.

2.5. Expected profit

Based on the hypothesis and models given above, the
total expected profit from the equipment in its life cycle
can be calculated by:

maxP ¼ rðT� ðN� 1ÞtpÞ þ SAðTÞ � cpðN� 1Þ � ccXN
i¼1

Z o�i

oþ
i�1

uðtÞdt� cr
XN
i¼1

EðniÞ � c0

subject to
XN
i¼1

pi þ ðN� 1Þtp ¼ T; ð14Þ

where the discrete PM scheduled time intervals,
p1,p2,p3. . . . . .pN and N are decision variables, and r,
cp and cr denote the output profit per unit time,
the fixed discrete PM cost, and the CM cost,
respectively.

Most of the literature regards the expected cost per
unit time or sum of cost to be an optimisation
criterion, but does not consider some important
constraints (see Jiang and Ji 2002). To make the
formulation more realistic, limitations and constraints,
such as minimal allowed reliability/availability and
maximal cumulative hazard, should be considered for
practical applications. Two types of constraint, defined
as the maximal cumulative-hazard strategy and the
equal cumulative-hazard strategy, are presented in the
following subsections.

2.5.1. Maximal cumulative-hazard strategy

Since a system becomes weaker as its age increases, it is
practical to restrict to an acceptable level, called the
maximal cumulative-hazard rate, in each discrete PM
interval. This level can keep the system working
constantly in a desired state in each discrete PM cycle.
This paper postulates that the maximal allowed
cumulative-hazard rate is Hs in each discrete PM
interval; the additional constraint for optimisation
formulation in Equation (14) is given by

Hi � Hs; i ¼ 1; 2; :::;N; ð15Þ

where

Hi ¼
Z o�i

oþ
i�1

rðtÞdt ¼ EðniÞ: ð16Þ

2.5.2. Equal cumulative-hazard strategy

Owing to the fact that the failure rate of a system
quickly increases in the course of the degradation
process, systems are hard to maintain and their PM
intervals become shorter in their later stages. If,
however, an equal cumulative-hazard-rate level is
given at each discrete PM interval, subsequently,
appropriate discrete PM intervals can be determined,
and the number of decision variables can be
reduced directly. Thus, it becomes easier to obtain
the optimal value. The additional constraints can be
shown by

Hequal ¼ Hi ¼ Hiþ1 ¼ Hiþ2; :::;¼ HN: ð17Þ

Based on Equations (16) and (17) and the decision
variables in Equation (14), the number of sequential
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discrete PM intervals, N, and the corresponding
scheduled time intervals (p1,p2,p3. . .. . .pN) are directly
determined by the optimal constraint variable, H�equal.
The algorithm for calculating N* and p�1; p

�
2; p
�
3::::::p

�
N�

are presented in Figure 1, based on the optimal H�equal
obtained.

3. The GA optimisation technique

Equation (14) formulates a complicated non-linear
programming problem. An exhaustive examination of
all possible solutions is not realistic due to time
limitation. Meta-heuristic algorithms, such as the
GA, Tabu search, the simulated annealing algorithm,
and ant colony optimisation (ACO) are efficient and
effective approaches to searching for the optimal
solution (or approximate optimal solution) in combi-
national and non-linear programming problems that
do not require derivative information to determine the
next direction of the search. These approaches also
adapt well to other problems. The GA employed in this
paper to solve the presented problem is briefly
introduced in the following sections.

3.1. The GA

The GA is one of the most widely used of the
evolutionary searching methods that were inspired by

the optimisation procedure that exists in nature and
biological phenomena. Because of its advantages, the
GA has become the most popular universal tool for
solving various optimisation problems. It has been
successfully applied to an abundance of optimisation
problems in reliability engineering (see Lisnianski and
Levitin 2003, Levitin 2005, 2006) and maintenance (see
Levitin and Lisnianski 1999, 2000).

Basically, the GA operates with solutions repre-
sented by ‘chromosomes’. Selection procedures are
employed to maintain diversity in the population (the
set of solutions). Unlike other non-meta-heuristic
algorithms, the GA deals with the solutions of each
generation without considering derivative information,
and iteratively leads the population trend to global
optimal points with tractable manipulations. Detailed
information on the GA can be found in books (e.g. see
Lisnianski and Levitin 2003, Levitin 2005). The basic
procedure of the GA is given below.

At first, an initial population is randomly generated,
consisting of Ns individuals (a singular solution) with S
length strings. The new offspring (new solution) for the
next generation is obtained during the genetic cycle
using genetic operators of crossover and mutation and a
specified selection strategy based on the fitness of each
individual. Fitness can be regarded as the corresponding
results of each solution; in minimisation problems, the
smaller the result, the greater the fitness of the
individual. Through the selection strategy, the crossover
operator produces a new solution from parent popula-
tions and facilitates the inheritance of some properties
from the parents by the offspring. Mutation operators
swap the initial order of strings located in two randomly
chosen positions; this results in slight changes to the
offspring’s structure. The diversity of each generation is
maintained, and premature convergence to a local
optimum is avoided through this random jump
approach. By decoding the solutions, the fitness of
each individual is evaluated and a selection procedure is
performed based on the individual’s fitness. Individuals
with better fitness have a greater chance of being
selected to join the next generation. The iterative
process terminates when solutions in the population
meet some criteria, such as: (1) the genetic cycles repeat
Nc times, (2) the variance of fitness in populations is less
than e1 and (3) the variance of average fitness in
subsequent populations is not more than e2, where e1
and e2 are two user-specified values. The final popula-
tion contains the best solution achieved, as well as
different approximate optimal solutions that may be
useful to the decision maker.

To apply the GA to a specific problem, solution
representation and decoding are important procedures
that must be defined. The penalty function approach is
employed to handle infeasible solutions.

Figure 1. Determining the optimal discrete PM sequence
under the equal cumulative-hazard strategy.
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3.2. Solution representation

For the optimisation problem (14) considering a
maximal cumulative-hazard strategy with an addi-
tional constraint (15), the decision variables are the
scheduled time intervals, p1,p2,p3. . . . . .pN and the total
number of discrete PM intervals, N. Nevertheless, the
optimal number, N*, is difficult to be determined
before optimisation, and the length of string for each
individual solution is uncertain. Given that Nmax

represents the maximum possible number of PMs in
a finite time span, T, an individual solution is
represented by real number strings p ¼ {p1,p2,p3,. . .,
pNmax

}. Each pi should vary in the range (1,T).
Furthermore, the upper limit, T, for pi can be reduced
by considering the constraint (15). At the very least, it
will be equal toT0 ¼ H�11 Hsð Þ, where H�11 �ð Þ denotes
the inverse function of H1(�).

3.3. Solution decoding

The following procedure determines the fitness value
for an arbitrary individual solution represented by the
real number strings p ¼ {p1,p2,p3,. . .,pNmax}.

(1) Initialise the variables Tsum ¼ 0, indicating the
cumulative time, and that Nsum ¼ 1, represent-
ing the total number of discrete PM intervals,
then go to step 2;

(2) Let Tsum ¼ Tsum þ pNsum
and go to step 3;

(3) Check whether Tsum 5 T is satisfied; if Tsum 5
T go to step 4, otherwise go to step 6;

(4) Let Tsum ¼ Tsum þ tp and go to step 5;
(5) Check whether Tsum 5 T is satisfied; if Tsum 5

T go to step 7, otherwise go to step 6;
(6) p0Nsum

¼ T�
PNsum�1

i¼1 p0i þ tp
� �

; go to step 8;
(7) p0Nsum

¼ pNsum
andNsum ¼ Nsum þ 1; go to step 2;

(8) The decoding solution is p0 ¼ {p01,p02,p03,. . .,
p0Nsum

,0,. . .0}, and the number of discrete PM
intervals is equal to Nsum; go to step 9;

(9) According to the solution strings p0 ¼ {p01,
p02,p03,. . ., p0Nsum

,0,. . .0} and Equation (14), the
corresponding fitness of the individual solution
is obtained.

4. A numerical case

Suppose the failure time of a degradation system
follows a two-parameter Weibull distribution with the
shape parameter being m ¼ 2.2 and the scale para-
meter being Z ¼ 100. The finite lifetime, T, of each
system is equal to 1000 hours, and the duration of a
discrete PM action, tp, is equal to 5 hours. The
continuous preventive maintenance effect is given by

u(t) ¼ t0.2. The reduction factor follows a normal
distribution within the range (0.3,1.0), where yL ¼ 0.3
and yU ¼ 1.0. Assume the mean value of the normal
distribution is:

m tð Þ ¼ exp � t

T

� �
: ð18Þ

The expected value of the reduction factors at
certain times is tabulated in Table 1, which indicates
that the reduction factor decreases as time passes.

Assume that the fixed cost of a discrete PM is $1200
per unit time. CM costs are higher than PM costs for
unplanned interruptions (see Evans et al. 1998),
therefore, cr/cp ¼ 40. The values of other parameters
are presented in Table 2.

Based on the GA optimisation method and the
mathematical models presented in the previous section,
the optimal results corresponding to different maximal
cumulative-hazard constraints are those tabulated in
Table 3.

Similarly, Table 4 presents the optimal results
obtained under different equal cumulative-hazard
constraints using the enumeration method.

One can see that the optimal number of discrete
PMs is equal to 35 under the equal cumulative-hazard
strategy, and that Hequal ¼ 0.125 is the best strategy
(with maximal profit $370130) in these alternative
strategy listed in Table 3 and 4. Through the process
shown in Figure 1, the sequential time epoch for the
discrete PM actions are 40.70, 34.38, 32.89, 31.69,
30.60, . . . , 16.70, 16.42, 16.16, 15.90, 15.66 (hours).
The time interval between two discrete PMs decreases
progressively, which is determined by the degrading
nature of the system.

Profit decreases when over-maintenance (non-
optimal maintenance policy) is performed under the
same constraint. As shown in Tables 3 and 4, the
optimal results under the two strategies are very
different, even with the same constraint values. When

Table 2. Relevant parameters.

r A0 A1 b c0

800 1074 0.05 1075 150000

cm cp cc cr fi

120000 1200 10 48000 1

Table 1. Expected reduction factors at certain times.

t 10 100 500 990

E(Yijt) 0.9900 0.9048 0.6065 0.3716
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the cumulative-hazard rate constraint is larger than 0.2
(Hs,Hequal � 0.2), the maximal cumulative-hazard
strategy apparently provides larger profits than does
the equal strategy. This indicates that the equal
cumulative-hazard strategy is less adequate. On the
other hand, when the cumulative-hazard rate con-
straint is less than 0.125 (Hs,Hequal � 0.125), although
there exists an over-maintenance problem under the
equal cumulative-hazard rate strategy, better results
can also be obtained. When the hazard rate constraint
is strict, greater maintenance frequency is required to
meet the constraint, and thus the number of variables
increases. This makes the solution process time-
consuming and the global optimal result difficult to
obtain; however, as mentioned in the previous section,
the equal cumulative-hazard strategy greatly reduces
the number of variables and makes the solution
process quicker and easier to perform.

5. Conclusions

This paper discusses a sequential PM policy for a
degradation system with a finite lifetime. Considering
that uncertainty is a crucial problem in maintenance
modelling, the stochastic reduction factor is proposed
to describe the randomness and trend of the PM
quality. This is reasonable and useful because it makes
the optimisation results more robust and insensitive to
any uncertainty incurred due to a lack of data. Two
constraint strategies are proposed and compared in an
illustrative case, which concludes that, although the
maximal cumulative-hazard rate strategy is more

efficient than the equal constraint strategy, it is almost
impossible to obtain the global optimal solution, even
through the GA method. The larger the number of
discrete PMs involved, the more difficult it is to obtain
the global optimal solution. Thus, the equal
cumulative-hazard rate is tractable and outperforms
the maximal strategy.

Further work may expand the model and release
some restrictions, such as how to set up the relation-
ship between the reduction factor and the correspond-
ing PM cost. The relationship between maintenance
cost and reliability is also an interesting subject, as is its
modelling and sensitive analysis. Furthermore, many
PM models in the literature do not consider the
constraints from maintenance resources (such as
available cost time and staff, see Cassady et al.
(2001)), but this is a more practical problem. The
selection of sets of efficient PM activities under a
limited budget is also worth consideration.
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