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Abstract

A preliminary analysis of the perturbation fuzzy finite element was provided by Yang et al. (Appl. Math. Mech. 20(7) (1999) 795).

In this paper, we provide a detailed analysis of the perturbation fuzzy finite element method based on variational principle. Firstly,

on the basis of the second-order perturbation principle of small parameter, the fuzzy functional of total potential energy and the

definite perturbation expansions are proposed. Secondly, definite recursion equation of fuzzy variational principle is deduced and

fuzzy finite element recursion functional is presented based on fuzzy variational principle. Thirdly, the proposed approach is

compared with the conventional fuzzy finite element method. Finally, a numerical example is given to illustrate the method.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Fuzzy finite element; Perturbation method; Variational principle; Structural analysis
1. Introduction

The finite element method is a very popular tool for
both static and dynamic analysis of engineering systems.
The ability to predict the behavior of a structure under
static or dynamic loads is not only of great scientific
value, it is also very useful from an economical point of
view. A reliable finite element analysis could make
prototype production and testing obsolete and therefore
significantly reduce the associated design validation
cost. Traditional finite element approaches require crisp
or well-defined input parameters. For instance, given the
geometry, material properties, load and boundary
conditions as deterministic values, a crisp result can be
calculated on an element by element basis. Unfortu-
nately, it sometimes is very difficult to ensure the
reliability of the result of a finite element analysis for
e front matter r 2004 Elsevier Ltd. All rights reserved.
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realistic structures that are not precisely defined (Moens
and Vandepitte, 2002). For instance, the geometric
properties, as well as the effects of service conditions on
the physical, mechanical and electromechanical proper-
ties of smart structures, are vaguely understood and
therefore cannot be precisely defined. If the uncertainty
is due to vaguely defined system characteristics, im-
precision of data, insufficient information and/or sub-
jectivity of opinion or judgement, then fuzzy set-based
treatment is appropriate.
The fuzzy finite element methodology is a new area of

finite element analysis that began in the early 1990s.
Valliappan and Pham (1993, 1995) applied fuzzy set-
based methods to geotechnical finite element analysis of
soils and foundations, elasto-plastic finite element
analysis. Pham et al. (1995) applied fuzzy set-based
methods to modelling of damping in dynamic finite
element analysis. Chao and Ayyub (1995, 1996) applied
fuzzy set-based methods to static analysis of structures.
Rao and Sawyer (1995) proposed a fuzzy finite element
method for static analysis of engineering systems
using an optimization-based scheme for the numerical

www.elsevier.com/locate/engappai
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solution of systems of fuzzy parameters, geometry and
applied loads was considered and implemented in their
approach. Chen and Rao (1997) developed a fuzzy finite
element method for vibration analysis of imprecisely
defined systems by using a search-based algorithm.
Their approach enhances the computational efficiency in
fuzzy operations for identifying the system dynamic
responses. Muhanna and Mullen (1995, 1999), Mullen
and Muhanna (1999) developed a finite element analysis
procedure utilizing the concept of fuzzy sets through
interval calculations and also computed the response of
different structural systems due to geometric and
loading uncertainties. Noor et al. applied fuzzy finite
element method to analysis of space structures (Wasfy
and Noor, 1998a), flexible multibody systems (Wasfy
and Noor, 1998b), welding residual stress fields (Abdel-
Tawab and Noor, 1999), composite structures (Noor
et al., 2000) and tethered satellite system (Leamy et al.,
2001). Lallemand et al. (1999) gave a Neumann
expansion for fuzzy finite element analysis. Akpan
et al. (2001) proposed a fuzzy finite element approach
for modelling smart structures with vague or imprecise
uncertainties. Hanss and Willner (2000) proposed a
fuzzy arithmetical approach to the solution of finite
element problems with uncertain parameters.
Perturbation method comes from celestial mechanics.

The effect of astronomic gravitation that comes from
outside the main star is called perturbation. In the
1980s, Lindstedt and Poincare had studied problems of
celestial mechanics with perturbation method. Perturba-
tion method, a general method to deal with non-linear
problem, has been developed quickly since 1950s. The
content of perturbation is universal and it has been
widely applied on oscillation principle, hydromechanics,
modern physics, autocontrol, marine engineering, biol-
ogy, chemistry and economics, demography and so on
(Wang, 1994).
The property of perturbation method is that it

translates non-linear equation into multilevel linear
equation and solves it, which can overcome the difficulty
of directly solving non-linear equation. In structural
analysis, someone has successfully solved a large
deflection problem with perturbation method in 1947
(Xie et al., 1984). But the method needs to find an
analytical solution of a linear equation at first as the
basis of the solving process. If the structural geometry
shape and boundary conditions are complicated, it is
difficult to find an analytical solution. The advantage of
finite element method is that it can solve the structural
problems with more complicated geometry shape and
boundary conditions. But when solving non-linear
problem, the method costs lots of time. So people
developed perturbation finite element method that
combines finite element with perturbation approach.
Thompson and Walker (1968) developed perturbation
analysis concept of disperse structure and applied it on
solving a large deflection problem. Yokoo and Naka-
mura (1976) used the incremental perturbation method
to solve a large deformation problem of elastic–plastic
structure in 1976. Xie et al. (1983) introduced the
perturbation process into variational principle and finite
element method was used to solve the perturbation
equation. Perturbation finite element method is not only
efficient in certain structural analysis but also in
uncertain structural analysis. Stochastic finite element
method that combines perturbation method with
finite element method has been developed, and the
method has shown great advantage and wide applica-
tions in solving stochastic problems (Chen and Liu,
1993). On the basis of the second order perturbation
method of small parameter, Yang (1998) and Yang and
Li (1999) provided the fuzzy functional of overall
potential energy and the second order perturbation
expansions, and deduced definite recursion equation of
fuzzy variational principle. Fuzzy finite element recur-
sion equation was established based on fuzzy variational
principle.
An analysis method of structure, perturbation fuzzy

finite element method based on variational principle, is
introduced in this paper. On the basis of the second
order perturbation principle of small parameter, the
fuzzy functional of total potential energy and the
definite perturbation expansions are proposed. Then
definite recursion equation of fuzzy variational principle
is deduced and fuzzy finite element recursion functional
is presented based on fuzzy variational principle. The
process that element stiffness matrix is assembled into
total stiffness matrix is taken into account, and the fuzzy
finite element method in papers (Yang, 1998; Yang and
Li, 1999) is improved. Compared with the conventional
fuzzy finite element method (Huang and Li, 2003; Li et
al., 2003), this method can avoid calculation error
caused by the expansion of interval number’s operation
(Moore, 1966). The method is illustrated through a
numerical simulation example.
2. Perturbation fuzzy finite element method based on

fuzzy variational principle

When finding the displacement of structure, the
functional of overall potential energy of elastic object is

P ¼

ZZZ
O

1

2
Dijkl�ij�kl � f iui

� �
dO

�

ZZ
sp

uip̄i dS; ð1Þ

where Dijkl is the tensor of elastic moduli, �ij the strain
tensor, f i the body force per unit volume, ui the
displacement and p̄i the boundary forces.
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The functional of overall potential energy is a fuzzy
functional with fuzzy parameters when the engineering
system has fuzzy factors; the fuzzy functional is

~P ¼

ZZZ
O

1

2
~Dijkl ~�ij ~�kl �

~f i ~ui

� �
dO

�

ZZ
sp

~ui
~̄pi dS; ð2Þ

where ~Dijkl is the tensor of fuzzy elastic moduli, ~�ij the
fuzzy strain tensor, ~f i the fuzzy body force per unit
volume, ~ui the fuzzy displacement and ~̄pi the fuzzy
boundary forces.
All the fuzzy variables that affect load and deforma-

tion of structure are denoted with fuzzy vector field with
n sub-vectors.

~X ¼ f ~x1; ~x2; . . . ; ~xng:

In fuzzy vector field ~X; there is little fuzzy perturba-
tion ~b near the real point X0; so ~X can be expressed as

~X ¼ X0 þ ~b; (3)

where

X0 ¼ fx0
1;x

0
2; . . . ;x

0
ng;

~b ¼ f ~b1; ~b2; . . . ; ~bng

~bi ði ¼ 1; 2; . . . ; nÞ is a fuzzy number with a mean value
of zero. ~u , ~�; ~D; ~f ; ~̄p and ~Pp are all dependent on fuzzy
vector field ~X; so they can be expanded according to the
second order perturbation at real point in fuzzy vector
field.

~u ¼ u0 þ
Xn

i¼1

~biu
0

i þ
Xn

j¼1

Xn

i¼1

~bi
~bju

00

ij ; (4)

~� ¼ �0 þ
Xn

i¼1

~bi�
0

i þ
Xn

j¼1

Xn

i¼1

~bi
~bj�

00

ij ; (5)

~D ¼ D0 þ
Xn

i¼1

~biD
0

i þ
Xn

j¼1

Xn

i¼1

~bi
~bjD

00

ij ; (6)

~̄p ¼ p̄0 þ
Xn

i¼1

~bi p̄
0

i þ
Xn

j¼1

Xn

i¼1

~bi
~bj p̄

00

ij ; (7)

~f ¼ f 0 þ
Xn

i¼1

~bif
0

i þ
Xn

j¼1

Xn

i¼1

~bi
~bj f

00

ij ; (8)

~P ¼ P0 þ
Xn

i¼1

~biP
0

i þ
Xn

j¼1

Xn

i¼1

~bi
~bjP

00

ij ; (9)

where u
0

ið�
0

i;D
0

i; f
0

i; p̄
0

i;P
0

iÞ denotes the first-order partial
derivative of ~uð~�; ~D; ~f ; ~̄p; ~PpÞ to fuzzy variable ~xi at the
real point X0 in fuzzy vector field. u

00

ijð�
00

ij ;D
00

ij ; f
00

ij ; p̄
00

ij ;P
00

ijÞ
denotes the second-order derivative to fuzzy variable ~xi;
~xj at real point X

0 in fuzzy vector field.
Substituting Eqs. (4)–(9) into Eq. (2) and through

comparing the coefficient of ~b; we can obtain

P0 ¼

ZZZ
O

1

2
�0

T

D0�0 � u0
T

f 0
� �

dO

�

ZZ
sp

u0
T

p̄0 dS; ð10Þ

P
0

i ¼

ZZZ
O

1

2
�0

T

D
0

i�
0 þ �0

T

D0�
0

i � u0
T

f
0

i � u
0T
i f 0

� �
dO

�

ZZ
sp

u0
T

p̄
0

i þ u
0T
i p̄0 dS i ¼ 1; 2; . . . ; n; ð11Þ

P
00

ij ¼

ZZZ
O

1

2
�0

T

D
00

i �
0 þ �

0T
i D0�

0

j

�
þ �0

T

D
0

i�
0

j

þ �0
T

D
0

j�
0

iþ�0
T

D0�
00

ij

�
dO

�

ZZ
sp

u0
T

p̄
00

ij þ u
00T
ij p̄0 þ u

0T
i p̄

0

j þ u
0T
j p̄

0

i dS

�

ZZZ
O

u0
T

f
00

ij � u
00T
ij f 0 þ u

0T
i f

0

j

�

þu
0T
i f

0

i

�
dO iðjÞ ¼ 1; 2; . . . ; n: ð12Þ

Real displacement u0; u
0

; u
00

must meet conditions that
the first order variations of above three equations is zero
(Yang, 1998; Yang and Li, 1999), i.e.

dP0 ¼ 0; (13)

dP
0

i ¼ 0; i ¼ 1; 2; . . . ; n; (14)

dP
00

ij ¼ 0; iðjÞ ¼ 1; 2; . . . ; n: (15)

The following is the deducing process of finite element
equation. Firstly, the object is dispersed, then through
interpolation of element displacement field, we can
obtain

~ue ¼
Xm

i¼1

NiðxÞ ~a
e
i ¼ N~ae; (16)

where

N ¼ fN1ðx; y; zÞ; N2ðx; y; zÞ; . . . ; Nmðx; y; zÞg;

~ae
¼ f ~ae

1; ~a
e
2; . . . ; ~a

e
mg;

where m denotes the node numbers of each element, ~ae
i is

displacement of the ith node of element e and N is the
shape function matrix.
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For ~ae is affected by fuzzy vector field ~X as ~ue

is; ~ae can be expanded according to the second-
order perturbation near the real point in fuzzy vector
field.

~ae
¼ a0

e

þ
Xn

i¼1

~bia
0e
i þ

1

2

Xn

j¼1

Xn

i¼1

~bi
~bj a

00e
ij ; (17)

where a0
e

is the value of ~ae at the real point X0 in fuzzy
vector field, a

0e
i is the value at real point X0 of the first-

order partial derivative of ~ae to fuzzy variable ~xi in fuzzy
vector field, a

00e
ij is the value at real point X0 of the

second-order partial derivative of ~ae to fuzzy variable ~xi

and ~xj in the fuzzy vector field.
Substituting Eqs. (4) and (9) into Eq. (16) and

through comparing the coefficient of ~b; we can
obtain

u0
e

¼ Na0
e

; (18a)

u
0e
i ¼ Na

0e
i ; (18b)

u
00e
ij ¼ Na

00e
ij : (18c)

Substituting Eq. (18) into Eq. (9), we can obtain

~ue ¼ Na0
e

þ
Xn

i¼1

~biNa
0e
i þ

1

2

Xn

j¼1

Xn

i¼1

~bi
~bjNa

00e
ij : (19)

For

~�e ¼ B~ae; (20)

where B is the strain matrix. Substituting Eqs. (5) and
(17) into Eq. (20) and through comparing the coefficient
of ~b; we can obtain

�0
e

¼ Ba0
e

; (21a)

�
0e
i ¼ Ba

0e
i ; (21b)

�
00

ij ¼ Ba
00

ij : (21c)

Substituting Eqs. (18a) and (21a) into Eq. (10), we can
obtain

P0 ¼
XN

e¼1

1

2
a0

eT

K0e

a0
e

� a0
eT

P0e

� �
; (22)

where

K0e

¼

ZZZ
Oe

BTD0B dO;

P0e

¼

ZZ
Spe

NTp̄0 dS þ

ZZZ
Oe

NTf 0 dO:

If

a0S ¼ a0
1T

a0
2T

	 	 	 a0
NTh iT

; (23)
K0
S ¼

K01 0 	 	 	 0

0 K02 	 	 	 0

..

. ..
.

	 	 	 ..
.

0 0 0 K0N

2
66664

3
77775; (24)

P0
S ¼ P01

T

P02
T

	 	 	 P0NTh iT
(25)

then build the following equations:

a0 ¼ Ja0S (26)

J is called transmit matrix, N is the number of elements.
Substituting Eq. (26) into Eq. (21), letc

K0 ¼ JTK0
SJ;

P0 ¼ JTP0
SJ;

then, Eq. (22) can be expressed as

P0 ¼
1

2
a0

T

K0a0 � a0
T

P0;

When Eq. (13) is taken into account, we can obtain

dP0 ¼
qP0

qa0
da0 ¼ 0:

So

qP0

qa0
¼

ZZZ
O

BTD0B dOa0 �
ZZ

Sp

Np̄0 dS

�

ZZZ
O

Nf 0dO

¼ K0a0 � P0 ¼ 0: ð27Þ

In fact, the above equation is equilibrium equation of
finite element when fuzziness is not considered.
Similarly, substitute Eqs. (18a, b) and (21a, b) into

Eq. (11), after elements are assembled and Eq. (14) is
taken into account, then

dP
0

i ¼
qP0

qa0
da0 þ

qP
0

i

qa0

i

da
0

i ¼ 0:

Taking the variation of da0 and da
0

i; we can obtain

qP
0

i

qa0

i

¼

ZZZ
O

BTD0B dOa0 �
ZZ

Sp

NTp̄0 dS

�

ZZZ
O

NTf0 dO

¼ K0a0 � P0 ¼ 0; ð28aÞ
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qP
0

i

qa0
¼

ZZZ
O

BTD
0

iBa
0 þ BTD0Ba

0

i dO

�

ZZ
Sp

NTp̄
0

i dS �

ZZZ
O

NTf
0

i dO

¼ K
0

ia
0 þ K0a

0

i � P
0

i ¼ 0; i ¼ 1; 2; . . . ; n; ð28bÞ

where

K
0

i ¼ JT

K
01
i 0 	 	 	 0

0 K
02
i 	 	 	 0

..

. ..
.

	 	 	 ..
.

0 0 0 K
0N
i

2
6666664

3
7777775

J;

K
0l
i ¼

ZZZ
Ol

BTD
0

iB dO;

P
0

i ¼ JT P
01
i P

02
i 	 	 	 P

0N
i

� �T
;

P
0l
i ¼

ZZ
Spl

NTp̄
0

i dS �

ZZZ
Ol

NTf
0

i dO:

Similarly, substitute Eqs. (18a, b, c) and (21a, b, c)
into Eq. (12), after elements are assembled and Eq. (15)
is taken into account, then

dP
00

ij ¼
qP

00

ij

qa0
da0 þ

qP
00

ij

qa0

i

da
0

i þ
qP

00

ji

qa0

j

da
0

j þ
qP

00

ij

qa00

ij

da
00

ij ¼ 0:

Taking the variation of da0; da
0

i and da
00

ij ; we can
obtain

qP
00

ij

qa00

ij

¼

ZZZ
O

BTD0B dOa0 �
ZZ

Sp

NTp̄0 dS

�

ZZZ
O

NTf0 dO

¼ K0a0 � P0 ¼ 0; ð29aÞ

qP
00

ij

qa0

i

¼

ZZZ
O

BTD
0

jBa
0 þ BTD0Ba

0

j dO

�

ZZ
Sp

NTp̄
0

j dS �

ZZZ
O

NTf
0

j dO

¼ K
0

ia
0 þ K0a

0

i � P
0

i ¼ 0; i ¼ 1; 2; . . . ; n; ð29bÞ

qP
00

ij

qa0

i

¼

ZZZ
O

BTD
00

ijBa
0 þ D0

iBa
0

j þ D
0

jBa
0

i

þ D0Ba
00

ij dO�

ZZ
Sp

NTp̄
00

ij dS
�

ZZZ
O

NTf 00ijdO

¼ K0a
00

ij þ K
0

ia
0

j þ K
0

ja
0

þ K
00

ija
0 � P

00

ij ¼ 0;

iðjÞ ¼ 1; 2; . . . ; n; ð29cÞ

where

K
00

ij ¼ JT

K
001
ij 0 	 	 	 0

0 K
002
ij 	 	 	 0

..

. ..
.

	 	 	 ..
.

0 0 0 K
00N
ij

2
66666664

3
77777775

J;

K
00l
ij ¼

ZZZ
Ol

BTD
00

ijB dO;

P
00

ij ¼ JT P
001
ij P

002
ij 	 	 	 P

00N
ij

h iT
;

P
00l
ij ¼

ZZ
Spl

NTp̄
00

ij dS �

ZZZ
Ol

NTf
00

ij dO:

Substitute a0; a
0

i and a
00

ij into the following equation:

~a ¼ a0 þ
Xn

i¼1

~bia
0

i þ
1

2

Xn

j¼1

Xn

i¼1

~bi
~bja

00

ij : (30)

The fuzzy displacement of each element node can be
obtained.
Variation Eq. (28) of the first-order perturbation

expansion P
0

i includes variation Eq. (27) of functional
P0; and variation Eq. (29) of the second-order
perturbation expansion P

00

ij includes variation Eq. (28)
of functional P

0

i: In the deduction of fuzzy finite element
equation based on the second-order perturbation
method, we can obtain all the control function through
taking the variation of the second-order perturbation
expansion equation P

00

ij :
According to Eq. (29a), (29b) and (29c), we can

obtain

K0a0 ¼ P0; (31)

K0a
0

i ¼ P
0

i � K
0

ia
0; i ¼ 1; 2; . . . ; n; (32)

K0a
00

ij ¼ P
00

ij � K
0

ia
0

j þ K
0

ja
0

þ K
00

ija
0;

iðjÞ ¼ 1; 2; . . . ; n; ð33Þ

From Eq. (31) to Eq. (33) we can see that, as
compared with the finite element calculation of certain
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structure, we need to calculate n equations in Eq. (32)
and n2 equations in Eq. (33) besides calculating
equations in Eq. (31) in the fuzzy finite element-based
on perturbation method. The calculation of Eq. (31) is
the same as that of conventional method. In the
calculation of n þ n2 equations in Eqs. (32) and (33),
K

0

i; K
00

ij ; P
0

i and P
00

ij must be obtained first. From the
expression of K

0

i; K
00

ij ; P
0

i and P
00

ij we can see D
0

i; D
00

ij ; f
0

i; f
00

ij ;
p̄

0

i and p̄
00

ij must be obtained before solving K
0

i , K
00

ij ; P
0

i and
P

00

ij : It is explained with plane triangular element.
To plane stress the problem in an isotropic material,

the constitutive matrix D can be expressed as

D ¼
E

1� n2

1 n 0

n 1 0

0 0 1�n
2

2
64

3
75:

The calculation of elastic modulus E and Poisson ratio n
will produce fuzzy perturbation near the real value due
to scarcity of experimental data and the limitations of
measurement technology, which can be expressed as

~E ¼ E0 þ ~e;

~n ¼ n0 þ ~n:

Above equations can be transformed as

~D ¼
E0 þ ~e

1� ðv0 þ ~vÞ2

1 v0 þ ~v 0

v0 þ ~v 1 0

0 0 1�ðv0þ~vÞ
2

2
64

3
75:

Let body force f and plane force p̄ be fuzzy numbers.
The calculation value will produce a fuzzy perturbation
near the real value. The fuzzy field ~X of structure is
denoted by a four-dimensional fuzzy vector, i.e.

~X ¼ X0 þ ~b;

where

X0 ¼ fE0; v0; f 0; p̄0g;

~b ¼ f ~E; ~v; ~f ; ~̄pg:

According to the definition of D
0

i and D
00

ij ; we can
obtain

D
0

1 ¼
1

1� n02

1 n0 0

n0 1 0

0 0 1�n0
2

2
64

3
75;

D
0

2 ¼
E0

1� n02

0 1 0

1 0 0

0 0 � 1
2

2
64

3
75þ

2E0n0

ð1� n02Þ2

1 n0 0

n0 1 0

0 0 1�n0
2

2
64

3
75;
D
00

11 ¼ 0 D
00

12 ¼ D
00

21 ¼
1

1� n02

0 1 0

1 0 0

0 0 � 1
2

2
664

3
775

�
2n0

ð1� n02 Þ2

1 n0 0

n0 1 0

0 0 1�n0
2

2
664

3
775;

D
00

22 ¼
2E0n0

ð1� n02Þ2

0 1 0

1 0 0

0 0 � 1
2

2
664

3
775þ

8E0n0
2

ð1� n02Þ3




1 n0 0

n0 1 0

0 0 1�n0
2

2
664

3
775þ

2E0n0

ð1� n02 Þ2

0 1 0

1 0 0

0 0 �1
2

2
664

3
775;

D
0

i ¼ 0

D
00

ij ¼ 0
iðor jÞ ¼ 3; 4

(
;

f
0

i ¼
1 i ¼ 3

0 i ¼ 1; 2; 4

(
f

00

ij ¼ 0

p
0

i ¼
1 i ¼ 4

0 i ¼ 1; 2; 3

(
p

00

ij ¼ 0:

For the calculation of fuzzy perturbation finite
element with four-dimensional vector field, we have
obtained above all the coefficient of Eqs. (31)–(33).
Dimension of fuzzy vector can be determined according
to actual conditions. When calculating a fuzzy system
with n fuzzy perturbation sources by the second-order
perturbation fuzzy finite element method, it requires
calculating 1þ n þ n2 finite element equations, which
will cost lots of time. Because solving finite element
equations equals to minimizing a quadratic energy
function, we can construct a neural network according
to the energy function. The solving finite element
equation equals to the process of dynamitic adjust-
ment of neural network. We can obtain the real-time
calculation of finite element equations. Therefore
all the neurocomputing methods (Huang and Li, 2003)
can be applied to the calculation of perturbation
fuzzy finite element. It is worthy of note that each
equation’s left side has the same coefficient matrix
K0 in Eqs. (31)–(33). It does not require to
change the neural network structure every time. We
can obtain the solution through changing input
electric current, which simplifies the neurocomputing
process.
From Eq. (31) to Eq. (33) we can see that a0; a

0

i and a
00

ij

must be obtained first. But in the process any fuzzy
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information should not be used, and fuzzy solution can
be obtained through introducing fuzzy information ~b
into Eq. (30) after obtaining a0 , a

0

i and a
00

ij ; which
simplifies the solving process.
Fig. 2. Fuzzy solution to X2.
3. Numerical example

As shown in Fig. 1, the thickness of a uniform
rectangle sheet is h=1mm. One of its ends is fixed, and
the other is the applied uniform force ~q: ~q is a triangular
fuzzy number (0.98, 1, 1.02) kN/m, its length is 2m, and
width 1m; elastic modulus ~E is a triangular fuzzy
number (204, 206, 208) 109N/m2, and Poisson ratio is
mð¼ 1

3
Þ: Try to find each element displacement with

perturbation finite element method when gravitation is
neglected.
According to solving finite element equations, the

arrays and columns corresponding to zero displacement
constraints are deleted in ~K and corresponding sub-
vector in ~F are deleted. We can obtain the equilibrium
equation

~̂
Kd ¼

~̂
F;

~̂
K ¼

~K22
~K23

~K32
~K33

" #

¼
3 ~Eh

32

7 �4 �4 2

�4 13 2 �12

�4 2 7 0

2 �12 0 13

2
666664

3
777775

d ¼
d2

d3

" #
¼

x2

y2

x3

y3

2
666664

3
777775

~̂
F ¼

~F 2

~F 3

" #
¼

~q
2

0

~q
2

0

2
666664

3
777775:

Fuzzy field is a two-dimensional vector in the example,
i.e. ~b ¼ f ~E; ~̄pg:
According to the definition, calculating results are

K
0

1 ¼ K0=E0 K
0

2 ¼ 0 P
0

1 ¼ 0 P
0

2 ¼ 1
2m 

1m

q(kN/m) 

(a) (b

Fig. 1. (a), (b) The applied force and fin
Substituting the above results into Eq. (32), we can
obtain

a
0

1 ¼ �a0=E0; (34)

a
0

2 ¼ K0�1 	 1: (35)

Substituting Eqs. (34) and (35) into Eq. (30), we can
obtain

~a ¼ a0 þ �a0
~E

E0
þ a0

~q

q0

� �
; (36)

where

a0 ¼ K0�1F ¼ ð9:6295 1:7298 8:7069 0:1153ÞT

Substituting all parameters into Eq. (35), we can
obtain

~a ¼ a0 1�
1

103
0

�1

103

� �
þ ð�0:02 0 0:02Þ

� �

i.e.

a1ðX 2Þ ¼ ð9:3434 9:6295 9:9156Þ;

a2ðY 2Þ ¼ ð1:6784 1:7298 1:7812Þ;

a3ðX 3Þ ¼ ð8:4482 8:7069 8:9656Þ;

a4ðY 3Þ ¼ ð0:1119 0:1153 0:1187Þ:
1 2 

3 4 

�

�

 x 

y

 F3x

 F2x

)

ite elements of the rectangle sheet.
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Fig. 3. Fuzzy solution to Y2.

Fig. 4. Fuzzy solution to X3.

Fig. 5. Fuzzy solution to Y3.
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The results obtained from the above method (P-
FFEM) and that obtained from conventional fuzzy
finite element method (C-FFEM) and that obtained
from the fuzzy finite element method based on fuzzy
coefficient programming (FCP-FFEM) (Li et al., 2003)
are shown in Figs. 2–5.
4. Conclusions

Perturbation fuzzy finite element method is intro-
duced in this paper. The method is a fuzzy finite element
method based on fuzzy variational principle. Its physical
meaning is definite. Compared with the conventional
fuzzy finite element methods, it avoids calculation error
caused by the expansion of interval number’s operation
(Moore, 1966) . If the simulation results obtained from
different methods are compared, when l ¼ 1; the result
obtained from perturbation fuzzy finite element method
based on fuzzy variational principle is the same as that
obtained from conventional fuzzy finite element method
and fuzzy finite element method based on fuzzy
coefficient programming. With the decrease of l; the
difference between the interval’s upper and lower
boundary that was obtained from the conventional
fuzzy finite element method is bigger. From Fig. 5 we
can see that the upper and lower point of Y3 occurs in
opposite sign. The upper and lower boundaries of
interval value obtained from perturbation fuzzy finite
element method based on fuzzy variational principle
have the same sign, which accords with reality. Besides,
the absolute result obtained from fuzzy finite element
method based on fuzzy coefficient programming is
always the maximum. So it illustrates that fuzzy finite
element method based on fuzzy coefficient programming
is a reliable calculating method. It needs to be
mentioned that fuzzy finite element method based on
perturbation method is an approximated solution under
small perturbation. When ~K and ~F cannot be expanded
to limited order expression of fuzzy resource, and fuzzy
perturbation is big, the truncated error cannot be
accepted (Chen and Liu, 1993). Under this condition,
structural analysis will fail if perturbation fuzzy finite
element method based on variational principle is used.
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