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OPTYMALIZACJA ŁĄCZONA ALOKACJI NADMIAROWOŚCI ORAZ ALOKACJI 
PRACOWNIKÓW SŁUŻB UTRZYMANIA RUCHU 

W WIELOSTANOWYCH SYSTEMACH SZEREGOWO-RÓWNOLEGŁYCH
Multi-state system (MSS), as a kind of complex system consisting of elements with different performance levels, widely 
exists in engineering practices. In this paper, redundancy and maintenance staff allocation problems for repairable MSS 
with series-parallel configuration are considered simultaneously. The traditional redundancy allocation problem (RAP) 
for MSS always assumes that maintenance resources are unlimited. However in many practical situations, maintenance 
resources are limited due to the budget and/or time. To maximize the system availability under a certain demand, there 
are two feasible ways: (1) designing an optimal system configuration with available elements, and (2) allocating more 
maintenance staffs to reduce waiting time for repair. With the assistance of Markov queue model, the availabilities of 
identical version elements with the pre-assigned number of maintenance staffs can be evaluated. The universal genera-
tion function (UGF) is employed to assess the availability of entire MSS under a certain demand. Two optimization for-
mulas considering the limited maintenance resources are proposed. One regards the limitation of maintenance resources 
as a constraint, and the other considers minimizing the total system cost including both the system elements and mainte-
nance staff fees. The system redundancy and staffs allocation strategies are jointly optimized under required availability. 
A numerical case is presented to illustrate the efficiency of the proposed models. The Firefly Algorithm (FA), which is a 
recently developed metaheuristic optimization algorithm, is employed to seek the global optimal strategy.

Keywords: multi-state series-parallel systems, redundancy allocation problem (RAP), maintenance staff 
allocation, queue theory, universal generation function (UGF), firefly algorithm (FA).

Systemy wielostanowe (multi-state systems, MSS), stanowiące typ złożonych systemów zbudowanych z elementów o róż-
nym poziomie wydajności, znajdują szerokie zastosowanie w praktyce inżynierskiej. W prezentowanej pracy podjęto roz-
ważania łączące zagadnienia alokacji nadmiarowości oraz alokacji pracowników służb utrzymania ruchu w naprawial-
nych systemach MSS o konfiguracji szeregowo-równoległej. Tradycyjnie ujmowane zagadnienie alokacji nadmiarowości 
(redundancy allocation problem, RAP) w systemach MSS zawsze zakłada, że środki obsługi są nieograniczone. Jednakże 
w wielu sytuacjach praktycznych, środki obsługi mogą być ograniczone budżetem i/lub czasem. Istnieją dwa możliwe 
sposoby maksymalizacji gotowości systemu przy określonym zapotrzebowaniu użytkowników: (1) zaprojektowanie opty-
malnej konfiguracji systemu z wykorzystaniem dostępnych elementów oraz (2) alokowanie większej liczby pracowników 
obsługi w celu zmniejszenia czasu oczekiwania na naprawę. Dostępność jednakowych wersji elementów przy wcześniej 
określonej liczbie pracowników obsługi oceniano za pomocą modelu kolejek Markowa. Uniwersalną funkcję generacyj-
ną (UGF) wykorzystano do oceny gotowości całego systemu MSS przy określonym zapotrzebowaniu. Zaproponowano 
dwa równania optymalizacyjne uwzględniające ograniczone środki obsługi. W jednym z nich ograniczoność środków 
obsługi potraktowano jako ograniczenie (constraint), natomiast drugie równanie dotyczyło minimalizacji całkowitych 
kosztów systemu włącznie z kosztami elementów systemu oraz płacą pracowników służb utrzymania ruchu. Strategie alo-
kacji nadmiarowości systemu oraz alokacji pracowników poddano jednoczesnej optymalizacji z uwzględnieniem wyma-
ganej gotowości. Wydajność proponowanych modeli zilustrowano przykładem numerycznym. Poszukiwania optymalnej 
strategii globalnej prowadzono przy pomocy niedawno opracowanego metaheurystycznego algorytmu optymalizacyjne-
go znanego jako algorytm świetlika (Firefly Algorithm, FA).

Słowa kluczowe: wielostanowe systemy szeregowo równoległe, zagadnienie alokacji nadmiarowości 
(RAP), alokacja pracowników służb utrzymania ruchu, teoria kolejek, uniwersalna 
funkcja generacyjna (UFG), algorytm świetlika (FA).

1. Introduction

Redundancy allocation problem (RAP), aims at providing redun-
dancy at various stages of a system and determining an optimal system 

level configuration while considering the tradeoff between 
system reliability/performance and resources, has received 
increasing attention in reliability engineering as of late. 

LIU Y, HUANG HZ, WANG Z, LI YF, ZHANG XL. Joint optimization of redundancy and maintenance staff allocation for multi-state series-parallel 
systems. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2012; 14 (4): 312–318.
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The reported works on RAP mainly focus on the problems of 
determining the optimal redundancy level for various stages, and/or 
selecting a set of components available in the market to maximize 
system reliability under some constraints, such as volume, weight and 
cost budget. They involve not only single/multi- objective optimiza-
tion problem, but also binary/multi- state system configuration. For 
binary state systems, Coit et al. [4]  introduced redundancy allocation 
optimization problem for binary state series-parallel systems. Coit 
and Konak [3]  proposed a multiple weighted objectives heuristic al-
gorithm to determine the optimal redundancy allocation solution for 
binary series-parallel systems. Other algorithms such as dynamic pro-
gramming, integer programming, tabu search, and annealing simula-
tion method, ant colony optimization approach were also proposed 
to solve the RAP in the context of binary state systems [6]. As an 
extension from binary state systems to MSSs, much research pays 
intensive attentions on RAP for MSSs. Lisnianski and Levitin [10] 
introduced RAP formulation for multi-state series-parallel systems, 
and the configuration of MSSs was determined by selecting an opti-
mal set of components (elements) available in market. Tian et al. [20] 
proposed to jointly determine the optimal components state distribu-
tion of multi-state series parallel systems and its optimal redundancy 
level for each stage (defined as reliability-RAP). They formulated a 
multi-objective optimization problem, and physical programming was 
employed to solve the problem. Taboada et al. [19] proposed multi-
objective multi-state genetic algorithm (MOMS-GA) to determine the 
optimal redundancy solution set under multi-criterions (cost, weight, 
availability etc.). Nourelfath et al. [17] developed an integrated model 
to jointly optimize the redundancy levels and imperfect preventive 
maintenance strategy for MSSs. A comprehensive survey of current 
advance in RAP can be referred to Ref.[6].

Most existing RAPs in literature assume that the maintenance 
resources are unlimited [18]. However, as stated in Ref.[1,12], the 
maintenance strategy suffers resources limitations in industrial appli-
cations, such as staffs, maintenance cost, and time, etc. Nourelfath and 
Dutuit [15]  first proposed to solve the RAP considering repair policy. 
They discussed the issue when the number of repair teams is less than 
the number of reparable elements. A heuristic algorithm was applied 
to determine system configuration under availability constraint. Once 
a preliminary solution was found, stochastic Petri nets were used to 
model the different repair policies to evaluate the true system avail-
ability under limited repair teams. The optimization process was di-
vided into two steps where the initial solution of the second step is 
conditional based on results from the first step. Nourelfath and Kadi 
[16]  studied the same problem, dependencies resulting from mainte-
nance teams sharing were taken into account. Universal generating 
function combined with Markov model was employed to calculate 
the element availability under limited maintenance staffs. They also 
employed a heuristic approach at the first step to optimize the system 
structure without considering the limitation of maintenance resourc-
es. To satisfy the constraint under limited maintenance staffs, system 
structure and maintenance resource allocation strategies are further 
optimized based on the solution obtained in the preceding step. Ap-
parently, two-step optimizing process employed in the previous litera-
ture [15,16] cannot guarantee achieving the global optimal solution. 
Furthermore, maintenance activities were approximated via Markov 
queue model for each subsystem in Ref.[16]. Divergence may exist 
when the failure and repair rates are distinct between components 
within the same subsystem.    

In this paper, the RAP of multi-state systems incorporating with 
staff allocation is studied. MSS is defined as a system being able to 
perform its task at different performance levels caused by degrada-
tion of components and parts in the system and/or the failure of some 
elements (more definition and applications of MSSs are referred to 
Ref.[10]). Different from the previous literature, elements available 
in market are chosen while the corresponding repair staffs are also 

allocated to maintain their availability. Markov queue model and uni-
versal generating function method are also employed to evaluate the 
availability [16] , and two optimization problems (PII and PIII) are 
proposed. The system configuration and the staff allocation strategy 
are optimized simultaneously through the firefly algorithm. 

The remainder of this paper is organized as follows. The joint 
optimization problems are formulated in Section 2. In Section 3, the 
Markov queue model as well as the universal generating function 
method is presented to evaluate the availability of element and system 
with limited repair staffs. Section 3 briefly introduces the firefly algo-
rithm and its implementation in the proposed optimization problems. 
A numerical case is given in Section 4 to verify the efficiency and 
effectiveness of the proposed models, and it is followed by a brief 
conclusion in Section 5.

2. Problem formulation

2.1. Definition of MSS

The MSS was primarily introduced in the middle of the 1970’s 
by Murchland [14], and later discussed in Ref.[10]. According to 
the definition in Ref.[10], a system that possesses a finite number of 
performance rates is called an MSS. For example, if a flash memory 
chip fails in a computer system, the system can continues operate, 
but with derated memory capacity. This kind of system has a range 
of performance levels from its perfect functioning state to complete 
failure. There are many different situations in which a system should 
be treated as an MSS: 

A system consisting of different units that have a cumulative 1) 
performance effect on the entire system.
A system consisting of elements with variable performance 2) 
due to deterioration (fatigue, partial failures etc.) and repairs 
actions.
A system with continuous performance deterioration is often-3) 
times simplified into the one with multiple discrete perform-
ance rates via state combination to reduce the computation bur-
den [11-13].

In order to analyze the behavior of an MSS, one has to know the 
characteristics of its elements. Any system element j  can have jk  
different states corresponding to the performance rates, which is rep-
resented by the set:
 1 2{ , ,..., }

jj j j jkg g g=g ,  (1)

where jig is the performance rate of element j  in state i , {1,2,..., }ji k∈ .

The performance rate ( )jG t  of element j  at any instant 0t ≥  is 

a random variable that takes its values from : ( )j j jG t ∈g g . There-

fore for the time interval [0, ]T  where T  is the MSS operation period, 
the performance rate of element j  is defined as a stochastic process. 
The probabilities associated with different states of the system ele-
ment j  at any instant t  can be represented by the set:

 1 2{ ( ), ( ),..., ( )}
jj j j jkp t p t p t=p ,  (2)

where ( )jip t  represents the probability that ( )j jiG t g= . The state 

probabilities should satisfy the condition 
1

( ) 1
jk

ji
i

p t
=

=∑  for any 0t ≥ . 

Because the elements’ states at any instant time t  compose the com-
plete group of mutually exclusive events.

The output performance of the entire MSS is defined as a stochas-
tic process based on the system structure function:
 G t G t G ts N( ) = ( ) ( )( )φ 1 ,...,   (3)
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where ( )iG t  is the performance stochastic process of the thi  element, 

and φ ⋅( )  is system structure function. Thus, the probabilities associ-

ated with the different system state can be denoted by the set:
 ( ) ( ) ( ) ( ){ }1 2, ,...,s s sKp t p t p t=p t   (4)

where ( ) ( ){ }Prsi s sip t G t g= = , and K  the number of possible sys-

tem states, and sig  is corresponding performance at the thi  system 

state.
The system availability at time instant t  for arbitrary demand W  

is given by:

 ( ) ( )( ) ( ) ( )( )
1

, Pr 1 , 0
K

s si si
i

A t W G t W p t F g W
=

= ≥ = ≥∑ ,       (5)

where ( )1 x  is unity function: ( )1 1TRUE = , ( )1 0FALSE = , and 

( ),si siF g W g W= − . If the demand is a random variable with M  

possible values, the availability of the MSS can be computed by:

( ) ( ) ( )( ) ( ) ( ) ( )( )( )
1 1 1

, Pr 1 , 0
M M K

i s i i sj sj i
i i j

A t W q t G t W q t p t F g t W
= = =

= ≥ = ≥∑ ∑ ∑
 

(6)
where iW  is possible user demand and ( )iq t  is corresponding prob-

ability at time t .
For a stationary system or a long time horizon, the instantaneous 

state probability at time t  can be replaced by stationary state prob-
ability. Equations (5) and (6) will represent the stationary availability 
of a MSS. 

2.2. Optimal design formulation

Before proposing optimization formulations, some basic assump-
tions are presented as follows:
(1) The MSS contains sN  subsystems connected in series. isN  ver-

sions of elements are available in market to be chosen for the thi  
subsystem, and elements in the same subsystem are connected in 
parallel. Systems with this sort of configuration are called series-
parallel MSSs. 

(2) The elements in each subsystem are binary capacity elements. A 
binary capacity element i  has two performance rates: nominal 

1 0ig ≠  and 2 0ig =  for failure state.

(3) The elements available in market can be allocated to specified 
subsystems in a MSS. Thus, the MSS configuration is determined 
by choosing a set of element to assign to specified subsystems 
properly.

(4) The number of repair staffs is less than the number of elements in 
a MSS. One staff is just able to repair one version of element at 
a time. More elements of the same version exist in a MSS, more 
staffs are needed to keep a high element availability.

(5) The objective is to minimize the system cost under availability 
constraint.

The earlier reported works on RAP often ignore the limitation of 
repair staff (assumption 4). Thus, the optimization problem PI is for-
mulated as (without considering constraints on weight, volume, etc.)

PI:

 
1 1

0

min    

. .      

          

s isN N

s ij ij
i j

L U
ij ij ij

C c m

s t A A

m m m

= =
=

≥

≤ ≤

∑∑
  (7)

where ijc  and ijm  represents the cost of the thj  version element and 

the corresponding number being used in the thi  subsystem, respec-
tively. L

ijm  and U
ijm  are lower and upper bounds, and 0A  is the lower 

bound of availability constraint.
When considering the assumption 4, two types of optimization 

problems are proposed as follows. In the first type of problem, the 
staff cost is regarded as an additional constraint. The optimization for-
mulation PII is given by    

PII:

 

1 1

0

0
1 1

min    

. .      

         '

         

s is

s is

N N

s ij ij
i j

N N

staff ij ij s
i j

L U
ij ij ij

ij ij

C c m

s t A A

C c n C

m m m

m n

= =

= =

=

≥

= ≤

≤ ≤

≥

∑∑

∑∑  (8)

where ijn  and 'ijc  represent the number of repair staffs for the thj  ver-

sion element and cost of per staff in the thi  subsystem, respectively.
In the second type of problem, the system construction cost incor-

porating with repair staff cost is treated as the objective. The problem 
PIII is formulated as 

PIII:

 

( )
1 1

0

min    '

. .                   

                  

                       

s isN N

s ij ij ij ij
i j

L U
ij ij ij

ij ij

C c m c n

s t A A

m m m

m n

= =
= +

≥

≤ ≤

≥

∑∑

 (9)

2.3. Elements availability evaluation

As stated in previous section, we assume that every staff is just 
able to repair one version of element allocated in each subsystem. 
Suppose that, there exist m  elements of version j  in the thi  subsys-
tem and n ( )n m≤  staffs available to repair failed elements as good as 
new. These elements are characterized by their identical failure rate 
λij  and repair rate µij . With the assumption that an element just can 

be repaired by a staff at a time, it can be modeled through M/M/n 
queue theory as shown in Figure 1.

Fig. 1. The Markov diagram of M/M/n queue
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The Markov transition intensity matrix is given by

The stationary distribution can be derived by solving the corre-
sponding Chapman-Kolmogorov equation:
 Q =ijP 0 ,   (11)

where the vector 0 1{ , ,..., }m
ij ij ijp p p=ijP  represented discrete probabil-

ity distribution. The single k
ijp  is given by:

 p

m
k m k

p k n

n n
m

m kij
k

ij

ij

k
ij

k n=

−
≤ ≤

−−

!
!( )!

( ) ,

!
!
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λ
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1
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, (12)

where
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n n

m
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n ij

ij
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−1

,      (13)

and k
ijp  denotes the probability that k  elements of version j  in 

the thi  subsystem are available in a MSS. The rest m k−  elements 
are being repaired or waiting repair.

2.4. Universal generating function (UGF)

The UGF representing the probability mass function of a discrete 
random variable is defined by a polynomial form [7, 10, 21]. In the 
case of multi-state systems, UGF represents the random performance 
variable jG  of the elements and it is given by:

 ( )
1

j
ji

k
g

j ji
i

u z p z
=

=∑ ,  (14)

where the variable jG  has jk  possible values and Pr{ }ji j jip G g= = .

Therefore, in order to obtain the UGF of systems with arbitrary 
structure, one has to apply the composition operators ⊗  as follows 
recursively:

 

U z u z u z

p z p

s N

i
g

i

k

N
i

( ) = ⊗ ( ) ( ){ }

= ⊗
=
∑

1
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1
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∑∑

111

1

. (15)

This polynomial represents all of the possible mutually exclusive 
combination of relating probabilities of each combination correspond-
ing to the value of function φ( ,..., )g gi NiN11

 which is determined by 

the system structure and performance rates combination property. For 

example, in the case of flow transmission system with two elements 
connected in series, one has:
 φ G G G G1 2 1 2, min{ , }( ) = , (16)

and for the case where the two elements connected in parallel, the 
function is given by: 
 φ G G G G1 2 1 2,( ) = + . (17)

2.5. UGF of elements

In order to evaluate the reliability of a MSS with limited repair 
staffs, the UGF of elements availability is formulated at first. Assume 
that, in a flow transmission system, there are ijm elements of version 

j  and ijn  repairmen for these elements in the thi  subsystem. Accord-

ing to the Markov model in section 2.3, there exist totally 1ijm +  state 

for these elements. The UGF of the ijm elements is formed as fol-
lows:

 ( ) ( ) 1

0

ij
ij j

m
m k gk

ij j
k

u z p z
−

=
= ∑ , (18)

where k
jp  is the probability that there are k  elements of version j  

failed, which is achieved through the queue algorithm proposed in 
section 2.3. ( ) 1ij jm k g−  is the corresponding performance rates at 

that state.
Thus, the UGF of each subsystem can be calculated through com-

position operation of the UGF of each version of elements. Then the 
UGF of MSS is achieved with iteratively operation as mentioned in 
section 2.4. Subsequently, the availability of the MSS under specified 
user demand can be determined according to Eqs. (5) and (6). 

3. Firefly algorithm

Equations (7-9) are complicated non-linear programming prob-
lems. An exhaustive examination of all possible solutions is not real-
istic due to the limitation of computational time. Meta-heuristic algo-
rithms such as Genetic Algorithm (GA), Tabu Search (TS), Simulated 
Annealing (SA) algorithm, and Ant Colony Optimization (ACO), 
Particle Swarm Optimization (PSO), Firefly Algorithm (FA), Bat 
Algorithm(BA), are computationally efficient approaches to seek glo-
bal optimal solution (or approximate optimal solution) in tough and 
complex optimization problems. The most attractive feature of these 
algorithms is that they are inspired by behaviors of biological sys-
tems and/or physical systems in nature. Also they possess intelligence 
to find global optimal solution even without derivative information. 
FA, a recently developed metaheuristic optimization algorithm, is 
employed in this paper to solve the proposed optimization problems 
since the superiority of FA over some other metaheuristic optimiza-
tion algorithms was reported in Refs.[22-24]. The basic principle and 
its implementation in our problems are briefly introduced in the fol-
lowing sections.

(10)Q

m m

m m
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−
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between a pair of fireflies || ||ij i jr = −x x . Firefly i  will move towards 

firefly j  if firefly j  possesses a greater brightness than firefly i , and 
the movement is determined by [5]
 x x x xi

t
i
t r

j
t

i
t

ie+ −= + − +1
0

2
β αγ ( ) εε  (20)

where t
ix  denotes the location of firefly i  at the tht  iteration. The 

second term is due to the attraction from firefly j , and the last term is 
random movement. α  is the randomization parameter and εεi  is a 
vector of random numbers drawn from a standard normal distribution 
representing the partial randomness of movement.

The iterative optimization process terminates once it meets some 
criterions, such as: 1) the number of iterations reaches the preset max-
imum value, and 2) the variance of average brightness in subsequent 
population is not more than ε2 , etc. 

To apply the FA to a specific optimization problem, solution rep-
resentation is an important procedure which must be defined. Penalty 
function approach can be employed to handle infeasible solutions. 

3.2. Solution representation

For the optimization problem in Eqs. (8) and (9), the 
individual solution i  is represented by the location ix  

of firefly i  as

xi E E Ex x x x x= +{ , ,..., , ,..., }1 2 1 2
     

redundancy number    staff number

, where 1s  to Es  rep-

resent the number of redundancy for element of each 
version; and 1Es +  to 2Es  represent the number of staffs 

for element of each version. For example, a MSS con-
sists of two subsystems. There exist two versions of ele-
ments in market for each subsystem. A specific individ-
ual solution xi

part part

={ , , , , , , , }1 2 0 3 1 1 0 2
1 2

 

denotes that the MSS 

contains one version 1 element and two version 2 ele-
ments in subsystem 1, and three version 2 elements in 
subsystem 2. The repair staffs for each version of ele-
ments are 1, 1, 0, and 2, respectively. Since ix  only con-
tain integers, the real numbers generated in the initial 
population and movements during iteration process have 
to be rounded off. In addition, on the ground that the 
number of staffs should be not greater than the number 
of redundancy of the corresponding element. Therefore 
in steps of initialization and movements, the number of 

staffs (part 2 of ix ) of each individual solution ix  will be continu-
ally generated until its value is not greater than to the corresponding 
number of redundancy (part 1 of ix ).

4. An illustrative case

Consider a flow transmission MSS consisting of four subsystems 
connected in series, and there are three versions of binary capacity 
element available in market for each subsystem. The parameters of 
these elements are tabulated in Table 1, as well as the cost for the cor-
responding repair staffs. The possible user demands at different levels 
are presented in Table 2 with the associated probabilities.

We solve the optimization problems PI, PII, and PIII under the 
same availability constraint 0 0.90A =  and bounds ( 0L

ijm = , 5U
ijm = ). 

In our study, the firefly algorithm is performed to search a good solu-
tion in a computationally efficient manner. From our experimental 
tests, the values of parameters in FA are set as: α = 0 6. , γ =1 0. . The 
FA program is executed 10 times, and the optimal solution among 

3.1. Basic principle of firefly algorithm

Firefly algorithm inspired by the flashing behavior of fireflies 
was recently put forth by Yang [22-24]. The fundamental functions 
of flashing light of fireflies are to communicate (like attracting mat-
ing partners) and to attract potential prey. Inspired by this nature, the 
firefly algorithm was developed by idealizing some of the flashing 
characteristics of fireflies and representing each individual solution 
of optimization problem as a firefly in population. Three major ideal-
ized rules are [2, 5, 22]: (1) all fireflies in the population are unisex 
so that any individual firefly will be attracted at other fireflies; (2) 
for any pair of fireflies, the less bright one will move towards the 
brighter one. The attractiveness of a firefly is proportionally related 
to the brightness which decreases with increasing distance between 
two fireflies; (3) the brightness of a firefly is proportionally related 
to the value of objective function in the similar way to the fitness in 
genetic algorithm. The procedure of implementing the FA for a maxi-
mum optimization problem is summarized by the pseudo code shown 
in Figure 2 [5, 22-24].

In the firefly algorithm, for simplicity, the attractiveness of a fire-
fly is related to brightness iI  of the firefly which in turn is associ-
ated with the output of objective function ( )if x . For example, in the 
maximum optimization problems, the brightness iI  of the firefly i  
at location xi can be chosen as ( )i iI f∞ x . In nature, brightness de-
creases with the distance from its source, and light dims due to media. 
Therefore, the attractiveness β  of one firefly to another is relative, 
and it should possess monotonically decreasing pattern with respect to 
the distance ijr  between firefly i  and firefly j . In addition, the light 
absorption coefficient γ  is also introduced to quantify the degree of 
light absorption. Several forms have been proposed to characterize 
the functional relationship of attractiveness β  with respect to the dis-
tance r  and light absorption coefficient γ . The following Gaussian 
form is used in the study:
 β β γ( )r e r= −

0
2   (19)

where β0  is the attractiveness at 0r = , and it equals to brightness. 

The light absorption coefficient γ  can be either varied with respect to 
t  or fixed [2, 22]. The distance r  is defined as the Cartesian distance 

Fig. 2. The pseduo-code of the FA

 

Begin
Objective function f (x), x=(x1,…, xd)     
Define parameter of FA (light absorption coefficient )
Generate initial population of fireflies xi (i=1.2, …n)
Determine brightness Ii at xi by objective function  f (xi)
Set counter t=1
while (t < MaxIteration)
for i = 1 : n all fireflies in population

for j = 1 : n all fireflies in population
If (Ij > Ii)

Move firefly i (xi) towards j (xj) via Eq.(20)
Evaluate value of objective function for firefly i (xi), and update             
brightness Ii and attractiveness.

end if 
end for j

end for i
Rank fireflies by brightness and find the current best; t = t + 1
end while
Get the final best and postprocess results

End
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these results will be chosen as the final optimal result. The cor-
responding optimal solutions are tabulated in Tables 3, 4, and 5, 
respectively, where system configuration is listed in the column 
“Structure”, and staff allocation strategy in the “Staff” column. 
For example, in Table 4, the solution “Subsys 1: 1-1-2-2-2” in the 
first row of the “Structure” column, denotes the subsystem 1 con-
sists of 2 version 1 elements and 3 version 2 elements, while 
“1-2” in the “Staff” column of Table 4 represents to allocate 1 
staff for version 1 elements and 2 for version 2.

In order to satisfy the availability constraint in problem PI, 
it requires at less 19 repair staffs with the cost equal to $51, and the 
total cost is equal to $88.7.

In problem PII, we considering that the number of repair staffs 

should be lower than 10, we set ' 1ijc =  and 0 10sC = , and the optimal 
results is presented in Table 4. 

The staff cost in this case is equal to $34, and thus the total cost is 
equal to $78. If we assume the repair staffs are unlimited (at least 22 
staffs) for this system configuration, the corresponding system availa-

bility is equal to 0.9468. It is indicated that the limited resource makes 
approximately 4.93% reduction in availability.

The result for problem PIII is given in Table 5 and the total cost in-
corporating with staff cost are regarded as the objective to be minimized.

It shows that the cost for the elements is equal to $44.8, which has 

nearly 1.82% increases compared to PII in the cost of elements. This 
result has approximately 11.15% reduction in total cost compared to 
PII under the same availability constraint. The result for PII ($78) is 
better than PI ($88.7). The optimal result in PIII has the least total 
cost ($69.3) when considering the staff cost jointly.

5. Conclusions

In this paper, a joint optimization problem of redundancy and 
maintenance staff allocation for MSSs is proposed. The limited main-
tenance resource is a common issue in practices as emphasized by 
many researchers, but existing literature seldom discusses the RAP 
considering limited resources. Nourelfath et al. [15,16] first discussed 
the staff allocation in RAP through Petri nets and Markov model 
where maintenance strategies were considered within each module. 
As an extension of previous research, this paper allows the mainte-
nance staff to be allocated for each version of elements. Without in-
troducing any approximating approach in modeling as Ref. [16] , the 
M/M/n queue model and the UGF method are proposed to evaluate 
the availability of elements and system, respectively. Two optimiza-
tion formulations concerning limitations from maintenance resources 
are introduced. The firefly algorithm, a recent developed metaheuris-
tic algorithm, is employed to solve the resulting combinational opti-
mization problems. Compared with the multi-step optimization ap-
proach proposed in Refs. [15, 16], the proposed approach which solve 
the optimization problem just in one step is more effective to achieve 
the global optimal solution. Also, as observed from our study, results 
from the proposed methods outperform the ones from traditional RAP 

Table 1. The characters of element availability in market

Ver. 1 Ver. 2 Ver. 3 Ver. 1 Ver. 2 Ver. 3

Subsystem 1 Subsystem 3

Performance 120 85 65 Performance 130 100 75

0.0067 0.007 0.0065 0.0125 0.012 0.013

0.02 0.025 0.018 0.05 0.052 0.046

Cost ($) 1.5 1.2 0.9 Cost ($) 0.8 0.7 0.5

Staff Cost ($) 6.0 3.0 2.0 Staff Cost ($) 2.5 1.5 3.5

Subsystem 2 Subsystem 4

Performance 100 95 65 Performance 125 95 65

0.0129 0.0135 0.012 0.00658 0.007 0.068

0.03 0.04 0.035 0.032 0.03 0.035

Cost ($) 3.5 2.5 2.0 Cost ($) 5.0 4.2 3.5

Staff Cost ($) 3.5 5.5 2.0 Staff Cost ($) 1.5 3.5 2.5

Table 2. The user demands

Demand (rate) 200 160 120 80

Probability 0.25 0.4 0.25 0.1

Table 3. Optimal results for problem PI

Availability Cost ($) Structure

0.90011 37.7

Subsys 1: 1-1-2-2-2

Subsys 2: 2-2-2-3-3-3

Subsys 3: 1-2-2-2-3

Subsys 4: 1-1-2

Table 4. Optimal results for problem PII

Availability Cost($) Structure Staff

0.9008 44

Subsys 1: 1-2-2-2-2 1-2

Subsys 2: 2-2-2-2-3-3 2-1

Subsys 3: 1-1-1-1-2-2-2 1-1

Subsys 4: 1-1-2-2 1-1

Table 5. Optimal results for problem PIII

Availability Total Cost ($) Structure Staff Cost ($) Staff

0.90021 69.3

Subsys 1: 2-2-2-2-3-3

24.5

2-1

Subsys 2: 2-2-3-3-3-3 1-2

Subsys 3: 1-1-1-2-2-2-2 1-1

Subsys 4: 1-1-1-1 2

λ1i

µ1i µ3i

λ2i λ4i

µ2i

λ3i

µ4i
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without considering the limited maintenance staffs. However, this pa-
per only studys the situation where the maintenance staffs allocate 
within the same subsystem and version of elements. Allocating main-

tenance staffs across the entire system is still an open research issue 
subjected to discussions in the future work. 
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