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Abstract

The coupling of performance functions due to common design variables and uncertainties in an engineering design process will result

in difficulties in optimization design problems, such as poor collaboration among design objectives and poor resolution of design

conflicts. To handle these problems, a fuzzy interactive multi-objective optimization model is developed based on Pareto solutions, where

the metric function and some additional constraints are added to ensure the collaboration among design objectives. The trade-off matrix

at the Pareto solutions was developed, and the method for selecting weighting coefficients of optimization objectives is also provided. The

proposed method can generate a Pareto optimal set with the maximum satisfaction degree and the minimum distance from ideal solution.

The favorable optimal solution can be then selected from the Pareto optimal set by analyzing the trade-off matrix and collaborative

sensitivity. Two examples are presented to illustrate the proposed method.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Interactive optimization; Pareto solutions; Fuzzy optimization
1. Introduction

Engineering design is a process of formulating a plan for
the satisfaction of human needs through a cycle of steps
that include problem definition, conceptualization, embo-
diment, and detailing. Conflicts are ubiquitous in an
engineering design process. For example, conflicts exist
among requirements from groups of designers, manufac-
turers, suppliers, and clients, who have their own objectives
and preferences. Engineers may focus on requirements in
engineering aspects, such as strength, stiffness, and
stability; administrators may focus on manufacturing cost
and safety; clients may focus on ease of use, operation cost,
and reliability. Many of these requirements conflict with
each other. For instance, improving reliability will increase
the cost. Therefore, conflicts always exist in design
objectives in any engineering design process. It is important
to resolve the objective conflicts in engineering design.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Conflict resolution is a complex and time-consuming
process.
Multi-objective optimization is a design methodology

that optimizes a collection of objective functions system-
atically and simultaneously. It has been increasingly used
in engineering applications for design automation over
multiple conflicting design objectives. One traditional
method to ease the difficulties in multi-objective optimiza-
tion problems is to choose only one objective and
incorporate other objectives as constraints. The other
traditional method is to simply combine all the objectives
into a single objective function (Coello and Christiansen,
2000). Even though it is convenient to use these two
methods, there are disadvantages associated with them.
(1)
 The first approach limits the choices (design options)
available to designers.
(2)
 The second approach models the original problem in an
inadequate manner, generating a solution that requires
a further analysis to make sure it is reasonable to the
designers.
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(3)
 Both of the methods are not inherently capable of
design exploration.
(4)
 Both of the methods require a priori selection of
weights or targets for each of the objective functions.
The upfront selection is extremely hard before the
optimization process.
(5)
 The designer’s preferences are usually ignored to some
extent.
To resolve the conflicts over design objectives collabora-
tively, in this work, a fuzzy interactive multi-objective
optimization model is developed with adding a metric
function and additional constraints. This model generates a
Pareto optimal set first. A favorable optimal solution is
then selected from the Pareto optimal set with several
techniques such as analyzing the trade-off matrix, contact-
ing collaborative sensitivity analysis, and adjusting the
weighting coefficients of important degree of design
objectives. The proposed method can generate the max-
imum satisfaction degree and the minimum distance
between each of the objectives and its ideal solution.
Moreover, the process of selecting the threshold of
satisfaction degree and the weighting coefficients of
objectives is a self-adjustment process and this adjust-
ment improves the collaborative relationships among the
objectives.

The paper is structured as follows. Section 2 briefly
reviews of the related literature on fuzzy multi-objective
optimization. Section 3 develops an interactive fuzzy multi-
objective optimization model based on Shih’s fuzzy
structure optimization model. Section 4 presents two
examples to illustrate the proposed method. Finally,
conclusions are provided in Section 5.
2. Related literature review

Conventional optimization methods assume that all the
design information (parameters and models) are precisely
known, the constraints delimit a well defined set of feasible
decisions, and the objectives are well defined to capture
designers’ intention. However, incomplete and uncertain
input information is typical for practical problems of
multi-objective optimization decision-making. This is
mainly caused by fuzzy performance criteria, fuzzy ideas
of decision-maker, and linguistic evaluations of quality, to
mention but a few (Huang, 1997; Huang and Li, 2005,
Huang et al., 2005(a–d); Gu and Huang, 2004). Fuzzy set
theory enables one to model uncertainty or vagueness
resulting from linguistic terms. Bellman and Zadeh (1970)
inspired the development of fuzzy optimization by provid-
ing the aggregation operators, which combines the fuzzy
goals and fuzzy decision space. After this work, there come
out a great number of articles dealing with the fuzzy
optimization problems. The collection of papers on fuzzy
optimization edited by Slowinski (1998) and Delgado et al.
(1994) gives the main stream of this topic.
Fuzzy set theory is widely used in solving mathematical
programming problems. Zimmermann (1978) initiated the
application of fuzzy theory to optimization by solving
theoretical, fuzzy, linear programming problems. Zimmer-
mann (1976) also proposed a max–min approach, which
was used for solving fuzzy mathematical problems with
fuzzy objectives and fuzzy constraints. Lai and Hwang
(1994) proposed an augmented max–min approach, which
is essentially an extension of Zimmermann’s approach.
Werner (1987a, b) proposed an interactive decision support
system that aids in solving multiple objective programming
problems subject to crisp and fuzzy constraints. One part
of the system is an extension of a well-known fuzzy sets
approach evaluating possible solutions by their degrees of
membership to objectives and constraints. Delgado et al.
(1990), Cadenas and Verdegay (2000) and Verdegay (1984)
discussed fuzzy mathematical programming problems with
fuzzy objective coefficients. In their approach the kth
objective l-constraint approach were used for solving fuzzy
multi-objective problems with fuzzy objective coefficients.
Chanas (1983) presented the possibility of the identification
of a complete fuzzy decision in fuzzy linear programming
by using the parametric programming technique. This
parametric approach can analytically describe the set of
solutions incorporating the whole range of possible values
of the fuzzy decision and provides some information on
other alternatives close to the optimal solution.
Fuzzy set theory is also widely used in solving multi-

objective optimization for mechanical systems and struc-
ture design problems. Wang and Wang (1985) used a level-
cuts approach to solve non-linear, structural problems with
fuzzy constraints (and crisp objectives). Rao (1987 a–c)
used explicit, continuous membership functions for fuzzy
constraints and fuzzy objectives to optimize mechanical
systems and structure design; membership functions for the
objective function and for the constraints are aggregated
into a single, standard optimization problem. Rao’s
method of l-formulation yields a unique compromise
solution with maximum overall satisfaction for fuzzy
optimum structural design. Furthermore, he introduced
the a-cut approach, which provides the results in a
parametric form for multi-objective problems. Xu (1988)
also transformed problems with fuzzy constraints into
standard optimization problems with a slightly different
format; the final solution is then determined with a bound-
constrained optimization approach. Despite the significant
amount of existing work in fuzzy optimization, there are
few investigations on the use of fuzzy theory to determine
feasible points of constrained problems.
The fuzzy decision-making and fuzzy logic are also

useful tools to solve the multi-objective design problems.
Shih and Chang (1995) presented a global criterion method
by fuzzy logic to obtain solutions for multi-criteria crisp or
fuzzy structural design, which is not only capable of
acquiring the non-dominated solution, but also capable of
achieving the highest degree of satisfactory design.
Loetamonphong et al. (2002) studied the optimization
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problems that have multiple objective functions subject to
a set of fuzzy relation equations. Huang (1997) presented a
fuzzy multi-objective optimization decision-making meth-
od, which can be used for the optimization decision-
making on two or more objectives of system reliability.

Formulating a fuzzy optimization problem entails
developing membership functions for each constraint and
each objective. A relatively high value for a membership
function of a constraint set indicates a near or definite
membership in the set, i.e., a high likelihood of the
constraint satisfaction. Therefore, the goal of a fuzzy
optimization problem is to maximize all membership
functions simultaneously. Most often, this is done using a
formulation similar to the min–max formulation for
multi-objective optimization (Baykasoglu and Sevim,
2003). In terms of fuzzy optimization, both of the
objective functions and constraint functions are treated
as modified constraints. Consequently, fuzzy optimization
lends itself to multi-objective optimization where addi-
tional objective functions are modeled as constraints.
However, in many fuzzy multi-objective optimization
models, the conflicting degree among objectives and the
designer’s preferences are neglected to some extent. How to
model and resolve the conflicts is still an ongoing research
topic.

In this work, our purpose is to develop an interactive
multi-objective optimization model based on fuzzy theory
to decrease the conflicting degree among design objectives
and maximize the degree of constraint satisfaction.
3. Interactive fuzzy multi-objective optimization model

3.1. Pareto solution

A general multi-objective optimization problem is to find
the design variable set X that optimizes a vector of
objective functions f ðX Þ ¼ ff 1ðX Þ; f 2ðX Þ; . . . ; f nðX Þg over
the feasible design space. The problem is modeled as
follows:

Minimize f ðX Þ ¼ ff 1ðX Þ; f 2ðX Þ; . . . ; f nðX Þg;

Subject to hiðX Þ ¼ 0; i ¼ 1; 2; . . . ; I ;

gjðX Þp0; j ¼ 1; 2; . . . ; J;

Xu
kXX kXX l

k; k ¼ 1; 2; . . . ;K ;

(1)

where f 1ðX Þ; f 2ðX Þ; . . . ; f nðX Þ are the individual objective
functions. hiðX Þ and gjðX Þ are equality and inequality
constraint functions, respectively. Xu

k and X l
k are the lower

and upper bounds of X k, respectively.
The Pareto optimal solution is defined as follows

(Tappeta and Renaud, 2001).
A vector of X � is a Pareto optimal if there exists no

feasible vector X which would decrease some objective
function without causing a simultaneous increase in at least
one objective function. Mathematically, the Pareto optimal
solution is expressed as below.
A design vector X � is a Pareto optimum if and only if,
for any X and i,

f jðX Þpf jðX
�Þ; j ¼ 1; 2; . . . ; n; jai ) f iðX ÞXf iðX

�Þ.

(2)

In general, there exist a number of Pareto optimal
solutions to a multi-objective optimization problem. Thus,
the designer must select a compromise or satisfying
solution from the Pareto optimal solution set according
to his or her preference. It can be shown that if X 0 is a
global optimal solution, then X 0 is also a Pareto optimal
solution.
3.2. Finding the ideal value of each objective function

The optimization model for finding the ideal value of
each objective is given by

Minimize f tðX Þ; t ¼ 1; 2; . . . ; n;

Subject to hiðX Þ ¼ 0; i ¼ 1; 2; . . . ;M ;

gjðX Þp0; j ¼ 1; 2; . . . ;N;

X u
kXX kXX l

k; k ¼ 1; 2; . . . ;P;

(3)

The solution to the above model is the ideal solution of
each objective function, X 0i, and the objective function at
the ideal solution is then given by

f u
t ¼ f tðX

0
tÞ ðt ¼ 1; 2; . . . ; nÞ, (4)

where f u
i is the ideal value of ith objective function.
3.3. Establishing fuzzy interactive multi-objective

optimization model

3.3.1. Metric function

Let X be the ideal solution, and f u
i be the ideal value of

ith objective function, then the metric function which
evaluates X is defined as (Shih and Chang, 1995)

dðX Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

f iðX Þ � f u
i

f u
i

����
����a

s
, (5)

where a can be selected from the universe ½1;þ1�. a ¼ 2 is
usually used. Minimizing this metric function results in a
commonly encountered min–max method (Shih and
Chang, 1995), since for this metric the optimum X can be
defined as

F ðX Þ ¼ min
x

max
i

f iðX Þ � f u
i

f u
i

����
����. (6)

The degree of importance of each objective criterion can
be incorporated in metric function with the following
additional constraints

oi

f iðX Þ � f u
i

f u
i

����
����pe, (7)
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and

Xn

i¼1

oi ¼ 1, (8)

where oi represents the degree of importance of the ith
objective criterion, and e represents the allowable degree of
deviation from the ideal solution for objectives (the ideal
value is 0).

3.3.2. Establishing fuzzy multi-objective optimization model

The scenario of a multi-objective optimization problem
itself is subjective and can be modeled by fuzzy decision-
making due to the conflicting objectives and the nature of
human decision on conflict resolution.

In fuzzy set theory, membership functions are estab-
lished to characterize the fuzziness of fuzzy sets. The
membership function values vary between zero and one.
The elements in a fuzzy set with membership value 1 reflect
that they are in the core of the fuzzy set. The membership
function value is zero for the element outside the fuzzy set.
The elements with membership function value between
zero and one construct the boundary of the fuzzy set. In
order to use fuzzy set theory to solve the optimization
problems, the fuzzy constraints have to be formed first.
These constraints originated from the given crisp con-
straints by relaxing the bounds. A corresponding member-
ship function is established to describe the fuzziness of each
constraint. In addition to fuzzy constraints, fuzzy objective
functions are also needed. Each objective function is
converted into a pseudo-goal. A membership function is
associated with the pseudo-goal. The pseudo-goal has
membership function value one if the design is located at
the optimum from the single-objective optimization pro-
blem with the same constraints for the multi-objective
design. It is obvious that solving the multi-objective
optimization problem is essential to simultaneously make
all membership function values of the pseudo-goals as large
as possible.

The proposed procedure is summarized as follows.
(1) Finding the minimal feasible value and maximum

feasible value of each objective function:

mi ¼ min
1plpn

f iðX
�
l Þ ¼ f iðX

�
i Þ, (9)

Mi ¼ max
1plpn

f iðX
�
l Þ, (10)

where mi and Mi are the minimum feasible value and
maximum feasible value of ith objective function.

(2) Establishing the membership function of each fuzzy
objective function: Most applications that involve fuzzy set
theory tend to be independent of the specific shape of the
membership functions. Various types of membership
functions are used, such as a linear membership function,
a tangent type of a membership function, an interval linear
membership function, an exponential membership func-
tion, inverse tangent membership function, logistic type of
membership function, and concave piecewise linear mem-
bership function. Example problems have suggested that
varying the nature of the membership function does affect
the final solution, but the differences between the various
outcomes are not substantial (Chen, 2001).
The fuzzy objective stated by a designer can be

quantified by eliciting a corresponding membership func-
tion using the following trapezoidal representation:

m ~f i
ðX Þ ¼

1; f iðX Þpmi;

Mi � f iðX Þ

Mi �mi

; miof iðX ÞoMi;

0; f iðX ÞXMi:

8>>><
>>>:

(11)

(3) Establishing the membership function of each fuzzy
constraint function: In the traditional optimization, the
design feasibility is considered as either satisfied or
violated. For many engineering applications, the transition
from infeasibility to feasibility is not obvious, because of
not only the vague information in the design constraints,
but also the factors that can affect the design scenario, such
as designer’s knowledge, manufacture precision, and
material properties. For this reason, the constraints are
modeled in such a way that the transition from infeasible
state to feasible state is smooth and gradual with
subjectivity. For simplicity, a linear membership function
is used to reflect the smooth transition. Other types of the
membership function can also be used depending on the
problems under consideration. The linear membership
function is given by

m ~gj
ðX Þ ¼

1; gjðX Þpbj ;

½ðbj þ djÞ � gjðX Þ�

dj

; bjogjðX Þobj þ dj ;

0; gjðX ÞXbj þ dj ;

8>>>><
>>>>:

(12)

where bj and bj þ dj form an allowable fuzzy transition
interval for the jth inequality constraint.
(4) Additional constraints: The ideal value of the degree

of objective deviation in additional constraints is 0.
Considering the collaborative relationship among objec-
tives and their membership functions, the additional
constraints are introduced by the following equality
constraints (Shih and Chang, 1995):

oi

f iðX Þ � f u
i

f u
i

����
���� ¼ oj

f jðX Þ � f u
j

f u
j

�����
�����; i; j ¼ 1; 2; . . . ; n; iaj

(13)

and

Xn

i¼1

oi ¼ 1. (14)

The goal of adding additional constraints into the multi-
objective optimization model is to make collaboration
among the objectives. By doing so, not only the degree of
importance of each objective is considered, but also the
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deviation between each objective and its ideal value can be
minimized.

(5) Establishing fuzzy multi-objective optimization mod-
el: The fuzzy multi-objective optimization model can be
developed as follows:

Maximize l

Subject to lpm ~f i
ðX Þ; i ¼ 1; 2; . . . ; n;

lpm ~hi
ðX Þ; i ¼ 1; 2; . . . ; I ;

lpm ~gj
ðX Þ; j ¼ 1; 2; . . . ; J;

oi

f iðX Þ � f u
i

f u
i

����
���� ¼ oj

f jðX Þ � f u
j

f u
j

�����
�����;

i; j ¼ 1; 2; . . . n; iaj;Pn
i¼1

oi ¼ 1;

1XlX0;

Xu
kXX kXX l

k; k ¼ 1; 2; . . . ;K :

(15)

3.4. Selecting the weighting coefficients oi

Generally, the degrees of importance of individual
objectives are different, which are decided by many factors,
such as product usage, market orientation, designer’s
preferences, and so on. The relative importance of
objectives can be classified into the following two
categories.

(1) Objective relative importance, which is determined by
the objective requirements of product design, including the
influence factors coming from the product itself, such as
use, performance, and so on.

(2) Subjective relative importance, which is proposed by
the designers based on their preferences and is decided by
the subjective factors, such as designer’s preferences,
product market orientation, etc.

The relative importance has a very important influence
on modeling and solving multi-objective optimization
problems.

The weighting coefficient oi can be used to represent the
design degree of importance corresponding to the ith
objective criterion. The selection of oi is highly subjective
and correlated with other ojðiajÞ. Usually, oi is distrib-
uted in a small space. The normal-distribution-type
membership function of oi, as shown in Fig. 1, is adopted
ai
O

�i

�(
�

i)

Fig. 1. Membership function of weighting coefficient representing the

relative importance of the ith criterion.
and is given by

mðo1Þ ¼ e�kðo1�a1Þ
2

,

mðo2Þ ¼ e�kðo2�a2Þ
2

,

� � � � � �

mðon�1Þ ¼ e�kðon�1�an�1Þ
2

,

mðonÞ ¼ 1�
Xn�1
i¼1

mðoiÞ, ð16Þ

where k40.
Given a threshold l (l can be obtained by fuzzy synthetic

evaluation), a set of oi, which makes mðoiÞXl be satisfied,
can be selected. The greater l is, the stricter the selection of
the oi is. On the contrary, the smaller l is, the softer the
selection is; a softer selection will benefit the interactive
collaboration among the objectives.
The changing process of l is a process of selecting

appropriate o set. The process is an adjustment process on
the design parameters, and this adjustment can improve the
collaborative relationships among the objectives.
It is noted that different optimization results can be

obtained by selecting different l from ½0; 1�. There must
exist one l� that can make the process reach or
approximate the global optimum under the proposed
model. The interactive optimization process continues
while automatically selecting different l and oi. Then the
Pareto solutions can be obtained with different l and oi on
the base of the design requirements. To determine where to
stop the search process, in each iterative calculating
process, the trade-off matrix and the collaborative sensi-
tivity at the Pareto solution should be analyzed. The
iterative optimization process continues only if the Pareto
sensitivity of current Pareto solution is satisfied.
3.5. Collaborative sensitivity analysis

The sensitivity analysis at a given Pareto point provides
the variation in one objective given the variation in another
objective. The purpose of collaborative sensitivity analysis
is to minimize the degree of conflict among objectives, and
the analysis results can be used as stopping criteria for the
optimization process. It is noted from the discussion in
Section 3.1 that the favorable optimal solution that is
solved by the collaborative optimization model is a Pareto
optimum solution. It is necessary to analyze the collabora-
tive sensitivity (i.e., Pareto sensitivity f iðX Þ=f jðX Þ) at a
given favorable optimum solution. That is to say, the
change in one objective will result in the change in other
objectives on the Pareto curve (or surface) along a given
direction. To differentiate f iðX Þ with respect to f jðX Þ at X ,
one can conduct a Pareto sensitivity analysis along the
feasible descent direction of the other objective functions.

df i ¼ dTf i
dX ¼

qf i

qx1
;
qf i

qx2
; . . . ;

qf i

qxm

� �T
, (17)
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Solve the fuzzy optimization model using
suitable algorithm

Stop

Calculate  fi 
max and  fi 

min, i=1,2, ..., n 

Set new design preference

Select new weighting
coefficients �
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Fig. 3. Flow diagram of fuzzy interactive multi-objective optimization.
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dX ¼ ½dTf i
df i
��1dTf i

df i
, (18)

df i

df j

¼ dTf i
½dTf j

df j
��1df j

. (19)

This sensitivity information can be represented in a matrix
form, called the trade-off matrix (Tappeta and Renaud,
2001; Tappeta et al., 2000).

T ¼

1
df 2

df 1

� � �
df n

df 1

df 1

df 2

1 � � �
df n

df 2
� � � � � � � � � � � �

df 1

df n

df 2

df n

� � � 1

2
6666666664

3
7777777775
. (20)

The trade-off matrix represents the fact that the objective
functions are coupled with each other. The trade-off
between any two objective functions exists only the
corresponding off-diagonal element in the trade-off matrix
is negative, and under this condition it is possible to
improve the objectives. The ith row of trade-off matrix
represents the trades-offs required for a possible improve-
ment in the ith objective. The magnitude of the trade-off is
given by the absolute value of the corresponding off-
diagonal element. As illustrated in Fig. 2, when two
objectives are minimized simultaneously, if jdf i=df jj is very
small at a given Pareto optimum solution Q1, then it
represents that f i is satisfied, and the variation of f j has
smaller influence on f i. At the given Pareto optimum
solution Qn, if jdf i=df jj is large, then it represents that f i is
not satisfied, and the change of f j has a large influence on
f i. Therefore, based on the trade-off between f iðX Þ and
f jðX Þ, the objectives can be improved along the feasible
descent direction further.

The flow chart of the proposed method is given in Fig. 3.
As shown in Fig. 3, when the design preference or the

threshold l changes, so do the weighting coefficients o.
This will result in the adjustment of design variables at the
same time. Because this adjustment is processed under the
same design constraints, the change of one variable will
result in the changes in the other variables. This is an
interactive negotiation process among design parameters.
*

*
Pareto solutions

fi(X)

f j(
X

)

Q1

Q2

Qn

O

*

*

Fig. 2. Pareto solution in a problem where two objective criteria are

minimized.
4. Examples

Two examples are used to demonstrate the proposed
method in this section.

4.1. Example 1—Simply supported I-beam design

A simply supported I-beam is shown in Fig. 4 (Hajela
and Shih, 1990). The objective is to select design variables
X ðx1; x2; x3;x4Þ

T to minimize both the total cross-sectional
area and its deflection at the midspan under the applied
loads P and Q. The length of the beam is L ¼ 200 cm, the
forces are P ¼ 600 kN and Q ¼ 50 kN, the Young’s
modulus of elasticity is E ¼ 2� 104 kN=cm2, and the
permissible bending stress of the beam material is
sb ¼ 16 kN=cm2.
Two objective functions are given below.
The cross-sectional area is f 1ðX Þ ¼ 2x2x4 þ x3

ðx1 � 2x4Þ, and the vertical deflection at the midspan is
f 2ðX Þ ¼ ðPL3=48EIÞ, where

I ¼
x3ðx1 � 2x4Þ

3
þ 2x2x4½4x2

4 þ 3x1ðx1 � 2x4Þ�

12
.

The constraint functions are given below.
The stress constraint is expressed by

MY

ZY

þ
MZ

ZZ

psb,

where MY , MZ are the maximal bending moments in the Y

and Z directions, respectively.
The geometric constraints are given by

10px1p80,

10px2p50,
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x3
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Fig. 4. Definition of design variables and loading for I-beam.

Table 1

The ideal value of sub-objective

ðf 1ðX Þ; f 2ðX ÞÞ ðx1;x2;x3; x4Þ

ðmin f 1; f 2Þ ð127:4124; 0:0615Þ ð60:4765; 41:4464; 0:9000; 0:9000Þ
ðf 1;min f 2Þ ð850:0000; 0:0059Þ ð80:0000; 50:0000; 5:0000; 5:0000Þ
ðmax f 1; f 2Þ ð850:0000; 0:0059Þ ð80:0000; 50:0000; 5:0000; 5:0000Þ
ðf 1;max f 2Þ ð528:1008; 0:3286Þ ð15:6202; 50:0000; 5:0000; 5:0000Þ
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0:9px3p5,

and

0:9px4p5.

The multi-objective optimization problem is then for-
mulated as

Minimize ðf 1; f 2Þ;

f 1ðX Þ ¼ 2x2x4 þ x3ðx1 � 2x4Þ;

f 2ðX Þ ¼
PL3

48EI
;

I ¼
x3ðx1 � 2x4Þ

3
þ 2x2x4½4x2

4 þ 3x1ðx1 � 2x4Þ�

12
;

Subject to
180000x1

x3ðx1 � 2x4Þ
3
þ 2x2x4ð4x2

4 þ 3x1ðx1 � 2x4ÞÞ

þ
15000x2

ðx1 � 2x4Þx
3
3 þ 2x4x3

2

p16;

10px1p80;

10px2p50;

0:9px3p5;

0:9px4p5:

(21)

The ideal values of the objectives are listed in Table 1.
The optimal results solved through the fuzzy interactive

collaborative optimization model are listed in Table 2 for
l ¼ 1; 0:9; 0:8; 0:7; 0:6.

After 5 optimization iterations, the weighting coefficients
are away from the centers while still meet the design
requirements. Though the off-diagonal elements in the
trade-off matrix is negative, its absolute value (the
magnitude of the trade-off) is very small ð4:4437e� 005Þ.
Therefore, the solution meets the design requirements, and
the process terminates.

The optimization results from Shih and Chang (1995)
are also listed in Table 3 for comparison. From the results
we see that only the deviation between objectives and their
ideal values is taken into account, but the degree of
importance corresponding to the objective criterion is
neglected. In our model, however, not only the degree of
importance corresponding to the objective criterion and the
trade-off among the objectives, but also the deviation
between objectives and their ideal values, are considered.
Therefore, the result solved by the fuzzy interactive
optimization based on Pareto solution are more realistic
to engineering applications.
4.2. Example 2—gear box design

A gear box (Kupapatz and Azarm, 2001) was originally
formulated as a single-objective optimization problem. For
the purpose of demonstration, the problem is adapted to a
multi-objective optimization problem by converting two
original constraints into objective functions. The optimiza-
tion model is shown as follows:

Minimize F ðX Þ ¼ ff 1ðX Þ; f 2ðX Þ; f 3ðX Þg;

X ¼ ½x1;x2;x3;x4;x5;x6;x7�
T;

Subject to g1ðX Þ ¼ 27x�11 x�22 x�33 � 1p0;

g2ðX Þ ¼ 397:5x�11 x�22 x�23 � 1p0;

g3ðX Þ ¼ 1:93x�12 x�13 x3
4x
�4
6 � 1p0;

g4ðX Þ ¼ 1:93x�12 x�13 x3
5x
�4
7 � 1p0;

g5ðX Þ ¼ x2x3 � 40p0;

g6ðX Þ ¼ x1x
�1
2 � 12p0;

g7ðX Þ ¼ 5� x1x
�1
2 p0;

g8ðX Þ ¼ 1:9� x4 þ 1:5x6p0;

g9ðX Þ ¼ 1:9� x5 þ 1:5x7p0;

g10ðX Þ ¼ A1=B1 � 1300p0;

g11ðX Þ ¼ A2=B2 � 850p0;

2:6px1p3:6;

0:7px2p0:8;

17px3p28;

7:3px4p8:3;

7:3px5p8:3;

2:9px6p3:9;

5:0px7p5:5;

(22)

where

f 1ðX Þ ¼ 0:7854x1x2
2ð10x2

3ð10x2
3=3þ 14:9334x3

� 43:0934Þ � 1:508x1ðx
2
6 þ x2

7Þ

þ 7:4777ðx3
6 þ x3

7Þ þ 0:7854ðx4x
2
6 þ x5x

2
7Þ,
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Table 3

The optimization results from Hajela and Shih (1990)

o ¼ ðo1;o2Þ X ¼ ðx1;x2; x3; x4Þ f ðX Þ ¼ ðf 1; f 2Þ

1 (0.45, 0.55) (79.99, 49.99, 0.90, 2.390) (307.53, 0.0127)

2 (0.55, 0.45) (80.00, 50.00, 0.90, 2.083) (276.55, 0.0143)

3 (0.65, 0.35) (79.99, 50.00, 0.90, 1.790) (247.88, 0.0163)

4 (0.80, 0.20) (80.00, 39.79, 0.90, 1.725) (206.14, 0.0205)

Table 2

The optimum results with different threshold and weighting coefficients

l o ¼ ðo1;o2Þ b X ¼ ðx1;x2;x3; x4Þ f ðX Þ ¼ ðf 1; f 2Þ

1 1.0 (0.40, 060) 0.9718 (80.0000, 26.1303, 1.4637, 4.7086) (349.3860, 0.0128)

2 0.9 (0.42, 0.58) 0.9725 (80.0000, 49.9860, 1.2242, 2.3464) (326.7680, 0.0126)

3 0.8 (0.45, 0.55) 0.9723 (80.0000, 50.0000, 1.1312, 2.2856) (313.8876, 0.0130)

4 0.7 (0.50, 050) 0.9728 (80.0000, 35.7683, 1.0355, 3.0966) (297.9494, 0.0138)

5 0.6 (0.55, 0.45) 0.9739 (80.0000, 50.0000, 0.9000, 2.0820) (276.4525, 0.0143)

Table 4

The physical meaning of decision variables and objective and constraint functions

x1 Gear face width (cm) g2ðX Þ Contact stress of teeth

x2 Teeth module (cm) g3ðX Þ Transverse displacement of shaft 1

x3 Number of teeth of pinion g4ðX Þ Transverse displacement of shaft 2

x4 Distance between bearing 1 (cm) g5ðX Þ Generated torque constraint

x5 Distance between bearing 2 (cm) g6ðX Þ Generated torque constraint

x6 Diameter of shaft 1 (cm) g7ðX Þ Generated torque constraint

x7 Diameter of shaft 2 (cm) g8ðX Þ Generated torque constraint

f 1ðX Þ Volume of the gear box ðcm3Þ g9ðX Þ Generated torque constraint

f 2ðX Þ Stress of shaft 1 g10ðX Þ Stress of shaft 1

f 3ðX Þ Stress of shaft 2 g11ðX Þ Stress of shaft 2

g1ðX Þ Bending stress of teeth

Table 5

The optimum results with different threshold and weighting coefficients

l o ¼ ðo1;o2;o3Þ b X ¼ ðx1; x2; x3;x4;x5; x6;x7Þ f ðX Þ ¼ ðf 1; f 2; f 3Þ

1 1 (0.30, 0.30, 0.40) 0.9587 (3.58, 0.70, 23, 7.36, 8.14, 3.45, 5.40) (4361.3, 1004.5, 797.4)

2 0.9 (0.35, 0.38, 0.27) 0.9606 (3.52, 0.70, 24.8, 25, 8.20, 3.62, 5.37) (4588.8, 870.0, 810.8)

3 (0.35, 0.35, 0.30) 0.9625 (3.60, 0.71, 20, 7.93, 7.96, 3.36, 5.41) (3765.5, 1089.3, 793.0)

4 0.8 (0.40, 0.25, 0.35) 0.9618 (3.55, 0.71, 24, 7.68, 8.19, 3.79, 5.48) (4821.6, 757.7, 762.9)

5 (0.40, 0.28, 0.32) 0.9622 (3.58, 0.71, 18, 8.24, 8.23, 3.61, 5.40) (3425.0, 879.8, 797.6)

6 0.7 (0.45, 0.30, 0.25) 0.9632 (3.57, 0.70, 20, 8.17, 8.00, 3.53, 5.45) (3762.0, 939.8, 775.7)

7 (0.45, 0.25, 0.30) 0.9601 (3.54, 0.70, 21, 7.96, 8.16, 3.69, 5.45) (4001.6, 822.1, 775.7)

8 0.6 (0.50, 0.20, 0.30) 0.9706 (3.51, 0.70, 20, 7.89, 7.99, 3.89, 5.41) (3812.9, 702.0, 793.0)

H.-Z. Huang et al. / Engineering Applications of Artificial Intelligence 19 (2006) 451–460458
f 2ðX Þ ¼ A1=B1,

f 3ðX Þ ¼ A2=B2,

A1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð745x4x�12 x�13 Þ þ 1:69� 107

q
,

B1 ¼ 0:1x3
6,

A2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð745x5x�12 x�13 Þ þ 1:575� 108

q
,

and

B2 ¼ 0:1x3
7.

The physical meaning of design variables and objective
and constraint functions are given in Table 4.
The optimal results obtained through fuzzy interactive

collaborative optimization model are listed in Table 5, for
l ¼ 1; 0:9; 0:8; 0:7; 0:6, respectively.
After 7 optimization iterations, the optimal solution with

the minimal trade-off among the objectives is obtained. At
this time, the corresponding off-diagonal elements are
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negative; even though this suggests that the collaborative
relationships among objectives could be improved further,
the value of l could not be loosened any more.

5. Conclusions

Product design usually involves a complicated multi-
objective optimization process. Many efficient solutions
can be obtained due to the influence of subjective and
objective factors in a design process. The following
conclusions are drawn based on preceding sections.

(1) A Pareto optimal set can be obtained from the
proposed method. The changing process of l is a process to
select appropriate o set. If l decreases, the limitation of o
would be loosened. This will produce a set of Pareto
solutions among which an optimal solution can be selected
through analyzing the trade-off matrix and collaborative
sensitivity.

(2) The proposed method can generate the maximum
degree of satisfaction and the minimum distance between
each of the objectives and their ideal solutions, both the
design degree of importance corresponding to the objective
criterion and the deviation between the objectives and their
ideal values are taken into account.

(3) The process of selecting l and o is a self-adjustment
process of the design variables, and this adjustment can
improve the collaborative relationships among the objec-
tives. The interactive collaboration among the objectives is
realized through the collaborative sensitivity analysis at the
Pareto solutions during the optimization process.

(4) Compared with the crisp optimization, the proposed
interactive fuzzy multi-objective optimization method
offers a greater threshold degree for interactive collabora-
tion among the objectives by fuzzy processing of the
objectives and constraints.
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