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In this paper, a system consisting of single multi-state element (MSE) with
performance rates and transition intensities presented as fuzzy values is
introduced. Due to the lack, inaccuracy or fluctuation of collected data,
it is often too difficult to evaluate the performance rates and transition
intensities of multi-state element/system with precise value, especially in
the continuous degradation element/system which is usually simplified
to finite multi-state element/system to avoid “dimension damnation”. To
overcome this challenge, fuzzy set theory as a promising methodology
to quantify the non-probabilistic uncertainty is employed here to facil-
itate the multi-state element/system performance assessment. Given the
fuzzy transition intensities and performance rates, the state probabilities
of multi-state element are fuzzy also. Meanwhile, when considering the
replacement policy, fuzzy continuous-time Markov model with finite dis-
crete states is proposed to assess the fuzzy mean time between replacement
(MTBR) and the cumulative fuzzy performance reward in each replace-
ment cycle. In order to obtain the membership functions of the fuzzy indices
of interest, parametric programming technique is employed based on the
Zadeh’s extension principle. The expected fuzzy average profit per unit
time is computed under different replacement policy, and then three fuzzy
decision making (ordering) methods are adapted to determine the optimal
replacement threshold stateθ∗ with aim to maximize the expected fuzzy
average profit per unit time. The effectiveness of the proposed method is
illustrated via an example of multi-state power generator.

Keywords: Fuzzy multi-state system (FMSS), fuzzy multi-state element (FMSE),
FMSE replacement, maintenance policy, fuzzy Markov reward process, parametric
programming.
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1 INTRODUCTION

In the real world, many systems are able to perform their task with partial
performance rate of their original design. This phenomenon is usually resulting
from the degradation of components and parts in the system or/and the failures
of some elements which decrease system performance. This type of system
is called multi-state system (MSS) and was primarily introduced in the mid-
1970s by Murchland [1].

After Barlow [2], Ross [3] and other researchers extended some basic con-
cepts and definitions in the traditional binary-state system reliability theory
to the MSS framework, many novel methods were developed to facilitate
the MSS reliability and performance assessment, e.g. the extended decision
diagram-based method [4], the stochastic process modeling [5], the universal
generating function (UGF) [6], the Monte Carlo simulation [7], etc., and these
methods have been widely applied to industrial engineering system [8], such
as power generating system, computing system, transportation system and
radio relay station, etc. On the other hand, some MSS with specific character-
istics existing in particular industrial field were also introduced and studied in
recent years, e.g. the multiple failure modes MSS [9], the dependent MSS [10],
the multi-state weighted system [11], the generalized multi-statek-out-of-n:F
system [12], and the acyclic multi-state-node networks [13], and so forth.

Beside the reliability assessment, the MSS maintenance decision making
is more crucial and attracts much attentions in both academic and industrial
field. Some of recent research on MSS maintenance optimization problem are
worth mentioning here, for example, Zhanget al. [14] introduced a replace-
ment policy for the repairable system with multiple failure modes, and the
geometric process repair model was proposed. A bivariate replacement policy
was proposed and discussed in their later work [15], where the number of
failure timesN and working ageT were considered as the bivariate decision
parameters. Moustafaet al. [16] presented a maintenance model for multi-state
semi-Markov deteriorating system and three optional maintenance decisions
(do-nothing, minimal maintenance or replacement) are optimally selected to
determine what action should be taken at each system state. Chenet al. [17]
established a semi-Markov decision process (SMDP) model for MSS under
condition-based maintenance framework. Chianget al. [18] proposed a state-
dependent maintenance policy for MSS subject to aging and fatal shocks under
the periodic inspection strategy. Levitin and Lisnianski [19] studied the imper-
fect preventive maintenance strategy for the MSS with binary-state element.
Some other maintenance problems with the aforementioned methods can refer
to [20, 21]. All of these works are based on the probabilistic uncertainty
framework where the uncertainty can be fully described via probabilistic or
stochastic model.

However, the conventional MSS reliability and performance assessment
methods are usually based on the following two assumptions [22, 23]:
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1. The state probabilistic distributions of MSE in the MSS are precisely
known and measurable;

2. The performance rates of MSE are precisely determined.

Actually, there assumptions do not always hold when precisely evaluating
the state probability distribution and performance rates is difficult. There are
mainly two reasons [23]:

1. Due to the budget or time limitation, getting accurate and sufficient
data is impossible or prohibitive. Therefore, the evaluation of element/
system degradation behavior can be only expressed in terms like “a unit
would fail in about 1 year” and “system performance degrades nearly
200 per unit time”. Thus, crisp values used to represent the probabilistic
distributions and performance rates sometimes make no sense.

2. Many elements/systems deteriorate continuously or nearly continu-
ously with time. To avoid the “dimension damnation” [24], the model is
oftentimes simplified via state combination to reduce the computational
burden. The continuously degrading element/system is finally simpli-
fied to one with several discrete states separated by the distinguishable
performance rates, and the number of discrete states is usually not too
large to make the computation tractable [25].

Because of these two reasons, the conventional approach of representing the
performance distribution of MSE/MSS in crisp values involves more risks to
describe the actual behavior of the element/system.

Fuzzy reliability theory which employs the fuzzy set theory introduced by
Zadeh [26, 27] is becoming a new methodology to deal with the imprecision
and uncertainty phenomena in reliability engineering [28]. With the assistance
of fuzzy reliability theory, the reliability and risk of complex system can be
assessed even with some imprecise information, such as linguistic variable,
scarce data, etc. Therefore, it has since received increasing attention in recent
years, for example, Caiet al. [29] introduced the fuzzy success/failure state
and the reliability model to study a gradually degrading computing system.
Huang [30] assessed the reliability of a system in the presence of fuzziness
in operating time. Huanget al. [31] proposed to evaluate the failure possi-
bility via posbist fault tree analysis when statistical data is scarce or failure
probability is extremely small. A novel fuzzy Bayesian approach was devel-
oped by Wu [32] to create the fuzzy Bayes point estimator of reliability.
Huanget al. [33] introduced a Bayesian method to assess system reliability
when lifetime data is presented as a fuzzy value. Fuzzy dynamic reliabil-
ity evaluation for a deteriorating system under imperfect repair action was
addressed by Vermaet al. [34]. Ke et al. [35] developed a procedure to con-
struct the fuzzy steady-state availability when obtained data are subjective.
Two-unit repairable systems suffering common-cause failure was discussed
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by Huanget al. [36], where the time to failure follows fuzzified exponential
distribution. Pandeyet al. [37] proposed a new method to assess the profust
reliability indices. To consider the maintenance action involving fuzzy value,
Popovaet al. [38] discussed a T-age replacement policy with fuzzy reward. In
their model, the fuzzy theory was applied to the renewal reward processes, and
operational reward was also regard as a fuzzy random variable. The optimal
T-age replacement policy was determined via nonlinear programming algo-
rithm. However, up to present, most of the reported works mainly focus on
binary-state system issues. As stated in Ref. [8], the MSS is already very popu-
lar in industry, so the fuzzy reliability and it related issue, such as maintenance
decision, warranty analysis etc., under MSS context remains an emerging
research paradigm. The concept of fuzzy multi-state system (FMSS) was first
used by Ding and Lisnianski [22] in a modeling study where the state prob-
abilities and performances of a component were presented as fuzzy values.
In their work, fuzzy UGF (FUGF) method was proposed to assess reliability
and availability of FMSS under the fuzzy demand. Afterwards, some gen-
eral definitions involving relevancy, coherency, dominance and equivalence
in FMSS were provided by Dinget al. [39], to extend the basic properties of
MSS in crisp case to the fuzzy context. Liuet al. [23] did more extending
work through considering the fuzzy transition intensity and performance rate
for MSE, and fuzzy Markov model was proposed to compute the fuzzy state
probability distribution and then applied to assess the fuzzy availability under
fuzzy user demand. To make a further investigation on some related issues in
FMSS, this paper does more efforts to study the maintenance decision prob-
lem in FMSE based on our previous work and tries to build up an FMSE
replacement model to facilitate making a reasonable maintenance planning in
practical applications.

In this paper, FMSE is introduced to overcome the deficiencies of the
conventional MSS theory. The state performance rates and transition intensi-
ties among each state are treated as fuzzy values. Fuzzy mean time between
replacement (MTBR) and fuzzy performance reward is computed via the pro-
posed fuzzy Markov reward model, and the expected fuzzy average profit
per unit time is also formulated. To calculate the membership functions of
the quantities of interest, the parametric programming algorithm is executed.
The replacement policy for the FMSE is introduced and the definition of the
threshold state under the replacement policy is also given. Finally, the opti-
mal policy among the possible candidates is elected based on the three fuzzy
decision making methods proposed in the past literatures.

The remainder of this paper is organized as follows: In Section 2, fuzzy
set, fuzzy number and extension principle are briefly reviewed. The definition
of FMSE and FMSS are given in Section 3 and fuzzy Markov model and
fuzzy Markov reward model are discussed also. Replacement policy for single
FMSE is introduced in Section 4, and three types of fuzzy decision making
methods proposed in the literatures are briefly reviewed in Section 5. The
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proposed model and approach are illustrated in Section 6 via a power generator.
Conclusion is given in Section 7.

2 FUZZY SET THEORY

2.1 Fuzzy set and fuzzy number
A fuzzy subsetX̃ of a universal setU is defined by its membership (or char-
acteristic) functionµ

X̃
: U → [0, 1]. The values ofµ

X̃
(x) extends from zero

to one which can be interpreted as the membership degree at whichx belongs
to X̃.

Let � be an universal set of real numbers andX̃ be a fuzzy subset of�.
X̃α = {x|µ

X̃
(x) ≥ α} denotes theα-cut level set ofX̃ whereα ∈ [0, 1]. The

interval of this set is written as̃Xα = [X̃L
α , X̃U

α ], andX̃0 is the closure of the
setX̃0 = {x|µ

X̃
(x) ≥ 0}.

X̃ is called a fuzzy real number if: (1) it is a normal and convex fuzzy
set; (2) its membership function is upper semi-continuous; (3) the 0-cut level
set X̃0 is bounded in�; (4) the 1-cut level set̃X1 is a singleton set, and
X̃L

1 = X̃U
1 ; (5) the boundary functionsL(α) = X̃L

α andU(α) = X̃U
α of

membership function are continuous with respect toα ∈ [0, 1].
The membership function of a typical triangle fuzzy number (TFN)X̃,

parameterized by the triplet(a, b, c), is formulated as:

µ
X̃
(x) =




x − a

b − a
, a ≤ x < b

1, x = b
x − c

b − c
, b < x ≤ c

0, otherwise

, (1)

and is plotted in Fig. 1.

FIGURE 1
The membership function of a triangle fuzzy number.
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In this paper, both the state transition intensity and performance rate of each
element are treated as TFN; because it is straightforward to manipulate TFN
in mathematical calculation, and it has been widely used in many practical
situations and reliability engineering [22, 23, 30, 34, 35, 39–41].

2.2 Extension principle and parametric programming algorithm
Zadeh [26, 27] introduced the extension principle to obtain the membership
function of a function withn fuzzy numbers as inputs:

µp̃(x̃)(z) = sup
x∈Rn

z=p(x)

min{µx̃(x)} = sup
x1∈�1,...,xn∈�n
z=p(x1,...,xn)

min{µ
X̃1

(x1), . . . , µX̃n
(xn)},

(2)

whereX̃ represents a set of input fuzzy numbers{X̃1, . . . , X̃n}, x is a set
of inputs variables{x1, . . . , xn}. Rn is a set{�1, . . . ,�n} representing the
universal sets of real numbers, andp(·) is a function mapping inputsx to a
output variablez. According to the extension principle, the interval ofα-cut
level set of fuzzy number̃p(x̃) is given by:

p̃α(x̃) = [minp(x; µx̃(x) ≥ α), maxp(x; µx̃(x) ≥ α)] = [p̃L
α , p̃U

α ]. (3)

Thus, the lower and upper bounds ofp̃(x̃) atα-cut level could be obtained by
a pair of parametric programming as follows:

p̃L
α : min p(x1, . . . , xn)

s.t. x̃L
1α ≤ x1 ≤ x̃U

1α
...

x̃L
nα ≤ xn ≤ x̃U

nα

, (4)

p̃U
α : max p(x1, . . . , xn)

s.t. x̃L
1α ≤ x1 ≤ x̃U

1α
...

x̃L
nα ≤ xn ≤ x̃U

nα

. (5)

This parametric programming problem can be realized by computer program,
for which a couple of extreme values subjected to different intervals of input
variablesx atα-cut level can be easily found.

3 FMSE FMSS AND PERFORMANCE ASSESSMENT

3.1 Definition of FMSE and FMSS
As defined by Ding and Lisnianski [22] and Liuet al. [23], FMSE is the MSE
in which the element state performance rate, the associated state probabilities
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or the transition intensities between any pair of states are treated as fuzzy
values. In such case, any elementj havingkj different states is characterized
by fuzzy performance rates̃gj = {g̃j,1, . . . , g̃j,kj

} and the associated state
probabilities are represented by fuzzy valuesp̃j (t) = {p̃j,1(t), . . . , p̃j,kj

(t)}.
The fuzzy UGF (FUGF) proposed by Ding and Lisnianski [22] can be applied
to describe the behavior of FMSE in a polynomial form as:

ũj (z, t) =
kj∑

ij =1

p̃j,ij (t) · z
g̃j,ij

= p̃j,1(t) · zg̃j,1 + p̃j,2(t) · zg̃j,2 + · · · + p̃j,kj
(t) · z

g̃j,kj . (6)

Since an MSS is consisting of more than one FMSE, this kind of MSS
is called FMSS for its state probability and performance rate inherit the
fuzzy property from FMSE. Once the dynamic fuzzy state probability of
each individual FMSE is available, the dynamic behavior of the FMSS
can be expressed through some combination rules based on the system
structure function and the property of its performance rate under the fuzzy
context.

3.2 Fuzzy Markov model and reward model
Based on the definition of FMSE, the state-space diagram of a non-repairable
FMSE is shown in Fig. 2, where statek is the best state with highest perfor-
mance rate while state 1 is worst state with zero performance rate and often
considered as failure state. The transition intensities between statesi andj

are presented by the fuzzy valuesλ̃i,j and the associated performance rate in
each statei is viewed as the fuzzy valuẽgi .

With the assumption of fuzzy transition intensities, the state probability of
elements at timet must also be a fuzzy value denoted asp̃i(t). In order to
obtain the fuzzy dynamic probabilitỹpi(t) of FMSE, the fuzzy Markov model
is introduced as follows [23].

FIGURE 2
The state-space diagram of non-repairable FMSE.
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The matrix of FMSE fuzzy transition intensities is given by:

state 1 · · · k

λ̃ = |λ̃i,j | =
1
...

k




λ̃1,1 . . . λ̃1,k

...
. . .

...

λ̃k,1 · · · λ̃k,k


 , (7)

whereλ̃i,i = −∑k
j=1,j �=i λ̃i,j . For non-repairable FMSẼλi,j = 0 (j > i).

Then, the Kolmogorov’s equation with fuzzy transition intensities (fuzzy
Kolmogorov’s equations) takes the form [42]:




dp̃k(t)

dt
= −p̃k(t)

k−1∑
j=1

λ̃k,j

dp̃i(t)

dt
=

k∑
j=i+1

λ̃j,i p̃j (t) − p̃i(t)

i−1∑
j=1

λ̃i,j , 1 < i < k, t ≥ 0

dp̃1(t)

dt
=

k∑
j=2

λ̃j,1p̃j (t)

, (8)

with initial conditions:p̃k(0) = 1, p̃i(0) = 0(i �= k).
To evaluate the performance reward produced by the system operation,

the fuzzy Markov reward model is proposed to handle the case with fuzzy
performance rates at each element state. Because the performance reward
associated with element remaining at each state per unit time should equal
to the unit performance reward multiplying the performance rate, therefore,
it is also a fuzzy value denoting asr̃i,i if the element is staying in statei.
Sometime, the state transition involves reward or loss, e.g. the expenditure
of repair activities, thus, the fuzzy transition reward due to the element state
transition from statei to statej is denoted as̃ri,j . The fuzzy reward matrix
takes the form as:

state 1 · · · k

r̃ = |r̃i,j | =
1
...

k




r̃1,1 . . . r̃1,k

...
. . .

...

r̃k,1 · · · r̃k,k


 . (9)

Let Ṽi(t) be the total expected fuzzy reward accumulated up to timet ,
given the initial element statei at time instantt = 0. In order to obtain the
total expected fuzzy reward, one must sum up all of the performance rate
reward with associated state distribution. To this end, we first examine the
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reward variation for a small time interval�t , and it can be written as:

Ṽi(t + �t) =


1 −

k∑
j=1
j �=i

λ̃i,j�t


(r̃i,i�t + Ṽi(t))

+
k∑

j=1
j �=i

λ̃i,j�t (r̃i,j + Ṽj (t)), i = 1, . . . , k, (10)

which can be transformed into the following form as:

Ṽi(t + �t) − Ṽi(t)

�t
= r̃i,i +

k∑
j=1
j �=i

λ̃i,j r̃i,j

+
k∑

j=1

λ̃i,j Ṽj (t) + λ̃i,i r̃i,i�t, i = 1, . . . , k. (11)

Therefore, the first order derivative ofṼi(t), with respect tot , is written as:

dṼi(t)

dt
= lim

�t→0

Ṽi(t + �t) − Ṽi(t)

�t
= r̃i,i +

k∑
j=1
j �=i

λ̃i,j r̃i,j

+
k∑

j=1

λ̃i,j Ṽj (t), i = 1, . . . , k. (12)

If we assume the reward from the transition between any two states in the
non-repairable FMSE are equal to 0 (r̃i,j = 0 for i �= j ). Thus, one can
write the fuzzy differential equations corresponding to different initial states
as follows:




dṼk(t)

dt
= r̃k,k +

k∑
j=1

λ̃k,j Ṽj (t)

dṼi(t)

dt
= r̃i,i +

i∑
j=1

λ̃i,j Ṽj (t), 1 < i < k,

dṼ1(t)

dt
= r̃1,1 + λ̃1,1Ṽ1(t)

(13)
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with initial conditionṼi(0) = 0, and the equations for the long-run (stationary)
fuzzy reward are written as:




0 = r̃k,k +
k∑

j=1

λ̃k,j Ṽj

0 = r̃i,i +
i∑

j=1

λ̃i,j Ṽj , 1 < i < k,

0 = r̃1,1 + λ̃1,1Ṽ1

(14)

where all of the time-derivative termsdṼi (t)
t

are equal to zero representing
stationary reward.

Solving the fuzzy differential in Eqs. (8) and (13) can be resorted to the
Laplace-Stieltjes transform and Laplace-Stieltjes inverse transform [23][42].
The instantaneous state probability and performance reward are expressed in
terms of fuzzy parameters, and their membership functions can be derived
through the proposed parametric programming straightforwardly. In the same
manner, the long-run reward given by Eqs. (14) can also be computed via
solving the linear equations and the parametric programming proposed in
Section 2.2.

4 REPLACEMENT POLICY FOR FMSE

It always troubles the decision maker that when MSE degrades to the lower
performance rate states, whether it is cost efficient to replace the element. In
fact, it is necessary to find a proper threshold state, and based on this threshold
state, the element will be replaced right away once it falls into the threshold
state or below. This is realistic in many situations where the condition of the
system/element is monitored all the time, and whenever the condition becomes
lower than threshold value, the system/element needs replacing to ensure the
cost efficiency or system safety.

The proposed replacement policy in the present work is to select an optimal
threshold stateθ∗ with the aim to maximize the expected average profit per unit
time, and the MSE replacement is carried out immediately once the element
falls into the stateθ∗or below. It assumes that the replacement restores the
element to “as good as new” condition. A simple policy whereθ = 2 is
demonstrated in Fig. 3. Under this policy, the performance reward for state 2
and 1 is zero for the element is replaced as soon as it falls into these states,
and the associated cost of replacement is denoted by fuzzy valueM̃.

The MTBR and total expected performance reward of the FMSE in each
replacement cycle are fuzzy values, because they inherit the fuzzy character
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FIGURE 3
The state-space diagram for the case with replacement policyθ = 2.

from the fuzzy transition intensities and performance rates. In order to compute
the fuzzy MTBR and the fuzzy total expected performance reward in per
replacement cycle, the proposed fuzzy Markov reward model is employed.

According the replacement policy, the statesθ, θ − 1, θ − 2, . . . , 0 are
absorbing states simply denoted by a single stateθ . The Markov reward matrix
rT to obtain the MTBR is given by:

state θ θ + 1 · · · k

rT = |ri,j | =
θ

θ + 1
...

k




0 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


 , (15)

whereri,j = 0(i �= j) representing the reward associated with the transitions
is zeroed, and the reward associated with remaining in absorbing state should
be zeroed also, i.e.rθ,θ = 0. ri,i (i �= θ) is assigned equal to 1 representing
the reward from sojourning in statei per unit time. Thus, the fuzzy MTBR
is solved via following long-run stationary algebraic equations mentioned in
Eq. (14):


0 = rk,k + T̃θ

θ∑
j=1

λ̃k,j + λ̃k,θ+1T̃θ+1 + · · · − T̃k

k−1∑
j=1

λ̃k,j

0 = ri,i + T̃θ

θ∑
j=1

λ̃i,j + λ̃i,θ+1T̃θ+1 + · · · − T̃i

i−1∑
j=1

λ̃i,j , θ + 1 < i < k,

0 = rθ+1,θ+1 + T̃θ

θ∑
j=1

λ̃θ+1,j − T̃θ+1

θ−1∑
j=1

λ̃θ+1,j

(16)
whereT̃i denote the long-run reward with initial statei. When the FMSE starts
from the absorbing stateθ , it will never leave this state and no reward can be
accumulated, thereforẽTθ = 0.
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T̃i can be solved via Eq. (16), and MTBR of FMSE is interpreted as the
total expected fuzzy reward accumulated during the unrestricted time interval
[0, ∞]. Thus,T̃i is the fuzzy MTBR where the FMSE starts operating from
its statei.

In the same fashion, the total expected performance reward of the FMSE
can be calculated through the fuzzy reward matrix representing its performance
reward per unit time when FMSE is sojourning in each state.

The fuzzy reward matrix for the performance reward is written as:

state θ θ + 1 · · · k

r̃R = |r̃i,j | =
θ

θ + 1
...

k




0 0 · · · 0
0 r̃θ+1,θ+1 · · · 0
...

...
. . .

...

0 0 · · · r̃k,k


 , (17)

wherer̃i,i is fuzzy number which is different from the previous reward matrix
for MTBR, because the performance rate is of fuzzy value.

Similarly, the equations for the long-run expected fuzzy performance
reward are formulated as:


0 = r̃k,k + R̃θ

θ∑
j=1

λ̃k,j + λ̃k,θ+1R̃θ+1 + · · · − R̃k

k−1∑
j=1

λ̃k,j

0 = r̃i,i + R̃θ

θ∑
j=1

λ̃i,j + λ̃i,θ+1R̃θ+1 + · · · − R̃i

i−1∑
j=1

λ̃i,j , θ + 1 < i < k

0 = r̃θ+1,θ+1 + R̃θ

θ∑
j=1

λ̃θ+1,j − R̃θ+1

θ−1∑
j=1

λ̃θ+1,j

(18)

where R̃i represents the long-run fuzzy performance reward if the FMSE
initially starts operating from statei, and one also has̃Rθ = 0.

Because the replacement cycle forms a renewal process, the expected fuzzy
average profit per unit time can be calculated as follows:

C̃i = expected fuzzy reward in a cycle − fuzzy replacement cost

fuzzy MTBR

=
(

R̃k − M̃

T̃k

)
θ=i

, (19)

where fuzzy valueC̃i denote the expected fuzzy average profit per unit time
in the case where the replacement threshold stateθ is equal toi, and the
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replacement time is ignorable. The boundaries ofC̃i at arbitraryα-cut level
set can be calculated via a pair of parametric programming as follows:
Lower boundary:

C̃L
iα : min hi(λ, rR, M)

s.t. λ̃L
(i,j)α ≤ λi,j ≤ λ̃U

(i,j)α

r̃L
(i,i)α ≤ ri,i ≤ r̃U

(i,i)α

M̃L
α ≤ M ≤ M̃U

α

, (20)

Upper boundary:

C̃U
iα : max hi(λ, rR, M)

s.t. λ̃L
(i,j)α ≤ λi,j ≤ λ̃U

(i,j)α

r̃L
(i,i)α ≤ ri,i ≤ r̃U

(i,i)α

M̃L
α ≤ M ≤ M̃U

α

, (21)

wherehi(λ, rR, M) denotes the expected average profit per unit time with
threshold state equal toi, which is a function in terms of state transition
intensity, performance reward and replacement cost.

Under the different replacement policy, the fuzzy valueC̃i(1 ≤ i < k)

is also different. In the next section, we will briefly introduce three fuzzy
decision making methods to help determine the optimal solution under the
fuzzy uncertainty context.

Solving the non-linear parametric programming in Eqs. (20) and (21),
is straightforward, and standard optimization routines, such as the steepest
descent method and the Newton-Raphson method, can be directly used. The
command “fmincon” in the Matlab optimization toolbox is adopted to solve
the constrained nonlinear problems.

5 FUZZY DECISION MAKING

There are three fuzzy decision making methods introduced separately in this
section to select the best solution from all of the candidates under the fuzzy
context.

5.1 Method I: fuzzy max order
This method is an extension of the interval comparison. According to the
interval ordering method, the definition of a partial order for interval[a, b]
and[c, d] is given as follows:
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Definition 1.

[a, b] ≤ [c, d], if a ≤ c andb ≤ d;
[a, b] < [c, d], if [a, b] ≤ [c, d] and[a, b] �= [c, d].

By extending the partial order criterion of interval value to fuzzy number,
we suppose that[ÃL

α , ÃU
α ] and[B̃L

α , B̃U
α ] are the interval ofα-cut level set of

the two fuzzy numbers̃A andB̃, respectively. The partial order criterion for
the fuzzy number is stated in Definition 2.

Definition 2.

Ã ≤ B̃, if
[
ÃL

α , ÃU
α

]
≤
[
B̃L

α , B̃U
α

]
for all α ∈ [0, 1];

Ã < B̃, if Ã ≤ B̃ andÃ �= B̃.

Nevertheless, there are some special scenarios, for example:

(1) ÃL
α ≤ B̃L

α , but B̃U
α ≤ ÃU

α for all α ∈ [0, 1];
(2) ÃL

α ≥ B̃L
α (B̃U

α ≤ ÃU
α ) and ÃL

α ≤ B̃L
α (B̃U

α ≥ ÃU
α ) for some ofα ∈

[0, 1].
In these cases, one cannot decide which one is better than the other through
the partial order method.

5.2 Method II: fuzzy number distance
This method was firstly introduced by Murakamiet al. [43], and it was updated
by Cheng [44] later on. The basic idea of this method is to rank the fuzzy
numbers according to the distance from the centroid point of fuzzy alternative
Ã to the original point.

Let x̄ denote the horizontal axis value corresponding to the centroid
of Ã, and ȳ denotes the vertical axis value. For a simple fuzzy number
Ã = [a, b, c, d] with its membership functionµ

Ã
given by:

µ
Ã
(x) =




x − a

b − a
, a ≤ x < b;

1, b ≤ x ≤ c;
x − d

c − d
, c < x ≤ d;

0, otherwise

, (22)

and letµL

Ã
(x) = µ

Ã
(x) (x ∈ [a, b]) andµR

Ã
(x) = µ

Ã
(x)(x ∈ [c, d]). The

inverse function ofµL

Ã
(x) andµR

Ã
(x) are written asgL

Ã
= a + (b − a)µ

Ã
and

gR

Ã
= d + (c − d)µ

Ã
. Thus the coordinate of the centroid point(x̄, ȳ) of Ã
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can be computed as:

x̄ =
∫ b

a
xµL

Ã
dx + ∫ c

b
xdx + ∫ d

c
xµR

Ã
dx∫ b

a
µL

Ã
dx + ∫ c

b
dx + ∫ d

c
µR

Ã
dx

, (23)

ȳ =
∫ 1

0

(
µ

Ã
gL

Ã

)
dµ

Ã
+ ∫ 1

0

(
µ

Ã
gR

Ã

)
dµ

Ã∫ 1
0 gL

Ã
dµ

Ã
+ ∫ 1

0 gR

Ã
dµ

Ã

. (24)

The distance index between the centroid point(x̄, ȳ) and original point is
defined as:

R(Ã) =
√

(x̄)2 + (ȳ)2, (25)

and the ranking of the fuzzy alternatives can be ordered according the distance
index as below.

Definition 3.

If R(Ã) < R(B̃), thenÃ < B̃;
If R(Ã) = R(B̃), thenÃ = B̃;
If R(Ã) > R(B̃), thenÃ > B̃.

Based on this definition, order ranking of multiply fuzzy values becomes
straightforward, and one of merits of this method is that it is able to deal with
several fuzzy alternatives simultaneously.

5.3 Method III: Liou and Wang’s method [45]
The advantages of this method are that it can not only handle several alterna-
tives simultaneous as fuzzy number distance method does, but also it combines
with the optimistic attitude of the decision maker. Therefore, an optimism
indexβ is adopted in this method.

Based on this method, if the interval ofα-cut level set of fuzzy valuẽA is
denoted byÃα = [ÃL

α , ÃU
α ], then the left integral value of̃A is defined as:

IL(Ã) =
∫ 1

0
ÃL

αdα, (26)

while the right integral value is defined as:

IR(Ã) =
∫ 1

0
ÃU

α dα. (27)

Thus, the total integral value of the fuzzy numberÃ is defined as:

Iβ(Ã) = βIR(Ã) + (1 − β)IL(Ã), (28)

whereβ(β ∈ [0, 1]) is an optimism parameter determined by decision maker,
for example,β = 0.5 represents a neutral attitude.
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According to the total integral valueIβ(Ã), the fuzzy value can be ordered
as following Definition 4.

Definition 4.

If Iβ(Ã) < Iβ(B̃), thenA < B;
If Iβ(Ã) = Iβ(B̃), thenA = B;
If Iβ(Ã) > Iβ(B̃), thenA > B.

Based on these ranking methods, the optimal replacement policy can be
clearly found by ranking the expected fuzzy average profit per unit time under
each possible policy.

6 ILLUSTRATIVE CASE

The illustrative case is a non-repairable power generator. Generally, the gener-
ator is divided into 5 performance levels named perfect (state 5), partial perfect
(state 4), medium (state 3), partial failed (state 2) and completed failed (state 1)
by domain engineers according to ranges of its performance rates. The tradi-
tional statistical estimation method becomes problematic due to the lack of
data, especially for new product. Thus, a crisp value is not suitable to assess the
transition intensities. In addition, the performance rate may fluctuate around
its expected value in each state, for example the capacity of solar generator is
affected by power of sun and the power of water-turbine generator fluctuates
with flow. It is reasonable to use fuzzy number to value transition intensities
and performance rates according to expert’s knowledge [34], and thus the
generator can be regarded as an FMSE with five states as shown in Fig. 4.

The possible replacement policies (θ = 1, 2, 3, 4) are circled by dash line
in Fig. 4. That means the FMSE may replace immediately whenever it enters
the circled states. The fuzzy transition intensity and fuzzy performance reward
per unit time are treated as triangle fuzzy numbers and tabulated in Tables 1
and 2, respectively. The initial state is state 5, and the fuzzy replacement cost
is M̃ = (50, 60, 70) × 102$.

FIGURE 4
The state-space diagram of FMSE under different replacement policy.
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State 1 2 3 4 5

1 / 0 0 0 0
2 (0.6,0.7,0.8) / 0 0 0
3 (0.2,0.3,0.35) (0.5,0.6,0.7) / 0 0
4 (0.1,0.2,0.25) (0.25,0.3,0.35) (0.7,0.9,1.0) / 0
5 (0.15,0.2,0.25) (0.22,0.25,0.3) (0.3,0.35,0.4) (1.0,1.1,1.2) /

TABLE 1
The fuzzy transition intensities between any pair of state (year−1)

State 1 2 3 4 5

Performance
reward 0 (30,45,60) (65,75,85) (90,100,120) (130,150,170)

TABLE 2
The fuzzy performance reward per unit time in each state (×102$)

Under the policyθ = 2, it means the generator is replaced once it transits
into state 2 or below. In accordance to Eq. (16), the equations for the MTBR
are written as:



0 = 1 +
4∑

j=3

λ̃5,j T̃j + (λ̃5,2 + λ̃5,1)T̃2 − T̃5

4∑
j=1

λ̃5,j

0 = 1 +
i−1∑
j=3

λ̃i,j T̃j + T̃2

2∑
j=1

λ̃i,j − T̃i

i−1∑
j=1

λ̃i,j , 2 < i < 5.

0 = T̃2

By solving the linear equations, the stationary results are:

T̃3 = 1

λ̃3,1 + λ̃3,2
,

T̃4 = λ̃3,2 + λ̃3,1 + λ̃4,3(
λ̃3,2 + λ̃3,1

) (
λ̃4,3 + λ̃4,2 + λ̃4,1

) ,

T̃5 =
((

λ̃3,2 + λ̃3,1

) (
λ̃4,3 + λ̃4,2 + λ̃4,1

)
+ λ̃5,4

(
λ̃3,2 + λ̃3,1

)
+λ̃5,4λ̃4,3 + λ̃5,3

(
λ̃5,4 + λ̃5,3 + λ̃5,2 + λ̃5,1

)
/((

λ̃3,2 + λ̃3,1

) (
λ̃4,3 + λ̃4,2 + λ̃4,1

) (
λ̃5,4 + λ̃5,3 + λ̃5,2 + λ̃5,1

))
.

Thus, the fuzzy MTBR is equivalent tõT5.
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In the same manner, the equations for the stationary fuzzy performance
reward are given by:




0 = r̃5,5 +
4∑

j=3

λ̃5,j R̃j +
(
λ̃5,2 + λ̃5,1

)
R̃2 − R̃5

4∑
j=1

λ̃5,j

0 = r̃i,i +
i−1∑
j=3

λ̃i,j R̃j + R̃2

i−1∑
j=1

λ̃i,j − R̃i

i−1∑
j=1

λ̃i,j , 2 < i < 5,

0 = R̃2

and the total fuzzy performance rewardR̃i is formulated as:

R̃3 = r̃3,3

λ̃3,1 + λ̃3,2
,

R̃4 = r̃4,4(λ̃3,2 + λ̃3,1) + r̃3,3λ̃4,3(
λ̃3,2 + λ̃3,1

) (
λ̃4,3 + λ̃4,2 + λ̃4,1

) ,

R̃5 =
(
r̃5,5

(
λ̃3,2 + λ̃3,1

) (
λ̃4,3 + λ̃4,2 + λ̃4,1

)
+ r̃4,4λ̃5,4

(
λ̃3,2 + λ̃3,1

)
+r̃3,3λ̃5,4λ̃4,3 + r̃3,3λ̃5,3

(
λ̃5,4 + λ̃5,3 + λ̃5,2 + λ̃5,1

))
/((

λ̃3,2 + λ̃3,1

) (
λ̃4,3 + λ̃4,2 + λ̃4,1

) (
λ̃5,4 + λ̃5,3 + λ̃5,2 + λ̃5,1

))
.

TheR̃5 is the total fuzzy performance reward when state 5 is initial state.
Refer to Eq. (19), the expected fuzzy average profit per unit time under the

policy θ = 2 is formulated as:

C̃2 =
(

R̃5 − M̃

T̃5

)
θ=2

,

where the membership function at anyα-cut level can be computed based on
the couple of parametric programming given in Eqs. (20) and (21).

The other policies under different replacement threshold can be calculated
in the same fashion, and the membership functions of the fuzzy MTBR and
the total fuzzy performance reward obtained via parametrical programming
are plotted in Figs. 5 and 6, respectively. The membership functions of the
associated expected fuzzy average profit per unit time under each policy are
shown in Fig. 7.

It is necessary to resort to aforementioned fuzzy decision methods to
make correct judgment among the possible policies in order to maximize the
expected fuzzy average profit per unit time.
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FIGURE 5
The fuzzy MTBR under different replacement policy.

FIGURE 6
The total fuzzy performance reward under different replacement policy.

(1) Method I:
θ = 1 vs.θ = 2, C̃L

1α < C̃L
2α, C̃U

1α < C̃U
2α apparently exist, thus̃C1 < C̃2;

θ = 2 vs.θ = 3, C̃L
3α < C̃L

2α exists, butC̃U
3α < C̃U

2α comes existence when
α > 0.7, thus one can not determine the better policy amongC̃2 andC̃3;
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FIGURE 7
The expected fuzzy average profit per unit time under different replacement policy.

C̃1 C̃2 C̃3 C̃4

C̃1 / < – –
C̃2 > / – >

C̃3 – – / >

C̃4 – < < /

TABLE 3
Fuzzy decisions comparison by method I

θ = 3 vs.θ = 4, there exists̃C4 < C̃3 for C̃L
4α < C̃L

3α, C̃U
4α < C̃U

3α hold
at anyα-cut level. The comparison results are listed in Table 3, where “–”
denotes cannot find out a better one between candidates.

This method can not make decision completely among all of the candidate
policies, for one can only conclude thatC̃1 < C̃2, C̃4 < C̃3, C̃4 < C̃2 but
cannot determine the order betweenC̃3 andC̃2. The other two methods will
be adopted to make further decision.

(2) Method II:
According to Eqs. (23), (24) and (25), the centroid point coordinates and

distance are tabulated in Table 4. The rank of the fuzzy alternatives isC̃4 <

C̃1 < C̃3 < C̃2, and the optimal replacement policy isθ∗ = 2.
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C̃1 C̃2 C̃3 C̃4

x̄
C̃i

60.8267 69.4005 65.6428 37.1175
ȳ
C̃i

0.4958 0.4969 0.4960 0.4960

R(C̃i) 60.8287 69.4023 65.6447 37.1208

TABLE 4
Fuzzy decisions comparison by method II

C̃1 C̃2 C̃3 C̃4

IL(C̃i) 4867.1 5577.3 4625.2 821.77
IR(C̃i) 7524.2 8527.9 8741.9 6736
I0.5(C̃i) 6195.6 7052.6 6683.6 3778.9

TABLE 5
Fuzzy decisions comparison by method III

(3) Method III:
According to Eqs. (26), (27) and (28), the left, right and total integrals of

alternative are tabulated in Table 5 with optimism parameterβ = 0.5. The
final rank of the fuzzy alternatives is̃C4 < C̃1 < C̃3 < C̃2 which is identical
with the method II, and the optimal replacement state threshold is also state 2.
Finally, it can conclude that the best replacement threshold is state 2 with the
maximum expected fuzzy average profit per unit time under fuzzy uncertainty
context.

7 CONCLUSION

In this paper, the definitions of FMSS and FMSE are first reviewed which
extend the MSS model to the case where the transition rates and performance
rates of MSE are imprecisely evaluated due to the lack of sufficient data.
Fuzzy set theory is adopted to describe this kind of uncertainty. The fuzzy
Markov model and fuzzy Markov reward model are proposed to assess the
dynamic state probability, MTBR and stationary performance reward of the
FMSE under the fuzzy uncertainty context. The parametric programming is
also presented to obtain the membership functions of these indices of inter-
est at differentα-cut levels. To determine the optimal replacement policy of
FMSE, three decision making methods under fuzzy uncertainty context are
implemented to select the best policy among the candidates. Future work
will be focused on extending this methodology to FMSS maintenance issue
involving multiple FMSE.
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