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There exist problems in fuzzy finite element methods because technique of
solving fuzzy equations is not perfect. For example, computation amount
is too big and both sides of the equality are not exactly equal when solutions
are substituted into the original equation. The concept of monosource fuzzy
number is developed to simplify the calculation process of fuzzy equations.
However the source of fuzziness in practical engineering is difficult to be
judged and the source of fuzzy coefficient is non-unique. Indeed, no effi-
cient method is available to solve fuzzy finite element equations. In this
paper, fuzzy coefficient programming is combined with the essence of elas-
ticity. In other words, the force equilibrium of elastic object is the process
of minimizing energy of a quadratic equation. A new fuzzy finite element
solution and a new neural network algorithm of fuzzy finite element are
developed. The method was proved to be efficient and feasible through
circuit simulation.

Keywords: Fuzzy finite element, Fuzzy coefficient programming, Fuzzy equations,
Neural network

1 INTRODUCTION

The finite element method is a very popular tool for both static and dynamic
analysis of engineering systems. Its ability to predict the behavior of a struc-
ture under static or dynamic loads is not only of scientific interest, but also of
practical significance. A reliable finite element analysis could make prototype
production and testing obsolete, therefore significantly reducing the associated
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design validation cost. Traditional finite element approaches require crisp or
well defined input parameters. For instance, given the geometry, material
properties, load and boundary conditions, a crisp result can be calculated on
an element-by-element basis. Unfortunately, sometimes it is very difficult to
ensure the reliability of the result of a finite element analysis for realistic
structures that are not precisely defined [1]. For instance, the geometric prop-
erties, as well as the effects of service conditions on physical, mechanical,
and electromechanical properties of smart structures, are vaguely understood
and therefore cannot be precisely defined. If the uncertainty is due to vaguely
defined system characteristics, imprecision of data, insufficient information
and /or subjectivity of opinion or judgement, then fuzzy set based treatment
is appropriate.

The fuzzy finite element methodology is a new area of finite element anal-
ysis that began in the early 1990s. [2,3] applied fuzzy set based methods to
finite element analysis of geotechnical soils and foundations, elasto-plastic
finite element analysis, [4] applied fuzzy set based methods to modelling of
damping in dynamic finite element analysis. [5,6] applied fuzzy set based
methods to static analysis of structures. [7] proposed a fuzzy finite element
method for static analysis of engineering systems using an optimisation based
scheme for the numerical solution of systems of fuzzy parameters, geometry
and applied loads was considered and implemented in their approach. [8]
developed a fuzzy finite element method for vibration analysis of impre-
cisely defined systems by using a search-based algorithm. Their approach
enhances the computational efficiency in fuzzy operations for identifying the
system dynamic responses. [9–11] developed a finite element analysis proce-
dure utilizing the concept of fuzzy sets through interval calculations and also
computed the response of different structural systems due to geometric and
loading uncertainties. Noor et al applied fuzzy finite element method to analy-
sis of space structures [12], flexible multibody systems [13], welding residual
stress fields [14], composite structures [15], tethered satellite system [16]. [17]
gave a Neumann expansion for fuzzy finite element analysis. [18] proposed
a fuzzy finite element approach for modelling smart structures with vague or
imprecise uncertainties. [19] proposed a fuzzy arithmetical approach to the
solution of finite element problems with uncertain parameters.

On the basis of the second order perturbation method of small parame-
ter, [20], [21] provided the fuzzy functional of overall potential energy and the
second order perturbation expansions, and deduced definite recursion equa-
tion of fuzzy variational principle. Fuzzy finite element recursion equation
was established based on fuzzy variational principle. [22] took into account
the process in which the element stiffness matrix is assembled into the total
stiffness matrix, and improved the fuzzy finite element method developed
by [20], [21].

The basic idea of all methods mentioned above is that: fuzziness of the
coefficients was introduced into precise finite element equation, and fuzzy
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finite element equation was transformed to a set of precise interval equations
in terms of a set of threshold valuesλ, solving these interval equations, then
taking use of factorization theorem of fuzzy set theory to find solution of
fuzzy finite element equilibrium equation [23]. In this way, we have to face a
large number of interval equations. What’s more is that the interval numbers
are quite different from precise numbers, so that the algorithm operations are
different completely. For example two interval numbersa andb, a − b =
[a − b̄, ā − b]. It is obvious that the result of an interval number subtracted
by itself is not zero. Hitherto there is no satisfied interpretation to the interval
equations.

The second idea to solve fuzzy finite element equations is that the fuzziness
of coefficient in the equations is not taken into consideration at first. After the
expression of variables being determined with conventional equations solu-
tion, fuzziness of coefficient is introduced and fuzzy solution can be obtained
according to fuzzy operation rules [19].

Recently, the concept of fuzzy source and operation rules of monosource
fuzzy numbers is developed [24]. The third idea is that the concept of
monosource fuzzy numbers is introduced into equations, and fuzzy equation
can be transformed to conventional equations by using the operation rules
of monosource fuzzy numbers, which can largely simplify the calculation
process [25].

Among the three methods mentioned above, the third one, i.e. the fuzzy
finite element equation based on monosource fuzzy numbers, is easy to cal-
culate and a precise solution can be obtained. However it is difficult to judge
the source of fuzziness and the source of fuzzy coefficient is non-unique,
thus restricting the use of the method. The first two methods are widely used
because they have general sense in practical application. But the disadvantage
of the two methods is that computation amount is too big and both sides of
the equality are unequal when the solutions are substituted into the original
equation. So the methods are only approximate methods.

Neural network is a complicated nonlinear dynamic system with highly
parallelism. Optimization problems can be mapped into dynamical circuit with
appropriate neural network. The problem can be solved within an elapsed time
of circuit time-constant. The essence of neural network optimizing calculation
is through constructing appropriate network structure and learning method and
associating some coefficients of network with design variables and energy
function of network with some objective functions of optimization. When
the neural network running, energy of the network is reduced and the energy
reaches minimum value when the system attains equilibrium.

The paper combines fuzzy coefficient programming [26] with the essence of
elasticity, i.e. the process of force equilibrium of elastic object is the process of
minimizing energy of a quadratic equation.Anew fuzzy finite element solution
and a new neural network algorithm of fuzzy finite element are developed. The
method was proved to be efficient and feasible through the circuit simulation.
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2 FUZZY COEFFICIENT PROGRAMMING

Conventional programming problem can be described as follows

(P) maxf (c, x)

s.t.




g(a, x) ≤ 0

h(b, x) = 0

x ∈ D

. (1)

where f (c, x) is a n-variable function whose variables arex = (x1,

x2, . . . , xn) with the coefficients

c = (c1, c2, . . . , cn)

g(a, x) = (g1(a1, x), g2(a2, x), . . . , gn(an, x))′

where gi(ai , x) is a n-variable function whose variables arex = (x1,

x2, . . . , xn) with the coefficients

ai = (ai1, ai2, . . . , aisi
)

h(b, x) = (h1(b1, x), h2(b2, x), . . . , hm(bm, x))′

where hj (bj , x) is a n-variable function whose variables arex = (x1,

x2, . . . , xn) with the coefficients

bj = (bj1, bj2, . . . , bjpj
), j = 1, 2, . . . , m.

D is a subset ofRn.
For many practical problems, the coefficients of programming (P ) can not

be known definitely. If the coefficients of (P ) are fuzzy numbers, the problems
are transformed to “fuzzy coefficient programming” problems, in brief FCP
whose expression is:

(P) maxf (c̃, x)

s.t.




g(ã, x) ≤ 0

h(b̃, x) = 0

x ∈ D

. (2)

where f (c̃, x) is a n-variable function whose variables arex =
(x1, x2, . . . , xn) with the coefficients

c̃ = (c̃1, c̃2, . . . , c̃n)

g(ã, x) = (g1(ã1, x), g2(ã2, x), . . . , gn(ãn, x))′
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where gi(ãi , x) is a n-variable function whose variables arex =
(x1, x2, . . . , xn) with the coefficients

ãi = (ãi1, ãi2, . . . , ãisi
).

h(b̃, x) = (h1(b̃1, x), h2(b̃2, x), . . . , hm(b̃m, x))′.

where hj (b̃j , x) is a n-variable function whose variables arex =
(x1, x2, . . . , xn) with the coefficients

b̃j = (b̃j1, b̃j2, . . . , b̃jpj
), j = 1, 2, . . . , m.

All the fuzzy coefficients are called “fuzzy coefficients” of FCP. Definition
and solution related to fuzzy optimization are given as follows

1) For any given degree of membershipλ(0 ≤ λ ≤ 1), correspondingλ-cut
set of any fuzzy number̃e is a closed interval (theλ -cut set ofẽ is defined
as support set of the fuzzy number whenλ = 0), i.e. ẽ(λ) = [e′(λ), e′′(λ)]
where real numbere′(λ) ≤ e′′(λ).

2) For any fuzzy vector̃e = (ẽ1, ẽ2, . . . , ẽn), λ -cut set of ẽi is
ẽi (λ) = [e′

i (λ), e′′
i (λ)]. Let ẽ′(λ) = [e′

1(λ), e′
2(λ)), . . . , e′

n(λ)], thenẽ′′(λ) =
[e′′

1(λ), e′′
2(λ), . . . , e′′

n(λ)]. To any valueei(λ) in the interval[e′
i (λ), e′′

i (λ)]
there exists a vectore(λ) = [e1(λ), e2(λ), . . . , en(λ)] accordingly. For
ei(λ) ∈ [e′

i (λ), e′′
i (λ)], we havee(λ) ∈ [ẽ′(λ), ẽ′′(λ)].

3) For any given degree of membershipλ and any number randomly taken
from λ-cut set of each fuzzy coefficient, a general rule can be obtained:

(P) maxf (c(λ), x)

s.t.




g(a(λ), x) ≤ 0

h(b(λ), x) = 0

x ∈ D

. (3)

Eq. (3) is called a “λ-rule” of FCP, in brief λ − P, z∗(λ) denotes the
optimal value of (3) (if (3) has no feasible solution,z∗(λ) = −∞ is
defined as the optimal value). Wherec(λ) = (c1(λ), c2(λ), . . . , cn(λ)),
ci(λ) is an arbitrary value inλ-cut set[c′

i (λ), c′′
i (λ)] of fuzzy numberc̃i ;

ai (λ) = (ai1(λ), ai2(λ), . . . , aisi (λ)) whereaiz(λ) is an arbitrary value in
λ-cut set[a′

iz(λ), a′′
iz(λ)] of fuzzy numberãiz, z = 1, 2, . . . , si ; bj (λ) =

(bj1(λ), bj2(λ), . . . , bjpj
(λ)) wherebjw(λ) is an arbitrary value inλ-cut set

[b′
jw(λ), b′′

jw(λ)] of fuzzy number̃bjw, w = 1, 2, . . . , pj .
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FCP usually has manyλ − P (at least one). So quadratic programming can
be obtained:

(P) maxz∗(λ)

s.t.




c(λ) ∈ [c(λ)′, c(λ)′′]
a(λ) ∈ [a(λ)′, a(λ)′′]
b(λ) ∈ [b(λ)′, b(λ)′′]

. (4)

Variablex obtained here is “λ-optimal solution” of FCP shown as (2), denoted
as x(λ). And X̃ = {x(λ)|0 ≤ λ ≤ 1} is the fuzzy optimal solution of
programming (2).

It can be concluded from above that a fuzzy coefficient programming prob-
lem can be transformed to a conventional quadratic programming problem.
However the problem of quadratic programming is very complicated. To some
FCPthat meet with some conditions, a simple solution can be obtained accord-
ing to the following theorem.

Theorem [26]: ifx ∈ D, f (c, x) andg(a, x) are non-decline functions ofc
anda, h(b, x) is a non-decline continuous function,λ-optimal programming
(4) and conventional programming (5) have the same optimal values.

(P) maxf (c(λ)′′, x)

s.t.




g((a(λ))′, x) ≤ 0

h((b(λ))′, x) ≤ 0

h((b(λ))′′, x) ≥ 0

x ∈ D

. (5)

In the same way, for minimizing fuzzy optimization problem

(P) minf (c, x)

s.t.




g(a, x) ≤ 0

h(b, x) = 0

x ∈ D

. (6)

if x ∈ D, f (c, x) andg(a, x) are non-decline functions ofc anda respectively
andh(b, x) is a non-decline continuous function ofb, λ-optimal programming
(6) and conventional programming (7) have the same optimal values.

(P) minf (c(λ)′, x)

s.t.




g((a(λ))′, x) ≤ 0

h((b(λ))′, x) ≤ 0

h((b(λ))′′, x) ≥ 0

x ∈ D

. (7)
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3 FUZZY COEFFICIENT OPTIMIZATION OF FUZZY
EQUILIBRIUM

The problem of elasticity finite element’s calculation can be summed up to the
following problem of quadratic optimization [27]:

min
x∈�

∏
= 1

2
δTKδ − qTδ

s.t Aδ = δ(in su)

. (8)

whereK is global stiffness matrix,δ is nodal displacement vector,q is nodal
load vector,A is constraint matrix.

There are many coefficients in practical engineering analysis, such as Pois-
son’s ratio and elastic modulus of material, structure size, boundary conditions
and load are all fuzzy. Under common conditions, nodal displacement con-
straints are considered to be known clearly, i.e. they have no fuzziness. Then
the problem of elasticity finite element can be summed up to the following
quadratic fuzzy coefficient optimization problem:

(P) min
x∈�

∏
= 1

2
δTK̃δ − q̃Tδ

s.t Aδ = δ(in su)

. (9)

The equation is a quadratic programming problem. To simplify the problem
with the above theorem, the equation can be changed to

(P) min
x∈�

∏
= 1

2
δTK̃δ + ˆ̃qTδ

s.t Aδ = δ.

. (10)

where ˆ̃q = −q̃.
Heref = 1

2δTK̃δ+ ˆ̃qTδ; f is a non-decline function of̃K and ˆ̃qT. Accord-
ing to the theorem quadratic fuzzy coefficient programming is transformed to
conventional programming problem:

(P) min
1

2
δTK̃(λ)′δ + ˆ̃q(λ)′Tδ

s.t Aδ = δ

. (11)

whereλ ranges at [0,1].
Equality constraint finite element problem (11) can be transformed to

unconstraint finite element problem: nodal stiffness matrix is transformed to
global stiffness matrix; the element at intercross of theith row andith column
in global stiffness matrix is deleted if theith displacement has constraints,
then a global stiffness matrix of reduced order is obtained, denoted asK̃a(λ)′;
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if δ = 0, theith component is deleted from the line vector of load, then load
vector of reduced order is obtained; ifδ �= 0, theith component is deleted from
the line vector of load vectors and rectifying calculation is applied on the vec-
tors, then line vectors of load of reduced order is obtained, denoted asˆ̃qa(λ)T.
Thus constraint optimization is transformed to unconstraint optimization.

4 NEUROCOMPUTING BASED ON FUZZY COEFFICIENT
OPTIMIZATION

It can be seen from above analysis that the problem of solving fuzzy finite
element equations can be transformed to a set of unconstraint optimization
problem by using fuzzy coefficient programming, i.e. eachλ corresponds
to an unconstraint optimal equations. Ifn values ofλ are taken,n different
optimization problems have to be solved. It will take lots of time to solve
the complicated problem that has thousands of nodes. For neural network
can obtain solution of optimum problem within an elapsed time of circuit
time-constant, a neural network will be constructed to realize real-time fuzzy
finite element algorithm in this section. Eachλ − P optimization problem
will be calculated with the neural network. The energy function in the neural
network is denoted asE(λ), andE(λ) is taken as objective functions ofλ−P

optimization, expressed by:

E(λ) = 1

2

m∑
i=1

m∑
j=1

K̃a(λ)′ijδiδj +
m∑

i=1

ˆ̃qa(λ)′iδi . (12)

whose dynamical equation is:

dδi

dt
= −dE(λ)

dδi

= −
m∑

j=1

K̃a(λ)′ijδj − ˆ̃qa(λ)′i . (13)

In view of

dE(λ)

dt
=

m∑
i=1

dδi

dt

m∑
j=1

K̃a(λ)′ijδj +
m∑

i=1

ˆ̃qa(λ)′i
dδi

dt

= −
m∑

i=1

dδi

dt

(
−

m∑
j=1

K̃a(λ)′ij δj − ˆ̃qa(λ)′i
)

= −
m∑

i=1

dδi

dt

dδi

dt

= −
m∑

i=1

(
dδi

dt

)2

≤ 0
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When dE(λ)
dt

= 0, we have

dδi

dt
= 0, i = 1, 2, . . . , m.

which shows that minimum energy point is coincident with the pointdδi

dt
= 0.

To a quadratic optimization problem, there is a unique minimum solution when
K̃(λ)′ is a positive definite matrix, i.e. neural network will converge to global
minimum value of the optimization.

5 NUMERICAL EXAMPLE

Following example shows the construction of neural network and its appli-
cation on the solution of fuzzy finite element based on fuzzy coefficient
programming.

As shown in Fig. 1, a uniform rectangle sheet, thicknessh = 1mm, one
end is fixed,̃q is applied load on the other end andq̃ is a triangle fuzzy number
(0.98,1,1.02) kN/m, length 2 m, width 1 m, Young’s modulusẼ is a triangle
fuzzy numbers (204,206,208)×103MPa, Poisson’s ratioµ = 1

3. Gravitation
is not taken into consideration. Try to find each point’s displacement.

Equations constructed are expressed by submatrix, i.e.

K̃δ = F̃. (14)

where

K̃ =




K̃11 K̃12 K̃13 K̃14

K̃21 K̃22 K̃23 K̃24

K̃31 K̃32 K̃33 K̃34

K̃41 K̃42 K̃43 K̃44




= 3Ẽh

32




7 0 −3 2 0 −4 4 2
0 13 2 −1 −4 0 2 −12

−3 2 7 −4 −4 2 0 0
2 −1 −4 13 2 −12 0 0
0 −4 −4 2 7 0 −3 2

−4 0 2 −12 0 13 2 −1
4 2 0 0 −3 2 7 −4
2 −12 0 0 2 −1 −4 13



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FIGURE 1
Load of rectangle sheet and finite element diagram.

δ =




δ1
δ2
δ3
δ4


 =




x1
y1
x2
y2
x3
y3
x4
y4




, F̃ =




F̃1

F̃2

F̃3

F̃4


 =




0
0
q̃
2

0
q̃
2

0
0
0




whereδ1 = 0, δ4 = 0.

For constraintsδ1 = [ x1
y1

] = [
0
0

]
and δ4 = [ x4

y4

] = [
0
0

]
, according to

the method to resolve finite element equations these rows and columns were
deleted where displacement is 0 inK̃, corresponding component inF̃ is deleted,
then equilibrium equation can be obtained:

˜̂Kδ = ˜̂F

˜̂K =
[
K̃22 K̃23

K̃32 K̃33

]
= 3Ẽh

32




7 −4 −4 2
−4 13 2 −12
−4 2 7 0
2 −12 0 13




δ =
[
δ2
δ3

]
=




x2
y2
x3
y3




˜̂F =
[
F̃2

F̃3

]
=




q̃
2
0
q̃
2
0



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The equations are substituted into (9), then the problem to solve fuzzy finite
element equilibrium equations is transformed to fuzzy coefficient optimization
problem:

min

(
1

2
δT ˜̂Kδ − ˜̂

F Tδ

)
. (15)

According to the above theorem and (11), fuzzy coefficient extreme value of
(13) can be transformed to a set of conventional extreme value problems:

min

(
1

2
δTK̂(λ)′δ + (−F̂T)(λ)′δ

)
. (16)

whereλ = 1 − i/n, i = 0, 1, 2, . . . , n.
For differentλ, λ − P problem can be resolved through neural network.
Optimizing calculation of neural network is composed of the following

parts:

1) integrator.

2) reverse adder.

3) feedback loop.

4) reverse controller to realize negative resistance.

Instantaneous simulation of circuit was operated on Protel98/Sim98 worksta-
tion, results are shown in Table 1.

Results of simulation are the same to the results calculated on Matlab
workstation.

TABLE 1
Results of Simulation

λ x2 y2 x3 y3

1.0 9.63 1.73 8.71 0.115
0.9 9.71 1.85 8.74 0.215
0.8 9.80 1.98 8.78 0.324
0.7 9.88 2.12 8.81 0.446
0.6 9.98 2.27 8.84 0.580
0.5 10.1 2.45 8.87 0.731
0.4 10.2 2.64 8.89 0.899
0.3 10.3 2.85 8.92 1.09
0.2 10.4 3.10 8.94 1.30
0.1 10.5 3.37 8.95 1.55
0.0 10.7 3.69 8.97 1.83

unit: 10−6 m
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6 CONCLUSIONS

1) At present, the idea to solve fuzzy finite element equation is as following:
fuzziness is introduced into precise finite element equation, then fuzzy finite
element equilibrium equation is transformed to a set of crisp interval equations
in terms of a set of threshold valuesλ, and these interval equations are resolved
finally.

However so far there is no perfect method to solve these linear interval
equations, so there is no efficient method to solve fuzzy finite element equation.
This paper develops a new fuzzy finite element method. The method combines
fuzzy coefficient programming with the essence of elasticity, i.e. the process
of force equilibrium of elastic object is the process of minimizing energy of a
quadratic equation.

2) The method developed in the paper has a characteristic that is for eachλ

value, the programming result is a clear value, which differs from the tra-
ditional method by which a calculation result becomes an interval value.
Therefore, the computation result is a common set, which is composed by
the fuzzy coefficient programming solution corresponding to different value
λ, not a clear value for one, also not a fuzzy quantity. However, the physical
meaning of valueλ can be treated as a kind of measure of the structural param-
eter fuzziness, whether strong or weak. Take a valueλ smaller, the structural
parameter is more fuzzy, whereas the structural parameter is more clear. From
the point of practical engineering problems, although the structural parameter
takes fuzziness, a clear calculation value is required in terms of valueλ in
the structural design. Therefore the method developed in this paper is more
valuable in engineering application.

3) Results show that the results obtained in this paper is consistent with
the results obtained with conventional finite element method whenλ = 1.
It is shown thatx2, y2, x3 andy3 increase whenλ decreases, which shows
that the method developed in the paper has great computing capability to the
fuzzy information in Young’s modulus decreasing direction. It is the concrete
embodiment of fuzzy coefficient programming. The physical meaning is that
these parameters which can minimize the global potential energy of system
are chosen when interval equations are solved.

4) Furthermore, it is shown thatx2, y2, x3 and y3 increase whenλ
decreases, which shows that stiffness of structure decreases when fuzzy infor-
mation is introduced. From the point of safety, it is advantage to improve
safety of the system. It is considered that parameter fuzziness is derived from
the limitation of people’s cognize. Thus, the more limited the people’s cog-
nize is, the stronger the structural parameter fuzziness is, and the safer design
strategy should be adopted.

5) With the problem of finding solution becomes more complicated, parallel
computation of finite element equation has become an important direction in
finite element field. The proposed method introduces the idea of energy into
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the calculation of fuzzy equations, which makes it possible to apply neural
network optimization on fuzzy finite element field. Case study shows that the
results of circuit simulation are the same as the results calculated on Matlab
workstation. From the results of instantaneous analysis of circuit, it can be
seen that circuit system can reach equilibrium within 200µs, which embodies
the advantage of neural network in solving real-time complicated structure
problems.
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