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Abstract: Feature selection is an effective way of improving classification, reducing feature
dimension, and speeding up computation. This work studies a reported support vector machine
(SVM) based method of feature selection. Our results reveal discrepancies in both its feature
ranking and feature selection schemes. Modifications are thus made on which our SVM-based
method of feature selection is proposed. Using the weighting fusion technique and the one-
against-all approach, our binary model has been extensively updated for multi-class classifica-
tion problems. Three benchmark datasets are employed to demonstrate the performance of
the proposed method. The multi-class model of the proposed method is also used for feature
selection in planetary gear damage degree classification. The results of all datasets exhibit the
consistently effective classification made possible by the proposed method.

Keywords: feature selection, support vector machine, damage degree classification, planetary
gearbox

1 INTRODUCTION

Planetary gearboxes are a key component in certain

rotating machinery used in automotive, aerospace,

and industrial applications. During operation, the

planetary gears experience cyclic stress which ulti-

mately results in gear damage such as pits and

cracks. This damage will progress until a failure

occurs. For this reason, non-intrusive measurement

of gear damage for classification of its degree and rate

of growth provides users with the information needed

in order to schedule preventive actions. In this way,

serious consequences such as system breakdowns,

injuries, and fatalities can be prevented.

Feature selection is an effective way of achieving

good damage degree classification. The goal of

feature selection is to eliminate irrelevant and redun-

dant features to enhance the generalization ability of

a given classifier [1]. Other advantages of feature

selection include reducing feature dimension and

speeding up classification computation. The applica-

tions of feature selection in damage detection,

damage mode classification, and damage degree clas-

sification have been reported in many published

papers. Malhi and Gao [2] developed a principal com-

ponent analysis based method of feature selection for

detecting bearing damage. Fei et al. [3] used genetic

algorithm and support vector machine (SVM) to

select useful features for classifying the damage

mode of seafloor petroleum pipelines. Qu and Zuo

[4] classified degree of damage in slurry pump

system impellers using the backward feature selec-

tion algorithm to process data.

SVM is a relatively new machine learning method

based on Vapnik–Chervonenkis theory [5], which

recently emerged as a general mathematical frame-

work for estimating dependency from finite samples.
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The performance of SVM classification has been stud-

ied by many researchers. Widodo and Yang [6] sum-

marized the applications of SVM in fault diagnosis of

rotating machinery. Samanta [7] compared the per-

formance of artificial neural network and SVM in

classifying the damage mode of fixed shaft gearboxes.

Khawaja et al. [8] developed a one-class classifier for

detecting crack on planetary gear plates using the

least squares SVM.

Recently, Gualdrón et al. [9] reported a feature

selection method for multi-sensor systems based

on the norm of the weight vector of SVM classifica-

tion. The method has been studied and the draw-

backs are found in both the measure for feature

ranking and the scheme for feature selection. The

measure for feature ranking of the reported method

cannot effectively evaluate the importance of fea-

tures to classification. The modification is made on

the measure based on which our new feature ranking

is developed. The feature selection scheme of the

reported method relies considerably on the quality

of its feature rank. A feature selection scheme

which recursively eliminates useless features based

on updated rank is developed. The performance of

our proposed feature selection method is studied

using three benchmark datasets and one planetary

gear damage dataset. The remaining parts of this arti-

cle are organized as follows. The basics of SVM clas-

sification are presented in Section 2. The reported

SVM-based feature selection method is reviewed

and the proposed method for feature selection is pre-

sented in Section 3. The demonstration of the pro-

posed method based on three benchmark datasets is

given in Section 4. The applications of the proposed

method in feature selection for classifying the degree

of planetary gear damage is presented in Section 5.

The feature subsets obtained in Section 5 are further

studied in Section 6. The conclusions are drawn in

Section 7.

2 SUPPORT VECTOR MACHINE

This section covers the fundamentals of SVM, pre-

sented in a way similar to that used in Qu and Zuo

[4]. Suppose that the training data, {x1, y1; x2, y2; . . .;

xM, yM}, xi2Rn, have binary classes of yi2 {1,�1}

(i¼ 1, 2, . . . , M). The labels of 1 and �1 represent the

two classes. A separating plane (SP) in the input space

can be expressed as follows, if the training data are

linearly separable

f ðxÞ ¼ wTx þ b ¼ 0 ð1Þ

where w2R n is a weight vector, b is a scalar, and T

means the transpose operator. The parameters of w

and b which define the location of SP are determined

during the training process.

When the training data are non-linearly separable,

equation (1) is no longer applicable. In SVM theory,

one can introduce a mapping function, �(�), which

projects the original feature space onto a high-

dimension feature space in which the training data

can be linearly separated again. Figure 1 shows an

example of such mapping.

The SP for non-linearly separable data can still be

expressed in a linear form but only with the addition

of the mapping, �(�)

f ðxÞ ¼ wT�ðxÞ þ b ¼ 0 ð2Þ

A distinct SP should satisfy the following

constraints

yif ðx iÞ ¼ yiðw
T�ðxiÞ þ bÞ � 1, i ¼ 1, 2, . . . , M ð3Þ

where an underlying constraint applied is that the

predicted f(x) value of data point x should have the

same sign as its virtual class label.

Figure 2 is an example of a linearly separable

classification problem in a two-dimensional feature

x Φ Φ(x)

Fig. 1 An example of feature mapping enabling linear data separation (adapted from [10])
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space where two classes of data points are labelled�1

(squares) andþ1 (circles), respectively. The SP repre-

sented by the solid straight line merely relies on the

solid squares and the solid circles called support vec-

tors. Two parallel planes which cross the support vec-

tors of each class determine the margin; this can be

computed by

Margin ¼ ½ðwTx þ b� 1Þ
��
�ðwTx þ bþ 1Þ�= wk k

�� ¼ 2= wk k:
ð4Þ

SVM searches for the SP that provides the largest

margin. Basically, the larger the margin, the better the

separation of data points. For this reason, one can use

the margin value to quantify the importance to the

classification result of a certain feature subset. This

observation is the essential theoretical support for the

feature selection method proposed in this article. It is

explained in detail in Section 3.

To acquire the SP which can provide the largest

margin, the following optimization model is

established

Minimize
1

2
wk k2þC

XM
i¼1

�i

Subject to yi ðw
T�ðxiÞþbÞ� 1� �i , i ¼ 1, 2, . . . , M

�i � 0, i ¼ 1, 2, . . . , M ;

ð5Þ

where C is a positive constant and �i represents the

distance between the data point, xi, lying on the false

class side and the margin of its virtual class. The slack

variables, �i, are adopted to allow some falsely classi-

fied data points in the training process which are

useful for naturally non-separable data points [10].

The optimization model can be solved using the

Lagrange multipliers �i and �i

Lðw, b,n,a,bÞ ¼
1

2
wk k2þC

XM
i¼1

�i

�
XM
i¼1

�iðyiðw
T�ðx iÞþbÞ�1þ �iÞ�

XM
i¼1

�i�i

ð6Þ

where a¼ (�1, . . . ,�M)T, b¼ (�1, . . . ,�M)T, and

n¼ (�1, . . . , �M)T.

For the optimal solution, the derivatives of the

Lagrange function with respect to w, b, and n should

vanish

@L

@w
¼ 0! w ¼

XM
i¼1

�iyi�ðx iÞ,

@L

@b
¼ 0!

XM
i¼1

�iyi ¼ 0,

@L

@n
¼ 0! �i þ �i ¼ C , i ¼ 1, . . . , M :

8>>>>>>>><
>>>>>>>>:

ð7Þ

Incorporating the first line of equation (7) into

equation (6) yields

Lð�Þ ¼
XM
i¼1

�i�
1

2

XM
i,j¼1

�i�jyiyj�
Tðx iÞ�ðxj Þ�b

XM
i¼1

�iyi;

ð8Þ

Incorporating the second line of equation (7) into

equation (8) yields a dual maximization problem

Maximize Lð�Þ ¼
XM
i¼1

�i �
1

2

XM
i,j¼1

�i�jyiyj�
Tðx iÞ�ðxj Þ,

Subject to

PM
i¼1

yi�i ¼ 0,

C � �i � 0, i ¼ 1, . . . , M :

8<
:

ð9Þ

Solving equation (9) yields the coefficients, �i,

which are required to express w. Following the

Karush–Kuhn–Tucker condition, the products

between the dual variables and the constraints

should be equal to zero at the optimal solution point

�i ½ yiðw
T�ðx iÞ þ bÞ � 1� ¼ 0, i ¼ 1, 2, . . . , M : ð10Þ

From equation (10) it can be seen that the support

vectors correspond to non-zero �i. According to equa-

tions (7) and (10), the expressions of w and b can be

obtained as

w ¼
XM
i¼1

�iyi�ðxiÞ, b ¼
1

p

Xp

j¼1

½ yj �wT�ðx j Þ�; ð11Þ

where p represents the number of support vectors.

There is a value for b only when �i is non-zero.

   Support vectors 

Margin

w

wTx+b=1

wTx+b=0
wTx+b= -1

1

w

Data points x

x

Fig. 2 An example of a linearly separable classification
problem in R2
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The linear decision function can thus be given as

if ¼ sign
XM
i¼1

�iyi�
TðxiÞ�ðxÞ þ b

 !
ð12Þ

where if if is positive, the new input data point, x,

belongs to class 1 (yi¼ 1) and if if is negative, x belongs

to class 2 (yi¼�1).

The function �(�) is, however, usually difficult to

compute. Because the mapping functions are in the

form of an inner product in equation (12), SVM theory

adopts a kernel function, namely K(xi, xj)¼�T

(xi)��(xj), to avoid computing the mapping function

explicitly. Any function that satisfies Mercer’s theo-

rem [10] can be used as a kernel function. More

details on kernel functions can be found in

Schölkopf and Smola [11]. The non-linear decision

function can thus be expressed as

if ¼ sign
XM
i¼1

�iyiK ðxi , xÞ þ b

 !
ð13Þ

The SVM classifier is for binary classification prob-

lems. Some strategies can be used to adapt SVM for

multi-class classification problems. One commonly

used strategy is called one-against-all (OAA). The

OAA strategy actually divides an N-class classification

problem into N binary class classification problems in

each of which the data points of one class are labelled

þ1 and the data points of the rest of the classes are

labelled �1. This enables N sets of training data to

train N SVM classifiers, individually. Ideally, when

inputting a new data point into N SVM classifiers,

only one classifier will return a positive value in equa-

tion (2). For some non-separable data, however, pos-

itive values may be returned by multiple classifiers.

SVM adopts the following decision function in order

to determine which class a data point, x, belongs to

Class of x � arg max
j¼1,...,N

ððw ðjÞÞT�ðxÞ þ bð jÞÞ

¼ arg max
j¼1,...,N

XM
i¼1

�
ð j Þ
i y

ð jÞ
i K ð jÞðxi , xÞ þ bð jÞ

 !

ð14Þ

where the parameters with the superscript (j) are for

the jth SVM classifier.

3 FEATURE SELECTION

This section first introduces an SVM-based feature

selection method reported in the literature and then

examines its feature ranking and feature selection

schemes. Next, modifications are made on both

schemes. Classification accuracy is used throughout

this article to evaluate classification performance. Nc

denotes the number of data that are correctly classi-

fied and Nf denotes the number of data that are

falsely classified. Classification accuracy is defined

as Nc/(NcþNf)� 100%. The reported method is intro-

duced and evaluated in Subsection 3.1 and the pro-

posed method is presented in Subsection 3.2. The

multi-class model of the proposed method is devel-

oped in Subsection 3.3. Additional details of the pro-

posed method are presented in Subsection 3.4.

3.1 Gualdrón’s method

3.1.1 Introduction to Gualdrón’s method

Recently, Gualdrón et al. [9] reported an SVM-based

feature selection method for the classification of

multi-sensor systems. They stated that the feature

whose removal leads to a large variation of the

norm of the weight vector, ||w|| as shown in equation

(5), is of greater importance for classification. As a

result, they proposed the following measure for fea-

ture ranking

�i ¼ w0k k � w ik kj j, i ¼ 1, 2, . . . , L; ð15Þ

where L represents the number of features, ||wi||

represents the norm of the weight vector when the

ith feature is removed from the original feature

space, and ||w0|| represents the one when all features

are in the original feature space. The features are

ranked in accordance with the � values. The feature

having a larger � value is placed ahead of the one

having a smaller � value. This � value is hereafter

called the variation value.

Gualdrón’s method adopts forward selection (FS)

as its feature selection scheme. One by one, it adds

the top-ranked features to an empty feature set until

classification accuracy is not increased in response to

adding a particular feature. The resultant feature

subset is then considered as the optimal feature

subset.

3.1.2 Evaluation of Gualdrón’s method

First, Gualdrón’s feature ranking scheme is evaluated.

As discussed in Section 2, SVM classification seeks the

maximal margin value which gives the largest sepa-

ration of data points. Because ||w|| is inversely propor-

tional to the margin in SVM classification, one

expects the value for ||w|| to be as small as possible.

It is found that Gualdrón’s method of using equation

(15) for feature ranking is not appropriate and an

example to explain why is given below.

Suppose that the original feature space has n (n> 2)

features. Features C and D are removed from the orig-

inal feature space, obtaining the resultant ||wC|| and

Feature selection for damage degree classification of planetary gearboxes 2253
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||wD||, respectively. The ||w0|| is obtained with the

whole original feature space. Now, four scenarios

are considered and the performance of Gualdrón’s

method for these four scenarios is surmmarized. For

the sake of brevity, only one scenario arbitrarily

selected is explained in detail. The results of other

scenarios are summarized in a table, because they

follow exactly the same rationale.

Scenario: jjwC jj ¼ jjw0jj þ �C and jjwD jj

¼ jjw0jj þ �D ð�C 4 0 and �D 5 0Þ

Observations: The equality ||wC||¼ ||w0||þ �C, (�C> 0)

indicates that removing feature C increases the ||w||

value (reduces the margin); this means the removal of

feature C impairs the classification; therefore, feature

C is important to the classification. Inversely, the

equality ||wD||¼ ||w0||þ �D, (�D< 0) indicates that

removing feature D reduces the ||w|| value (increases

the margin); because its removal enhances the clas-

sification, feature D is harmful to the classification. It

can thus be concluded that, for this scenario, no

matter what the absolute values are for �C and �D,

feature C is more important than feature D; this is

denoted as IC> ID where I represents the importance

to classification of a particular feature.

Solution of Gualdrón’s method: Gualdrón’s method

is studied under three conditions, Condition 1:

|�C|< |�D|, Condition 2: |�C|¼ |�D|, and Condition 3:

|�C|> |�D|. Using Gualdrón’s equation (15), the follow-

ing results are obtained. For Condition 1, feature D

has a larger variation value than does feature C; there-

fore, Gualdrón’s method would conclude that feature

D has greater importance to classification than does

feature C, i.e. IC< ID. For Condition 2, features C and

D have the same variation value; therefore,

Gualdrón’s method would conclude that they have

the same importance, i.e. IC¼ ID. For Condition 3,

feature C has a larger variation value than does fea-

ture D; therefore, Gualdrón’s method would conclude

that feature C has greater importance to classification

than does feature D, i.e. IC> ID.

It can be seen that Gualdrón’s method fails to

comply with the observations outlined earlier under

Conditions 1 and 2. The results of other scenarios and

conditions are given in Table 1. It is noted that

Gualdrón’s method fails to give correct conclusions

in 6 (bold cells) out of 12 cases; so improvement is

needed.

Second, the feature selection scheme is evaluated.

Gualdrón’s method adopted the FS which selects fea-

tures based on only one feature rank. This operation

may work when the features are independent of each

other and a perfect rank is available. However, this is

not always the case for practice; hence, the feature

selection scheme also needs to be improved.

3.2 The proposed method

In accordance with Table 1, a measure for feature

ranking is proposed, which is actually a transform of

equation (15) achieved by removing the absolute sign

and making the ||wi|| be the minuend; this is given as

�i ¼ w ik k � w0k k, i ¼ 1, 2, . . . , L: ð16Þ

The measure of equation (16) allows for differenti-

ating the importance of features based on the �

values. The smaller the � value, the less important

the corresponding feature. The observation results,

as given in Table 1, can be easily obtained using

equation (16), since the following causal relations

are always applicable: if �C>�D, then IC> ID; if

�C¼ �D, then IC¼ ID; and if �C<�D, then IC< ID.

According to the � values, the features can be

ranked for feature selection.

FS and backward selection (BS) are two commonly

used feature selection schemes. FS adds useful fea-

tures to an empty feature set. BS eliminates useless

features from the original feature set. As discussed, FS

relies more on a perfect rank. In contrast, BS relies

less on rank quality. Though BS may leave some use-

less features in the final feature subset, most useful

features are able to be reserved. BS is more robust

than FS in terms of acquiring good classification

results, because it is usually difficult to ensure a per-

fect rank.

The BS scheme is adopted in the proposed method.

The classification accuracy is employed to determine

whether a particular feature should be removed.

Unlike Gualdrón’s FS where the feature ranking is

Table 1 Evaluation of Gualdrón’s method

Conditions |�C|> |�D| |�C|¼ |�D| |�C|< |�D|

Scenarios Observations
Gualdrón’s
method Obsevations

Gualdrón’s
method Observations

Gualdrón’s
method

||wC||¼ ||w0||þ �C

and ||wD||¼ ||w0||þ �D

�C> 0, �D> 0 IC> ID IC> ID IC¼ ID IC¼ ID IC< ID IC< ID

�C> 0, �D< 0 IC> ID IC> ID IC> ID IC¼ ID IC> ID IC< ID

�C< 0, �D> 0 IC< ID IC> ID IC< ID IC¼ ID IC< ID IC< ID

�C< 0, �D< 0 IC< ID IC> ID IC¼ ID IC¼ ID IC> ID IC< ID
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conducted only once, the proposed method re-ranks

the features when no more features can be removed

from the current feature space. As a result, BS will be

recursively implemented until removing the first top-

ranked feature decreases classification accuracy. This

recursive backward selection (RBS) allows irrelevant

and redundant features remaining in the reduced fea-

ture space to have multiple chances of being

removed. There is, however, a side effect: it may

take more computational time.

Figure 3 shows the flow chart of the proposed

method where the measures of U and R represent

classification accuracy and ||w||, respectively. The

flow chart is introduced in detail in Subsection 3.3.

3.3 The multi-class model of the proposed
method

Gualdrón’s paper does not mention the explicit

model of its feature selection method for multi-class

classification problems. In this subsection, the binary

model of the proposed method is extended for multi-

class classification problems. The OAA approach

described in Section 3 is adopted for SVM multi-

class classification. When using the OAA approach,

N binary SVM classification models are established.

The equal weighting fusion technique [12] is

employed to address these binary models. As a con-

sequence, the norms of the weight vectors of N binary

models are equally weighted to determine the rank of

the features in the multi-class model. Figure 3 is still

applicable; so the measure of U is identically defined

as classification accuracy, but the measure of R is

redefined to adapt to the multi-class cases given

below.

As shown in Fig. 3, first of all, the U0 (classification

accuracy) is calculated based on the feature space F0.

The value of R0,j (||w0,j||), j¼ 1, 2, . . . , N is also calcu-

lated; it is returned by the jth SVM model with all

features in the F0 being used. Next, the impact of

removing the ith (i¼ 1, 2, . . . , L) feature on the jth

(j¼ 1, 2, . . . , N) SVM model represented by

�i,j¼ ||wi,j||� ||w0,j||, i¼ 1, 2, . . . , L and j¼ 1, 2, . . . , N is

calculated, yielding an impact matrix

�1,1 �2,1 � � � �L,1

�1,2 �2,2 � � � �L,2

..

. ..
. ..

. ..
.

�1,N �2,N � � � �L,N

2
6664

3
7775 ð17Þ

The impact the removal of each feature has on N

binary SVM classifications are quantitatively given in

the N columns of equation (17). Because there is often

no prior knowledge regarding which SVM model

should be preferred in classifying a particular data

point, the equal weighting technique is used to

evaluate the overall impact of removing each

feature. For the ith feature, this is given by

�i ¼
1
N

PN
j¼1 �i,j , i ¼ 1, 2, . . . , L and j ¼ 1, 2, . . . , N :

The features are then ranked according to � values.

The feature corresponding to the smallest � value has

the top rank and the one corresponding to the largest

� value has the lowest rank. Next, the features are

removed one at a time starting from the top-ranked

feature until removing a feature decreases the classi-

fication accuracy. The feature space, F0, is then

updated by eliminating the removed features. The

above procedure is repeated until the classification

accuracy is decreased by the removal of the top-

ranked feature (the least useful feature). The optimal

feature subset is thus obtained using the original fea-

ture space without the features removed.

3.4 Additional details of the proposed method

3.4.1 Validation methods

The proposed method adopts K-fold cross-validation

to overcome over-fitting of data. The K-fold cross-

validation splits training data into K disjoint

Optimal feature 
subset

Feature space F0

Compute the measure of U0 for feature 
selection and the measure of R0 for feature 
ranking based on F0.

Remove the ith feature from F0 and 
compute the difference of δi=Ri-R0, i=1,
2,…, L.

Remove the kth feature from F0 based on 
the rank, calculate the corresponding Uk

and label the current feature space as Fk

k=1

If Uk-1>Uk?

Yes

No

k=
k+

1

U
pd

at
e

F
0 

us
in

g 
F

k-
1

If k=1?

Yes

Rank the features based on the values of 
δi, i=1,2,…,L from small to large.

No

Fig. 3 The flow chart of the proposed feature selection
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subsets (folds). Classification accuracy is computed

in which K� 1 folds are used as training data and the

remaining one as validation data. When each fold has

been used as validation data once, the resultant

classification accuracy values are averaged. The aver-

age is then used in the proposed method.

3.4.2 Feature ranking strategy

At the feature ranking step of the proposed method, it

may occur that several features have the same � value

for binary class cases and the same � value for multi-

class cases. For the binary class cases, the rankings of

these features are arbitrarily selected. For the multi-

class cases, the following strategy is taken. Suppose

that features H and G have the same � value. The

number of �H,j>�G,j, j¼ 1, 2, . . . , N is counted and it

is denoted by ncom. If ncom>N/2, feature G will be

placed ahead of feature H in the rank. If ncom<N/2,

feature H will be placed ahead of feature G.

Otherwise, the features are ranked arbitrarily. When

more than two features have the same � value, this

strategy is used for each pair of features.

4 EXPERIMENTS USING BENCHMARK DATA

4.1 Benchmark datasets

This section examines the performance of the feature

selection method that is proposed. Three benchmark

datasets are used; all are from the UCI Machine

Learning Repository [13].

1. The sonar dataset contains 208 observations on 61

variables. The first 60 represent the energy within a

particular frequency band, integrated over a cer-

tain period of time. The last column contains the

class labels. There are two classes, ‘R’ if the object

is a rock and ‘M’ if the object is a mine (metal

cylinder).

2. The breast cancer dataset contains 569 samples of

which 357 belong to benign (B) and 212 samples

belong to malignant (M). The dataset includes 32

attributes with the ID number and the outcome,

benign and malignant. There are 30 real-value fea-

tures which are computed from a digitized image

of a fine needle aspirate of a breast mass. They

describe characteristics of the cell nuclei present

in the image.

3. The Parkinson dataset is composed of a range

of biomedical voice measurements from 31

people, 23 of whom have Parkinson’s disease.

Each attribute is a particular voice measurement,

and there are 195 voice recordings from these

individuals.

4.2 Preliminaries of the experiments

The three datasets are pre-arranged identically for the

experiments. First, the original dataset is split into

training dataset, validation dataset, and testing data-

set. The testing dataset will be used to evaluate fea-

ture selection methods but will not be involved in the

training process. Feature selection is conducted using

the training and validation datasets. Once the optimal

feature subset is selected, the whole dataset is

updated with the selected features. Then, the training

and validation datasets are integrated and used to

train the SVM model.

The proposed method is compared with

Gualdrón’s method using the three benchmark data-

sets. In order to demonstrate the effectiveness of

both the proposed feature ranking scheme and

the proposed feature selection scheme, two proposed

methods are considered: the proposed feature

rankingþGualdrón’s feature selection (PFRþGFS)

and the proposed feature rankingþ the proposed fea-

ture selection (PFRþPFS). The comparison of

Gualdrón’s method and PFRþGFS reveals the effec-

tiveness of the proposed feature ranking versus

Gualdrón’s feature ranking. The comparison of

PFRþGFS and PFRþPFS reveals the effectiveness

of the proposed RBS versus FS. In addition, SVM

using all features is used as a baseline in relation to

which the capabilities of the three methods of

improving classification performance can be

assessed.

4.3 Experiment results

Since the aim of this work is to study the effectiveness

of the proposed method, the degree of improvement

achieved using the proposed method is of utmost

interest. With that in mind, our focus is not on opti-

mizing the parameters of the experiments in order to

obtain the highest classification accuracy. Instead,

the parameters are equally selected for every dataset

and, most importantly, for every method to be

assessed in order to eliminate any deviations caused

by factors other than the feature selection methods.

The parameters for SVM are C¼ 100 and Gaussian

kernel with a width parameter of one. To remove

any unexpected singularities due to a particular data-

set used, the results of each benchmark dataset are

averaged over 30 trials.

Table 2 presents the results of the sonar dataset.

With regard to classification accuracy, it is found

that Gualdrón’s method provided a value even smal-

ler than the baseline value. In contrast, PFRþGFS

increased the baseline value by about 3%. This

value was further increased by 9%, when PFRþPFS
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was used. Similar results can also be observed from

the column of ‘number of features selected’, the

values for which are all rounded to their nearest inte-

ger. Though with the identical value of three,

PFRþGFS provided classification accuracy greater

than Gualdrón’s method by about 6%. This shows

that the proposed feature ranking possesses better

capability of detecting useful features.

An index called the percentage of better perfor-

mance (PBP) is also used to evaluate the robustness

of feature selection methods. The PBP is calculated by

dividing the number of trials where the classification

accuracy is improved using a feature selection

method by the total number of trials. It can be seen

that PFRþPFS improves the classification accuracy

for every trial (PBP¼ 100%); in contrast, Gualdrón’s

method has a PBP of 40% and PFRþGFS a PBP of

53.33%, indicating a much lower robustness. Figure

4 shows the classification accuracy of each method

for all 30 trials.

It is noticed that PFRþPFS provides a larger opti-

mal feature subset and consumes twice the CPU time

of the other two methods. This is a side effect of the

RBS; the larger the gain in classification accuracy, the

more expensive the computations.

Table 3 presents the results of the breast cancer

dataset. Basically, the three methods performed

much as they did in the sonar dataset. Figure 5

shows the performance of each method over 30

trials, giving the four curves that are basically sepa-

rated from each other. The curve of PFRþPFS is

above all the others, revealing its superior robustness.

The curve of Gualdrón’s method is at the bottom,

lying even below the baseline curve.

Unlike for the sonar dataset, PFRþGFS provided

a good classification accuracy of 93.85% and a

good PBP of 96.67%. Moreover, it selected fewer

features in the final feature subset and used the

least CPU time. If the requirement for classifica-

tion accuracy is not very high, PFRþGFS is suit-

able for the breast cancer dataset because it

provides a good balance among classification accu-

racy, the number of features selected, and compu-

tational time.

Table 4 and Fig. 6 show the results of the Parkinson

dataset. It is apparent that Gualdrón’s method and

PFRþGFS provided almost the same numerical

results and their curves almost merged as shown in

Fig. 6. This is not surprising given that the six cases in

the column of observations (non-bold cells) are ful-

filled in Table 1. The two feature ranking schemes

were studied and it was found that the � values of

equation (16) are positive for most of features

except five with nearly zero � values. These observa-

tions satisfy the scenario of the first row and the con-

ditions of the first and the second columns in Table 1,

from which it can be concluded that most of the fea-

tures in the Parkinson dataset are useful and the rest

are redundant.

This conclusion accords with the results of the

row of ‘SVM using all features’ where a high classi-

fication accuracy of 94.43% is obtained without

using a feature selection method. Although a rea-

sonable rank is obtained, FS, however, failed to

select as many useful features as possible, whereas

the proposed RBS selected a subset containing 11

features and achieved an even higher classification

accuracy of 96.15%.

Table 2 The results for the sonar dataset

Methods

Classification accuracy (%) Number of features selected CPU time of
feature selection (s)

Mean Standard PBP Mean Standard Mean

SVM using all features 77.55 2.26 0 60 0 —
Gualdrón’s method 74.63 7.46 40 3 1.36 8.4729
The proposed method

PFRþGFS 80.44 9.15 53.3 3 1.38 8.4328
PFRþPFS 89.58 4.95 100 20 7.76 20.819
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Fig. 4 The results of classification accuracy for the
sonar dataset
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5 APPLICATION OF THE PROPOSED METHOD
IN PLANETARY GEARBOXES

This section presents the problem of feature selection

for classifying damage degree in planet gears.

Descriptions of our test rig and how our experiments

were conducted are given in Subsection 5.1. The

features to be studied for the given problem are

introduced in Subsection 5.2. The datasets used

are established and the results are analysed in

Subsection 5.3.

5.1 Test rig and experiment conduction

The test rig shown in Fig. 7 was designed to fully

enable performing controlled experiments for devel-

oping a reliable diagnostic system for planetary gear-

boxes. The planetary gearbox has an over-hung

floating configuration that mimics the support used

in the field by Syncrude’s mining operations. Its main

components include one 20-HP drive motor, one

stage bevel gearbox, two stages of planetary gear-

boxes, two stages of speed-up gearboxes, and one

40-HP load motor. Table 5 lists the number of teeth

and the speed ratio achieved by each gearbox.

The two-stage planetary gearboxes are our study

object. There are four accelerometers located on the

housing of the two-stage planetary gearboxes includ-

ing two identical low sensitivity accelerometers (LS1

and LS2) and two identical high sensitivity acceler-

ometers (HS1 and HS2), as shown in Fig. 8. Figure 9

provides a schematic diagram for the structures of the

planetary gearboxes.

The experiments were conducted using planet

gears with different degrees of pitting damage. The

pitting damage was artificially created on one planet

gear of the second stage planetary gearbox. To mimic

the pits observed on actual pitted gears, circular holes

were created along the pitch line of the gear tooth

surface. The number of holes was varied for different

degrees of damage. Four damage degrees were con-

sidered: baseline, slight, moderate, and severe. A

brand new gear was used as the baseline. Figure 10

illustrates the four degrees of damage. More details

on the creation of the pitting damage can be found in

Hoseini and Zuo [14].

There are four planet gears in the second stage

planetary gearbox (Table 5). Three normal and one

artificially damaged planet gears were installed in

the test rig and the experiments were conducted.

Upon finishing one experiment, the artificially dam-

aged gear was replaced with the one having another

damage degree. This procedure was repeated until all

four artificially damaged plant gears were tested.

For each damage degree, experiments were con-

ducted on two separate days. For each day, the load

and the drive motor speed were varied. The two load

conditions involved were ‘no load’ and ‘load’. For the

load condition, torque of 10,000 lb in was applied to

the output shaft of the second stage planetary gear-

box. Four drive motor speeds were used: 300, 600,

900, and 1200 revolutions per minute (r/min). For

each combination of load and speed, vibration data

were collected over a 5 min span from each of the

four accelerometers. The sampling frequency used

was 10,000 Hz. The data were further split into

10 time records of equal length, so that there are 80

(2 days� 4 damage degrees� 10 time records) time

Table 3 The results for the breast cancer dataset

Methods

Classification accuracy (%) Number of features selected CPU time of
feature selection (s)

Mean Standard PBP Mean Standard Mean

SVM using all features 88.96 1.79 0 30 0 —
Gualdrón’s method 79.72 6.98 3.33 2 0.76 182.96
The proposed method

PFRþGFS 93.85 2.64 96.67 4 1.43 178.15
PFRþPFS 99.32 0.43 100 22 4.34 364.36
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Fig. 5 The results of classification accuracy for the
breast cancer dataset
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records for each combination of load and speed. The

features were extracted from each time record.

5.2 Feature extraction

The features to be extracted for the given damage

degree classification problems are introduced in this

section. They include the features that are reported

for damage detection and damage mode classifica-

tion of fixed shaft gearboxes [15–18]. Due to the

unique behaviour of planetary gearboxes, their side-

bands are different from those of fixed shaft gear-

boxes [19]. Hence, the features which require

information on the sidebands of the planetary gear-

boxes were modified.

Figure 11 shows the preprocessing of vibration sig-

nals for feature extraction. The regular mesh compo-

nents (RMCs) were defined as the fundamental shaft

frequency, its second harmonic, gear meshing fre-

quencies (GMF), its harmonics, and its first-order

sidebands. It is reported in Inalpolat and Kahraman

[19] that unlike the fixed shaft gearbox, the sidebands

of planetary gearbox appear at integer multiples of

planet passing frequency (the number of planets

multiplied by carrier frequency) and the largest side-

band is found at the frequency closest to the GMF.

In this article, the first-order sidebands for planetary

gearboxes are defined as the lower and the upper

sidebands closest to the GMF. Four types of signals

were used including raw signals (RAW), residual sig-

nals (RES), difference signals (DIFF), and band-pass

mesh signals (BPM). RAW denotes the vibration

signal subtracted by its mean, DIFF denotes the

RAW excluding the RMCs, RES is similar to DIFF

but has the first-order sidebands included, and BPM

denotes the band-pass mesh signal which is obtained

using a band-pass filter filtering around the first-

order sidebands. The RAW, DIFF, RES, and BPM are

represented, respectively, by x(t), d(t), r(t), and b(t),

t¼ 1, 2, . . . , T where T is the number of data points in

the data series.

Thirty-four features were extracted including 26

time domain features and 8 frequency domain fea-

tures as listed in Table 6. The time domain features

include 16 features (F1–F16) which are commonly

used for fault diagnosis of generic systems and 10

advanced features which are exclusively proposed

for gear fault detection (F17–F26). Frequency

domain features calculated based on sideband

values include four (F27–F30) proposed for gear

fault detection and four (F31–F34) exclusively devel-

oped for planetary gearboxes. More details on these

features can be found in references [15–20].

5.3 Dataset establishment and results analysis

In the following, a data point is referred as having

multiple input dimensions (features) and one

output class label. Based on the descriptions in

Subsections 5.2 and 5.3, for a particular combination

of load and speed, we can establish a dataset with 80

data points, each of which has 136 (34 features� 4

accelerometers) input features and an output

damage degree label. The features are numbered in

the following way: features 1–34 are from LS1, fea-

tures 35–68 from LS2, features 69–102 from HS1,

and features 103–136 from HS2. The features for

each accelerometer are in the same order as given

in Table 6, e.g. features 1, 35, 69, and 103 all corre-

spond to maximal value (F1) in Table 6. There are

Table 4 The results for the Parkinson dataset

Methods

Classification accuracy (%) Number of features selected CPU time of
feature selection (s)

Mean Standard PBP Mean Standard Mean

SVM using all features 94.43 2.05 0 23 0 —
Gualdrón’s method 84.33 7.42 13.33 3 1.66 3.25
The proposed method

PFRþGFS 84.47 7.44 13.33 3 1.92 3.27
PFRþPFS 96.15 1.65 76.67 11 4.65 7.12
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Fig. 6 The results of classification accuracy for the
Parkinson dataset
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Fig. 7 The view of the test rig

Table 5 The number of teeth for two planetary gearboxes

Bevel First planetary Second planetary First speed-up Second speed-up

Gears IB OB S P R S P R GI SM LM GO GI SM LM GO
No. 18 72 28 62(3) 152 19 31(4) 81 72 32 80 24 48 18 64 24
Ratio 4# 6.429# 5.263# 3.75" 7.111"

Notes: No., number of gear teeth; IB, input bevel gear; OB, output bevel gear; S, sun gear; P, planet gear; R, ring gear; GI, gear on input shaft; SM, small gear on

middle shaft; LM, large gear on middle shaft; GO, gear on output shaft; #, speed reduction ratio; and ", speed-up ratio. The number of planet gears is given within

parentheses.

LS1 HS1 LS2 HS2 

1st stage 
housing 

2nd  stage 
 housing 

2nd  stage 
planet gear 

2nd  stage 
sun gear 

1st stage  
planet gear 

  1st stage 
sun gear 

1st stage 
carrier

1st stage 
ring gear 

2nd  stage 
ring gear 

2nd  stage 
carrier 

Shaft #1 

Shaft #3 Shaft #2 

Fig. 9 The diagram of two-stage planetary gearboxes
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F27-F34

Vibration signal
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Remove DC offset 

Remove RMCs except 
the 1st order sidebands

Remove the 1st order 
sidebands 

Band-pass filter around 
the 1st order sidebands 

F19-F24
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Fig. 11 Processing flow for feature extraction

Fig. 10 Planet gears with artificially created pitting
damage (from left to right corresponding to
the damage degrees of severe, moderate,
slight, and baseline)

LS1
HS2HS1

1st stage
planetary gearbox

2nd stage
planetary gearbox

Bevel 
gearbox 

LS2

Fig. 8 The actual view of accelerometer locations
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Table 6 The list of features extracted

Features Definition Features Definition

F1 Maximal value maxðxðt ÞÞ F2 Minimal value minðxðt ÞÞ

F3 Average absolute value
1

T

XT

t¼1

xðt Þ
�� �� F4 Peak to peak F1� F2

F5 Variance
1

T

XT

t¼1

xðt Þ � xð Þ
2 F6 Standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

xðt Þ � xð Þ
2

vuut

F7 Skewness

1
T

PT
t¼1

xðt Þ � xð Þ
3

F63
F8 Kurtosis

1
T

PT
t¼1

xðt Þ � xð Þ
4

F52

F9 Root mean square (RMS)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

xðt Þ2

vuut F10 Crest factor
F1

F9

F11 Clearance factor
F1

1
T

PT
t¼1

xðt Þ2
F12 Impulse factor

F1

F3

F13 Shape factor
F9

F3
F14 Delta RMS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

xmðt Þ
2

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

xm�1ðt Þ
2

vuut

F15 Energy ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t¼1

d ðt Þ � d
� �2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t¼1

xðt Þ � xð Þ
2

s F16 Energy operator

1
T

PT
t¼1

�xðt Þ ��xð Þ
4

1
T

PT
t¼1

�xðt Þ ��xð Þ
2

� �2

F17 NA4

1
T

PT
t¼1

rðt Þ � rð Þ
4

1
Mn

PMn

m¼1

1
T

PT
t¼1

rmðt Þ � rmð Þ
2

� �� �2
F18 NA4*

1
T

PT
t¼1

rðt Þ � rð Þ
4

1
Mh

PMh

m¼1

1
T

PT
t¼1

rmðt Þ � rmð Þ
2

� �2

F19 FM4

1
T

PT
t¼1

d ðt Þ � d
� �4

1
T

PT
t¼1

d ðt Þ � d
� �2

� �2
F20 FM4*

1
T

PT
t¼1

d ðt Þ � d
� �4

1
Mh

PMh

m¼1

1
T

PT
t¼1

dmðt Þ � dm

� �2
� �� �2

F21 M6A

1
T

PT
t¼1

d ðt Þ � d
� �6

1
T

PT
t¼1

d ðt Þ � d
� �2

� �3
F22 M6A*

1
T

PT
t¼1

d ðt Þ � d
� �6

1
Mh

PMh

m¼1

1
T

PT
t¼1

dmðt Þ � dm

� �2
� �� �3

F23 M8A

1
T

PT
t¼1

d ðt Þ � d
� �8

1
T

PT
t¼1

d ðt Þ � d
� �2

� �4
F24 M8A*

1
T

PT
t¼1

d ðt Þ � d
� �8

1
Mh

PMh

m¼1

1
T

PT
t¼1

dmðt Þ � dm

� �2
� �� �4

F25 NB4

1
T

PT
t¼1

eðt Þ � eð Þ
4

1
Mn

PMn

m¼1

1
T

PT
t¼1

emðt Þ � emð Þ
2

� �� �2
F26 NB4*

1
T

PT
t¼1

eðt Þ � eð Þ
4

1
Mh

PMh

m¼1

1
T

PT
t¼1

emðt Þ � emð Þ
2

� �� �2

F27 Mean frequency
1

K

XK

k¼1

X ðkÞ F28 Frequency centre

PK
k¼1

f ðkÞ � X ðkÞ
� 	
PK
k¼1

X ðkÞ

(continued)
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eight combinations of load and speed; hence, there

are eight datasets to be classified.

The given classification problem has multiples

classes. The multi-class model of the proposed

method is used for feature selection. Since the

multi-class model adopts a similar feature ranking

scheme and the same feature selection scheme as

does the binary model and Section 4 verifies their

effectiveness, the application results are directly

shown rather than conducting more comparisons to

validate it. Nevertheless, the classification accuracy of

without using feature selection is still provided as a

baseline, which is obtained by an OAA approach-

based SVM classification.

The parameters used for SVM classification are as

follows. The kernel function uses a Gaussian kernel

with a width parameter of one. The parameter C is set

at 50. A three-fold cross-validation is used to calculate

the classification accuracy. The results averaged over

30 trials are presented in Table 7. For the column

of ‘SVM using all features’, it can be seen that the

classification accuracies are quite low for all the

conditions. Some are even around 50%, which is

unacceptable. Relatively large standard deviations

are also observed; these suggest that the data points

may not be distributed evenly in the original feature

space. Classification accuracy is much improved for

all conditions by the use of the proposed feature

selection method. The classification accuracy values

are all greater than 95% and their variations are

reduced. Based on these results, it can be concluded

that the proposed feature selection method effec-

tively improves classification performance for the

given damage degree classification problem. In the

next section, the composition of the selected feature

subset is further discussed.

6 DISCUSSION

Studying the resultant feature subsets may mitigate

concerns such as which features are most useful for a

given gear damage degree classification and which

accelerometers are able to provide more useful

information. These concerns are addressed in this

section. The resultant feature subsets for no load

and load conditions are examined in Subsection 6.1.

Table 6 Continued

Features Definition Features Definition

F29 RMS frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

f ðkÞ2 � X ðkÞ
� 	
PK
k¼1

X ðkÞ

vuuuuuut F30 Standard deviation Frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

f ðkÞ � F28
� 	2

�X ðkÞ
� �

PK
k¼1

X ðkÞ

vuuuuuut

F31 Largest sideband amplitude maxðX ðk�ÞÞ F32 FM0
F4P
X ðk�Þ

F33 Sideband index

P
X ðk�Þ

2
F34 Sideband level factor

P
X ðk�Þ

F6

Notes: (1) �x(t) is obtained piecewise. For the non-endpoints, it is obtained by the squared x(t) subtracted by the product of the data points of x(t� 1) and x(tþ 1).

For the endpoints, the data point of x(t) is looped around. (2) X(k), k¼ 1, 2, . . . , K, represents the kth measurement of the frequency spectrum of x(t) and f(k) the

frequency value of the kth spectrum line. (3) xm(t), rm(t), and dm(t) represent the RAW, RES, and DIFF of the mth time record, respectively. The bar notation

represents the mean, e.g. x represents the mean of x(t). Mn represents the total number of the time records up to the present. Mh represents the total number of

time records corresponding to the ‘healthy’ conditions of gearbox. See Decker [20] for details of estimating the variance for a gearbox in good condition. (4) e(t)

represents the envelope of the current time record expressed as e(t)¼ |b(t)þ j�H(b(t))|. H(b(t)) represents the Hilbert transform of b(t); em(t) represents the

envelope of the mth time record signal. (5) k* represents the index of the first-order sidebands.

Table 7 The results of various combinations of speed and load

Conditions

SVM including all features SVM with the proposed method (feature ranking and feature selection)

Classification accuracy (%) Classification accuracy (%) number of features selected

Mean Standard Mean Standard PBP mean Standard

300 r/min and no load 63.50 5.82 99.75 1.01 100 2 0.60
300 r/min and load 50.67 9.91 96.58 5.34 100 4 3.93
600 r/min and no load 72.42 8.39 99.58 1.33 100 2 3.38
600 r/min and load 54.67 8.11 97.67 2.86 100 10 8.87
900 r/min and no load 65.83 8.16 100 0 100 1 0.18
900 r/min and load 68.67 9.28 96.25 4.34 100 14 6.78
1200 r/min and no load 59.00 11.83 99.25 1.99 100 2 1.87
1200 r/min and load 64.42 7.90 100 0 100 7 4.89
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The usefulness of the accelerometers is discussed in

Subsection 6.2.

6.1 Examination of the resultant feature subsets

From Table 7, it can be seen that, given the same

speed, the degree of improvement in classification

accuracy is greater for no load conditions than for

load conditions. In addition, the dimensions of resul-

tant feature subsets are larger for load conditions

than for no load conditions; the same is true of their

standard deviations. These observations indicate that

the classification problem may become more difficult

when a load is applied. For this reason, the no load

and the load conditions are examined separately in

this subsection.

6.1.1 Analysis of the resultant feature subsets
for no load conditions

The feature subsets of 900 r/min are analysed first. It

is found that about one feature on average is selected

in this condition. The composition of these subsets

over the 30 trials were examined and the results found

were quite consistent. Feature 98 was selected for 23

trials, feature 96 for 3 trials, feature 28 for 2 trials, and

feature 132 and a combination of features 86 and 90

both for 1 trial. Based on Table 6, it can be seen that

apart from features 86 and 90, these are either stan-

dard deviation frequency (F30) or frequency centre

(F28). Because feature 98 was selected for most of

the trials, out of interest, the classification results

are plotted using this feature in Fig. 12. It exhibits a

good separation of data points for different damage

degrees.

For 300 r/min, the resultant feature subsets show

two compositions. One contains only feature 96 for

11 trials and the other both features 92 and 126 for 17

trials. For 600 r/min, the resultant feature subsets are

a bit various. We find that features 28 and 96 are

selected for the most trials, 14 and 10, respectively.

These two are both frequency centre (F28) but from

different accelerometers. For 1200 r/min, the most

frequently selected features are 96 and 98 which are

selected for 11 and 10 trials, respectively. Based on the

above observations, it can be concluded that the

frequency centre (F28) and standard deviation fre-

quency (F30) are the most useful features for no

load conditions. To test this conclusion, classification

using features 28 (F28 from LS1), 96 (F28 from HS1),

and 98 (F30 from HS1) is conducted for the same 30

sets of training and testing data. The resulting classi-

fication accuracies are comparable to those obtained

using the proposed method.

6.1.2 Analysis of the resultant feature subsets
for load conditions

For each speed, the resultant feature subsets over 30

trials are not as consistent as those from no load con-

ditions. The resultant subsets usually contain more

than one feature and display a relatively high variety.

However, some features are still found to be appear-

ing in the subsets with high frequencies for all speeds;

these include features 29 (F29 from LS1), 30 (F30 from

LS1), 96 (F28 from HS1), 129 (F27 from HS2), and 133

(F31 from HS2). It is apparent that these features are

all frequency domain features. Similarly, studying the

classification results from using these features under

load conditions, classification accuracies are

obtained, which are not as good as those obtained

using the proposed method; they are, however, all

over 90%, which is acceptable.

6.2 Analysis of the usefulness of accelerometers

In our test rig, because the four accelerometers are

distinct in terms of their sensitivity and location on

the gearbox housing, they may provide unequally

useful information. Based on the observations of the

previous subsection, we find that for no load condi-

tions the useful features are 28, 96, and 98, the first

from LS1 and the rest from HS1. For load conditions,

features 29, 30, 96, 129, and 133 appear to be most

useful. The first two are from LS1, the third is from

HS1, and the last two are from HS2. It can be seen that

no features are from LS2 under both no load and load

conditions. It suggests that LS2 may need to be relo-

cated somewhere more appropriate. In addition, the

information from HS1 may be more effective than

that from others for no load conditions.
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Fig. 12 The classification results using standard devi-
ation frequency of HS1 under 900 r/min and
no load condition

Feature selection for damage degree classification of planetary gearboxes 2263

Proc. IMechE Vol. 225 Part C: J. Mechanical Engineering Science

 at UNIVERSITY OF ALBERTA LIBRARY on October 12, 2012pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


7 CONCLUSIONS

In this study, we propose an SVM-based feature selec-

tion method to address both binary-class and multi-

class classification problems. The proposed method

uses the norm of the weight vector of SVM as a mea-

sure for evaluating the importance to classification of a

particular feature; as well, it uses a RBS scheme to

eliminate useless features through updated feature

ranks. The results of three benchmark datasets show

this method consistently outperforms its counterparts.

This demonstrates that the proposed measure for fea-

ture ranking is able to effectively assess the impact of

removing features, and the proposed RBS enables the

useless features to be removed maximally.

The multi-class model of the proposed method is

used for feature selection in damage degree classifi-

cation of planet gear. The results show the significant

effectiveness of the proposed method. Furthermore,

our studies on the resultant feature subsets exhibit

that the frequency domain features dominate the

time domain features, and that two features, fre-

quency centre and standard deviation frequency,

are the most useful for the given classification pro-

blem under no load conditions.
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