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In rotating machinery condition monitoring, identification of characteristic components is
fundamental in many engineering applications so as to obtain fault sensitive features for fault
detection and diagnosis. This paper proposed a novel method for the identification of characteristic
components in frequency domain based on singularity analysis. In this process, Lipschitz exponent
function is constructed from the signal through wavelet-based singularity analysis. In order to
highlight the periodic phenomena, autocorrelation transform is employed to extract the periodic
exponents and Fourier transform is used to map the time-domain information into frequency
domain. Case study with rolling element bearing vibration data shows that the proposed has very
excellent capability for the identification of characteristic components compared with traditional
methods. © 2010 American Institute of Physics. �doi:10.1063/1.3361039�

I. INTRODUCTION

In condition monitoring process of rotating machinery
�e.g., gearbox and bearing�, identification of characteristic
components is fundamental in many engineering applications
so as to obtain more sensitive features for fault detection and
diagnosis. Traditional methods directly utilize Fourier trans-
form �FT� to obtain spectrum of signal, which provides a
global description of characteristic components in frequency
domain. However, fault-related signatures usually demon-
strate nonstationarity, and the FT has strong limitations be-
cause of its spectral resolution and loss of temporal informa-
tion after transformation.1 One way to deal with this problem
is called “windowing” and the short-time FT �STFT�, also
called windowed FT, has numerous applications in speech,
vibration, and image processing. The window length is an
important parameter, which determines time and frequency
resolutions in STFT. However, according to Heisenberg’s un-
certainty principle,2 it is impossible to achieve high reso-
lution in both time and frequency domains simultaneously.

In order to overcome such problems in nonstationary
signal processing, the idea of signal decomposition has been
accepted and discrete wavelet transform �DWT� is such a
popular method that can decompose signal into different
scales corresponding to different frequency bands.3 For ex-
ample, Prabhakar et al.4 applied DWT for rolling bearing
race fault detection and found that the impulses caused by
bearing failure appear periodically with a time period corre-
sponding to characteristic defect frequencies. Wang et al.5

proposed a health evaluation method based on wavelet de-
composition. In the process of wavelet decomposition, an
index was defined to choose the optimal detail signal and a
health index named frequency spectrum growth index was

proposed for description of machine health condition. In fact,
research on wavelet has attracted intensive attentions and a
lot of theoretical and practical methods �such as wavelet
packet,6 wavelet lifting,7 etc.� have been developed and
applied.

It should be noted that wavelet-based singularity analy-
sis is another trend in the family of wavelet applications. The
idea of this comes from the fact that most fault-related sig-
natures of signal are often carried by singularity points.8

Wavelet function can be properly chosen to have n vanishing
moments so as to remove polynomial trend in signal, which
masks weak singularities in vibration signal. Therefore,
wavelet-based method is an appropriate way in signal singu-
larity detection. Reference 8 illustrates that wavelet modulus
maxima method is a standard way to detect singularity points
and provides numerical procedures to compute Lipschitz ex-
ponent of singularity. Sun and Tang9 applied wavelet trans-
form modulus maxima to detect abrupt changes in the vibra-
tion signal. Miao et al.10 proposed a new kurtosis based
health index by calculating the kurtosis of Lipschitz expo-
nent and used this method to perform maintenance decision-
making.

The purpose of this paper is to develop a novel method
for the identification of characteristic components in fre-
quency domain based on singularity analysis with wavelet,
which can be regarded as a new way for feature extraction
and fault identification. In this process, continuous wavelet
transform �CWT� is applied to original vibration signal for
singularity detection. Then, Lipschitz exponent function
based on wavelet transform modulus maxima is defined
through approximate estimation of Lipschitz exponent. In or-
der to highlight the periodic components, correlation analysis
of Lipschitz exponent function is performed and FT is em-
ployed to reveal fault-related signatures in frequency
domain.

The organization of the paper is as follows. Section II
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gives a brief description of wavelet-based singularity analy-
sis. A novel method based on Lipschitz exponent function
and correlation analysis for identification of fault character-
istic frequency is proposed in Sec. III. Section IV further
investigates and validates the proposed method with rolling
element bearing vibration data under different load and ro-
tating speed conditions. In the end, conclusions are summa-
rized in Sec. V.

II. WAVELET BASED SINGULARITY ANALYSIS

A. Description of singularity with Lipschitz exponent

Signals collected from rotating machinery may contain
nonstationary transient components caused by faults. These
transient phenomena can be regarded as singularities in sig-
nal and a wavelet-based singularity analysis is an effective
way for fault detection and identification.10 Theoretically,
Lipschitz exponent, also called Holder exponent, can quan-
titatively describe function regularity.8 If and only if there
exist two constants A and h0�0, and a polynomial Pn�x� of
order n, such that

�f�x� − Pn�x − x0�� � A�x − x0�� for �x − x0� � h . �1�

We call Lipschitz regularity of f�x� and x0, the superior
bound of all values � such that f�x� is Lipschitz � at x0.
Here, f�x��L2�R�. The polynomial Pn�x� is often associated
with Taylor’s expansion of f�x� at x0. Function f�x� that is
continuously differentiable at a point is Lipschitz 1 at this
point. If the Lipschitz regularity � of f�x� at x=x0 satisfies
n���n+1, then f�x� is n times differentiable at x0 but its
nth derivative is singular at x0 and � characterizes this sin-
gularity. Here n is a positive integer.

To measure the Lipschitz with Eq. �1�, a classical way is
to look at the asymptotic decay of the amplitude of function
f�x�’s FT. However, it only provides a global regularity mea-
surement because FT cannot localize information in temporal
domain. That is to say, it cannot deal with nonstationary
transient signals. On the other hand, wavelet transform is a
better choice because of its compact support.8 In case the
wavelet ��x� has a compact support, the value of wavelet
coefficient Wf�s ,x� depends on the value of f�x� in a neigh-
borhood, of size proportional to the scale s. Besides, we must
impose the wavelet ��x�, which has enough vanishing mo-
ments, to gain Lipschitz exponent �. For instance, a wavelet
��x� with n+1 vanishing moments, if and only if for all
positive integers k�n+1, is that

�
−�

+�

xk��x�dx = 0, for 0 � k � n + 1. �2�

It is obvious that the wavelet with n+1 vanishing moments is
orthogonal to the polynomials of up to order n. Then, the
wavelet transform of f�x� using ��x� at the location x0 can
eliminate those polynomials up to order n. Furthermore, a
wavelet with n+1 vanishing moments can be written as the
n+1th order derivative of the signal f�x� smoothed by a
smoothing function ��x� in the form

Wf�s,x� = f�x���s�x� = sn dn

dxn �f��̄s��x�

with

�̄s�x� = �1/s���1/s� . �3�

Then, it is possible to examine any rate of change in the
signal amplitude by selecting a suitable wavelet function be-
cause the wavelet transform is a smoothed derivative of the
signal at various scales.

It is proved in Ref. 8 that if the function f�x� is Lipschitz
� at x0, n���n+1, then there exists a constant A such that
for all points x in the neighborhood of x0 and any scale s,

�Wf�s,x�� � A�s� + �x − x0��� . �4�

The local Lipschitz exponent of f�x� at x0 depends on the
decay of �Wf�s ,x�� at fine scales in the neighborhood of x0.
The decay can be measured through local maxima. Define
modulus maxima as any point �s0 ,x0� such that �Wf�s ,x�� is a
local maximum at x=x0. Singularities can be identified by
the presence of modulus maxima. If there exists a scale s0

�0 and a constant C, such that for x� �a ,b� and s�s0, all
the modulus maxima of �Wf�s ,x�� belong to a cone defined
by

�x − x0� � Cs . �5�

Then at each modulus maxima �s ,x� in the cone defined by
Eq. �5�,

�Wf�s,x�� � Bs�, �6�

which is equivalent to

log2�Wf�s,x�� � log2 B + � log2 s . �7�

Here, B=A�1+C��.

B. Correlation analysis

Correlation is a mathematical tool often used in signal
processing for analyzing functions or time series, such as
time-domain signals. Autocorrelation is the correlation of a
signal with itself, which is very useful to find periodic pat-
terns in a signal. For example, it can determine the presence
of a periodic signal which has been buried under noise. Vari-
ous autocorrelation measures have been proposed and the
mostly used are Bartlett �positive definite but biased� and
Blackman–Tukey �unbiased but not guaranteed to be positive
definite�, which are defined as follows. If s�n� , n
=0,1 ,2 , . . . ,N−1 is a real data record of length N, then the
Bartlett autocorrelation measure is

rs�m� =
1

N
�
n=0

N−m−1

s�n�s�n + m�, m = 0,1,2, . . . ,�N − 1� ,

�8�

while the Blackman–Tukey one is
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rs�m� =
1

N − m
�
n=0

N−m−1

s�n�s�n + m�, m = 0,1,2, . . . ,�N − 1� .

�9�

Including additive noise ��n�, the mixed signal becomes
x�n�=s�n�+��n�, and the autocorrelation of the mixed signal
is described as follows:

rx�m� =
1

N
�
n=0

N−m−1

�s�n� + ��n���s�n + m� + ��n + m��

= rs�m� + r�s�m� + rs��m� + r��m� ,

�10�
m = 0,1,2, . . . ,�N − 1� .

Here, r�s�m� and rs��m� are cross-correlations, which are the
correlations of two different signals. Generally, the value of
cross-correlation between random noise and signal is so
small that it can be ignored. Therefore, in case s�n� is a
periodic signal, its autocorrelation can be simplified as

rx�m� = rs�m� + r��m�, m = 0,1,2, . . . ,�N − 1� . �11�

Here, suppose ��n� is the white noise, then r��m� is the au-
tocorrelation of the white noise, which is an impulse function
	�m� at m=0. So s�n� can be estimated through rx�m�. If ��n�
is not the white noise, r��m� attenuates quickly as m in-
creases. It also can be seen that the trend of rx�m� determines
whether s�n� is contained in the mixed signal.

III. IDENTIFICATION OF CHARACTERISTIC
COMPONENTS

A. Lipschitz exponent estimation

Rolling element bearings suffer from faults due to fa-
tigue and severe working conditions. In this section, we will
present a novel method to extract fault-related signatures
�namely, bearing fault characteristic frequencies� from signal
singularities. In this process, CWT is employed to obtain
wavelet modulus maxima of original vibration signal. From
Eq. �7�, it is known that wavelet transform provides an
asymptotic way to estimate Lipschitz �. In this paper, modu-
lus maxima of CWT produce a two-dimensional time-scale
matrix, in which one dimension indicates a different time
point x in the signal, and the other one denotes a different
frequency scale s. For simplification, we estimate � as
follows:

� =
log2�Wf�s,x�� − log2 B

log2 s
. �12�

The above simplification has been applied by Robertson
et al.11 in structural health monitoring and Miao et al.10 in
gearbox fault diagnosis. Here, we take each column which
represents the frequency spectrum of the signal at certain
time point x and calculate Lipschitz � using Eq. �12�. There-
fore, Lipschitz exponent function LEP�x� can be obtained.

In this research, we use a method called total least
square �TLS� to estimate the slope �. Consider a data set,
�x1 ,y1� , �x2 ,y2� , �x3 ,y3� , . . . , �xn ,yn�, and we hope to fit them
with a line ax+by−c=0, which goes through a point �x0 ,y0�.

Now we suppose that the line goes through the center of data
set. The center of data set is given as follows:

x̄ =
1

n
�
i=1

n

xi, ȳ =
1

n
�
i=1

n

yi, �13�

so, we can get

c = ax̄ + bȳ . �14�

The other form is

a�x − x̄� + b�y − ȳ� = 0, �15�

where �a ,b�T is called normal vector and m=−a /b is called
slope.

The TLS method minimizes the square of the distance
between given data and line equation as follows:

d2 =
�ap + bq − c�2

a2 + b2 =
�a�p − x0� + b�q − y0��2

a2 + b2 , �16�

where �p ,q� represents a plane coordinate. Therefore, if there
are n plane points, this square distance can be given as

D�a,b, x̄, ȳ� = �
i=1

n
�a�xi − x̄� + b�yi − ȳ��2

a2 + b2 . �17�

It is known that

D�a,b, x̄, ȳ� � D�a,b,x0,y0� . �18�

In the following statement, we solve the problem on how to
minimize D. Here we use matrix to illustrate this procedure.
Suppose 2
1 unit vector t= �a2+b2�−1/2�a ,b�T and n
2
matrix

M = �
x1 − x̄ y1 − ȳ

x2 − x̄ y2 − ȳ

] ]

xn − x̄ yn − ȳ
	 �19�

D can be given as

D�a,b, x̄, ȳ� = 
Mt
2
2

= ��
x1 − x̄ y1 − ȳ

x2 − x̄ y2 − ȳ

] ]

xn − x̄ yn − ȳ
	 1

�a2 + b2a

b
��

2

2

. �20�

MTM is a 2
2 real, symmetrical, and semidefinite matrix.
Decompose this matrix using matrix theory.

MTM = U	UT = �u1,u2��1
2

0

0

�2
2�u1

T

u2
T� , �21�

where �1 is greater than or equal to �2.

D�a,b, x̄, ȳ� = 
Mt
2
2 = tTMTMt = tTU	UTt = �UTt�T	�UTt�

= �1
2��UTt�1�2 + �2

2��UTt�2�2

� �2
2���UTt�1�2 + ��UTt�2�2�

= �2
2
UTt
2

2. �22�

According to matrix theory, we know that 
UTt
2 is equal to
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t
2 and Euclidean norm of t is equal to 1. So we can further
simplify Eq. �22� as follows:

D�a,b, x̄, ȳ� � �2
2 �23�

On the other hand, when t is equal to u2, we can obtain
following equation:

D�a,b, x̄, ȳ� = tTMTMt = tT�u1,u2��1
2

0

0

�2
2�u1

T

u2
T�t

= �1
2
u1

Tt
2
2 + �2

2
u2
Tt
2

2 = �2
2, �24�

where Euclidean norms of t, u1, and u2 are all equal to 1.
Equation �24� illustrates that the minimum value of D can be
obtained, if t is equal to u2. With TLS, we can realize the
estimation of Lipschtiz exponent through the slope �.

B. Fault characteristic frequency extraction

In order to extract the periodic information, we apply the
autocorrelation transform of Lipschitz exponent function us-
ing Eq. �8� or Eq. �9� and the autocorrelation of Lipschitz
exponent function is rLP�t�. It is noted that, in this paper, we
set m=N−1, where N is the length of signal. Then we nor-
malize the autocorrelation signal as follows:

rLP� �t� =
rLP�t� − rLP�t�

�
, �25�

where rLP�t� is the autocorrelation of Lipschitz exponent
function, rLP�t� is the mean value of rLP�t�, and � denotes the
standard deviation of rLP�t�.

To identify characteristic frequency, FT is employed to
map the time-domain signal of rLP� �t� into frequency domain.

ES�f� = ��
−�

+�

rLP� �t�e−2iftdt� . �26�

Here, ES�f� denotes absolute value of FT amplitude of
rLP� �t�. Therefore, we can identify bearing faults via bearing
fault characteristic frequencies.

Finally, we can summarize the proposed method in this
paper and Fig. 1 shows the flow chart of it.

IV. CASE STUDY

In this paper, the real motor bearing data picked up with
a sampling frequency of 12 kHz by an accelerometer placed
at the six o’clock position at the drive end of the motor
housing is used to validate the proposed method. The test rig
is shown in Fig. 2. Single point faults were introduced to
normal bearings using electrodischarge machining with a
fault diameter of 0.007 in. and the fault depth is 0.0011 in.
The specification of bearings is shown in Table I. The shaft
rotation speed fr varies from 1730 to 1797 rpm. The charac-
teristic frequencies of the bearing are calculated by the fol-
lowing formulas:12

f I = 5.4152 
 fr, �27�

fO = 3.5848 
 fr. �28�

Here, f I and fO are inner race fault characteristic frequency
and outer race fault characteristic frequency, respectively.
There are a total of 12 data sets including four normal bear-
ings, four inner race fault bearings, and four outer race fault
bearings under different rotation speeds and work loads, and
Table II shows their corresponding characteristic frequen-
cies. In order to enhance the computation efficiency, each
data with 1 s is selected for analysis.

TABLE I. Motor bearing specification �inches�.

Inside diameter 0.9843
Outside diameter 2.0472
Thickness 0.5906
Ball diameter 0.3126
Pitch diameter 1.537

Extract Lipschitz exponent and obtain Lipschitz exponent function

Original vibration signal

Start

Perform continuous wavelet transform and establish modulus maxima

Perform autocorrelation on the extracted Lipschitz exponent function

Perform FFT on the result after the autocorrelation analysis

Bearing fault characteristic frequencies inspection

End

FIG. 1. The flowchart of the proposed method.

FIG. 2. �Color online� Test rig of bearings.

TABLE II. Fault characteristic frequencies of motor bearing under different
rotation speeds and motor loads.

Motor load
�HP�

Motor speed
�rpm�

Inner race f I

�Hz�
Outer race fO

�Hz�

0 1797 162.1 107.3
1 1772 160.0 105.9
2 1750 157.9 104.6
3 1730 155.7 103.1
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A. Validation of fault characteristic identification
under motor speed 1797 rpm and load HP 0

In this section, we used vibration signals including nor-
mal bearing data, inner race fault data, and outer race fault
data under motor speed 1797 rpm and load HP 0 to validate
the proposed method. Figure 3 shows the original vibration
signals of normal data, inner race fault data and outer race
fault data.

Wavelet transform with the derivative of Gaussian func-
tion as wavelet function has been applied to extract Lipschitz
exponent functions for all original vibration signals.
Lipschitz exponent functions of these three data are shown in
Fig. 4. X-axis represents time. Y-axis represents the value of
Lipschitz exponent function over time.

In order to highlight the periodic effect of Lipschitz ex-
ponent function, autocorrelation transform is performed and
their normalizations are shown in Fig. 5. The observation
from Fig. 5 indicates that the periodic signals may exist and
FT is used to map these time-domain signals into frequency
domain. As a result, fault-related signatures, namely, bearing
fault characteristic frequencies, are detected in Fig. 6. When
bearing is under normal condition, Fig. 6�a� shows no fault
signatures. However, bearings with inner race faults and
outer race faults can be found via their corresponding fault
characteristic frequencies in Figs. 6�b� and 6�c�, respectively.
It is obvious that the proposed method can identify fault-
related characteristic components in frequency domain.
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FIG. 3. �Color online� The original signals under motor speed 1797 rpm and
load HP 0.
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FIG. 4. �Color online� Lipschitz exponent functions under motor speed 1797
rpm and load HP 0.
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B. Validation of fault characteristic identification
under different working conditions

In this section, we consider the influence of different
working conditions, including different rotation speeds and
different loads. Figure 7 shows the analysis results using
vibration data of bearing with outer race fault under different
working conditions. It is obvious that the proposed method
can clearly identify outer race fault characteristic frequency
fO and its harmonics. In addition, Fig. 8 gives the analysis
results using bearing with inner race fault under different
working conditions, which also shows good capability for
the identification of characteristic component f I.

C. Comparison with other methods for fault
characteristic frequency identification

For comparison study, vibration data under motor speed
1797 rpm and load HP 0 are analyzed by FT, DWT, and the
proposed method in this section, respectively. When we ap-
ply DWT to decompose the signal, two tough problems
needs to be clarified. One is that which wavelet should be
chosen for signal decomposition. Another is the selection of
decomposition level. In this section, Daubechies-9 wavelet
with four decomposition levels is selected for signal analysis
and synthesis with DWT. The comparison results are shown
in Figs. 9 and 10 for bearing with outer race fault and inner
race fault, respectively.

From Fig. 9, both the DWT and the proposed method
can identify the fault characteristic frequency fO and its har-
monics while FT cannot. This is due to the fact that FT itself
is a globe mapping, which may weaken the transient signa-
tures after transformation. Moreover, the proposed method is

better than DWT because comparison between Figs. 9�b� and
9�c� shows that the characteristic components are more dis-
tinct with the proposed method �see Fig. 9�c��. The proper
selection of decomposition level and wavelet basis is still a
problem with DWT.

Figure 10 shows the analysis results of bearing with in-
ner race fault using three different methods. In this figure,
inner race fault characteristic components can be identified
by these methods. Compared to Fig. 10�c�, both Figs. 10�a�
and 10�b� contain many unrelated frequencies, especially
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FIG. 9. �Color online� Comparison of characteristic component identifica-
tion using vibration of bearing with outer race fault.
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Fig. 10�a�. These signatures may obscure the visual inspec-
tion. On the other hand, the proposed method provides dis-
tinct result for the identification of fault characteristic com-
ponents. Therefore, we can conclude that the proposed
method is better than others to extract the fault-related char-
acteristic components.

V. CONCLUSIONS

In this paper, a novel method for the identification of
characteristic components in frequency domain is proposed.
In this method, Lipschitz exponent function is constructed
from the signal through wavelet-based singularity analysis.
In order to highlight the periodic phenomena, autocorrelation
transform is employed to extract the periodic exponents.
Lastly, FT is utilized to map the time-domain information

into frequency domain. In the case study, the proposed
method is first validated using vibration data collected from
motor bearing under rotation speed 1797 rpm and load HP 0.
It is obvious that the proposed method can identify fault-
related characteristic components. Furthermore, the vibration
signals under different loads and rotation speeds are used to
verify the proposed method and the proposed method shows
good capability. In the end, a comparison study among FT,
DWT, and the proposed method is conducted. The analysis
shows that the proposed method can provide distinct result
and it has very excellent capability for the identification of
characteristic components in frequency domain.
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