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Abstract: This paper proposes a multi-objective disassembly planning approach with an ant
colony optimization algorithm. The mechanism of ant colony optimization in disassembly
planning is discussed, and the objectives to be optimized in disassembly planning are analysed.
In order to allow a more effective search for feasible non-dominated solutions, a multi-
objective searching algorithm with uniform design is investigated to guide the ants searching
the routes along the uniformly scattered directions towards the Pareto frontier; based on the
above searching algorithm, an ant colony optimization algorithm for disassembly planning is
developed. The results of a case study are given to verify the proposed approach.

Keywords: disassembly planning, ant colony optimization, multi-objective, uniform design

1 INTRODUCTION

As an important step in the product life cycle,
the disassembly process recycles parts from outdated
or discarded products for reuse, remanufactur-
ing, or disposal for environmental protection pur-
poses. Disassembly planning focuses on disassembly
sequence planning, which aims to achieve a feasible
disassembly sequence with minimal cost or time. An
effective disassembly planning approach can not
only provide a solution for disassembling the product
successfully and economically, it can also help the
designer to consider product life cycle issues by
focusing on the product disassembly cost or time in
the early design stage. In recent years, with the
requirement for life cycle-based product develop-
ment, investigations using the effective disassembly
planning approach have attracted much research
attention. This paper presents a multi-objective dis-
assembly planning approach with an ant colony
optimization (ACO) algorithm, to further enhance

the performance of current disassembly planning
approaches.

The paper is organized as follows: section 2 is a
review of current disassembly planning works; sec-
tion 3 discusses the mechanism of ACO; section 4
proposes a multi-objective searching algorithm with
uniform design; based on section 4, section 5 dis-
cusses the application of ACO for disassembly plan-
ning with multiple search directions; section 6
presents a case study; finally, a conclusion is given in
section 7.

2 LITERATURE REVIEW

In recent years, much research attention has been
focused on disassembly planning, and a variety of
approaches have been proposed. Guo et al. [1] pro-
posed a modularization-based disassembly sequence
planning approach to resolve the problem resulting
from a large number of parts in a product, where the
hierarchy network graph of the product is created,
and the precedence constraints related to the
hierarchy network graph are used to generate the
disassembly sequence. Chung and Peng [2] proposed
an integrated approach to selective-disassembly
sequence planning, to get a partial disassembly
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sequence where the parts or components are selected
for recycling or reuse. This approach can generate
a feasible and practical sequence for selective dis-
assembly using two matrices – a subassembly divi-
sion precedence matrix and a part disassembly route
matrix – to ensure both batch disassembly of com-
ponents and tool accessibility to fasteners. Torres
et al. [3] proposed a method to represent the hier-
archical relationships among components and/or
assemblies of the product. Based on this representa-
tion, an algorithm is established to generate a partial
non-destructive disassembly sequence of a product.
Das and Naik [4] proposed a descriptive model
with a structured format for creating, documenting,
and evaluating a disassembly process plan. In addi-
tion, the model can transmit the product knowledge
from the original product manufacturer to the con-
sumer and the end-of-life disassembler via the dis-
assembly bill of materials. Dong et al. [5] proposed an
approach to generate the disassembly sequence from
a hierarchical attributed liaison graph representation
of an assembly automatically, by decomposing the
assembly into subassemblies recursively. The graph
is built according to knowledge of engineering,
design, and demanufacturing; for each layer of the
graph, the preferred subassembly is selected in terms
of mobility, stability, and parallelism. Using the
graph, the proposed approach can find the most
feasible and practical sequence. Veerakamolmal and
Gupta [6] proposed a case-based reasoning (CBR)
approach to disassembly process planning, with a
method to initialize a case memory and to operate a
CBR system. The approach can derive a feasible dis-
assembly process quickly by retrieval, reuse, and
revision of the product disassembly process plan.

The above references present the different dis-
assembly planning approaches that can provide fea-
sible and practical disassembly plans with different
areas of focus. However, these approaches do not
adopt the optimization search algorithm, so they can
not easily find the optimal or near-optimal solutions.

In addition to the above works, other disassembly
planning approaches that use some optimization
algorithms are discussed as follows. Andres et al. [7]
proposed a two-phase approach to determine the
optimal disassembly sequence with the goal of
minimizing machine acquisition costs. A metaheur-
istic algorithm named GRASP is used to search for the
disassembly sequence for each product that leads to
the minimum number of intercellular movements.
Rai et al. [8] presented a Petri net model to search a
partial reachability graph. With the heuristic func-
tion, the proposed approach can generate a feasible
and optimal disassembly sequence based on the fir-
ing sequence of transitions of the Petri net model. In
the above two approaches, only one objective – such
as the machine acquisition costs – was considered,

and the other objectives in the disassembly process
were ignored. Because disassembly planning is a
typical multi-objective optimization problem, the
above approaches are therefore not suitable for
finding optimal or near-optimal solutions consider-
ing different objectives in the disassembly process.

As an important method, the genetic algorithm has
been widely used in assembly planning [9–12]; in the
mean time, it is also used in disassembly planning to
find the optimal disassembly sequence. Kongar and
Gupta [13] proposed a genetic algorithm approach
to disassembly sequence planning, with the objective
of minimizing the number of direction changes,
disassembly method changes, and the groups of
identical material components. Because assembly
planning or disassembly planning are highly con-
strained problems, when using a genetic algorithm-
based approach the solution sometimes can not be
converged to a global optimal or near-global optimal
solution, or even a feasible solution can not be found
in an evolution trial due to the precedence con-
straints when a product is complex and composed of
many parts.

Recently, a new probabilistic evolutionary optimi-
zation algorithm – ant colony optimization (ACO) –
which simulates the cooperative work of an ant col-
ony for searching the shortest path from the nest to
the food source, has been given attention and has
been used in some engineering optimization pro-
blems, such as the just-in-time (JIT) sequencing
problem [14], job-shop scheduling [15], etc. In addi-
tion, some new research works applying ACO in
assembly and disassembly planning have been
reported. Wang et al. [16] proposed an ACO approach
in assembly sequence planning; in this work, only
one objective, the number of orientations during the
disassembly process, is considered as the heuristic
information to guide the ants moving to the next
node; how the other objectives in assembly planning
affect the route selection of the ants was not investi-
gated. For an ACO approach used in assembly or
disassembly planning with multiple objectives, Failli
and Dini [17] proposed using ACO in assembly
planning. In this approach, two items of heuristic
information – the number of gripper changes and
the number of orientation changes, which are two
objectives considered in assembly planning – are
used to guide the moving of the ants. The above two
pieces of heuristic information are given a constant
value in ACO according to gripper change and
orientation change, thus the directions for guiding
the ants’ movements are fixed. McGovern and
Gupta [18] proposed an approach using ACO for a
disassembly line balancing problem. In this
approach, several objectives are considered, but only
one objective – the measure of balance – is used as
the heuristic information for ACO calculations and
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trail selection; the other objectives are only con-
sidered at the end of each cycle to update the
best overall solution. In the above-mentioned ACO
approaches for assembly or disassembly planning
with multiple objectives, the ants select the route by
evaluating the heuristic value according to the
objectives. Although the above ACO approaches have
had some success in assembly or disassembly plan-
ning, the approaches fixed the search directions used
to guide the ants’ movements, therefore more trade-
off solutions for multiple objectives could not be
easily found. As disassembly planning is a typical
multi-objective optimization problem, mechanisms
by which the ACO approach can be used in dis-
assembly planning to effectively guide the ants to
search and find more trade-off solutions, to provide
the decision maker with more choice, need to be
further investigated.

3 PRINCIPLE OF ACO

ACO is the simulation of the behaviour of a colony of
ants that are working cooperatively to search and find
the shortest path from the nest to the food source. As
a key factor in the searching process, pheromone is a
chemical substance that is deposited by the ants
when they move along the path, and it will be used by
the ants to exchange the information. The ants prefer
to choose the shorter path, the shorter path will
attract more ants to visit it, and thereby more pher-
omone is deposited on the path by the ants. Mean-
while, the pheromone on all paths is decreased
through evaporation due to the time that has passed.
The probability that subsequent ants choose the path
is based on the amount of pheromone deposited on
the path; therefore, the shorter path with a greater
amount of pheromone will have more chance of
being selected and thus attract more and more ants
to visit it subsequently. As a result, the shortest path
from the nest to the food source can be found by the
ant colony.

In ACO, the probability that ant z will select the
next node j is given as

Pzði; jÞ ¼
tði; jÞ½hði; jÞ�lX

s2AllowedzðiÞ
tði; sÞ½hði; sÞ�l

; if j 2 AllowedzðiÞ

0; otherwise

8>><
>>:

ð1Þ
where, t(i, j) is the quantity of pheromone deposited
on the edge from node i to node j. h(i, j) is the
heuristic information corresponding to the edge from
node i to node j. l is the parameter that determines
the relative importance of t(i, j) versus h(i, j). Allo-
wedz(i) are the nodes that are allowed to be selected

by ant z when choosing the next node j. In ACO, the
edges with greater t(i, j) and h(i, j) values are the
favourable edges that the ants prefer to choose.

During the search process of ACO, there are two
important rules for updating the pheromone: the
local updating rule and the global updating rule.

Local updating rule

The local updating rule is used for updating the
pheromone level of the edge only when the ants visit
it, and it can be represented by

tði; jÞ ¼ ð1 � aÞtði; jÞ þ at0ði; jÞ ð2Þ
where a is a parameter given in the range [0, 1],
which determines the pheromone volatility on the
edge from node i to node j, and t0(i, j) is the initial
pheromone level on the edge. Through local updat-
ing, the visited edges will loss some amount of their
pheromone, and this can effectively avoid premature
convergence.

Global updating rule

The global updating rule is used for updating the
pheromone level of all the edges after the ants have
finished the tour, and only the edges belonging to the
current global best solution can have extra pher-
omone added. Meanwhile, the evaporation of the
pheromone is performed on all the edges. The global
updating rule can be represented by

tði; jÞ ¼ ð1 � bÞtði; jÞ þ bDtði; jÞ ð3Þ
where b is the pheromone decay parameter given in
the range [0, 1]

Dtði; jÞ ¼
FðgbÞ; if edge ði; jÞ 2 global best solution

0; otherwise

(

F(gb) is the fitness value of the global best solution
found up to now, and the detailed value of F(gb) in
disassembly planning will be given in section 5.

4 MULTI-OBJECTIVE SEARCH DIRECTIONS
WITH UNIFORM DESIGN

In order to apply ACO to deal with the multi-
objective optimization problem in disassembly
planning, this section proposes an algorithm for
building the uniformly scattered searching directions
towards the Pareto frontier, aiming at finding more
non-dominated solutions along the Pareto frontier.

4.1 Non-dominated solutions in the multi-
objective optimization problem

For a multi-objective optimization problem, because
different objectives are usually conflicting, there
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exists a set of solutions in the solution space, in
which no solution is superior to the others according
to each objective. These solutions are usually called
non-dominated solutions, which can be regarded as
the best trade-off solutions in the multi-objective
optimization problem.

The definition of a non-dominated solution can be
given as follows. Given a multi-objective optimiza-
tion problem with n objectives to be minimized:
minimize f1(x), f2(x),. . ., fn(x), X2V; where fi(x)
represents the different objectives, i2{1, 2, . . ., n}, and
V represents the feasible solution space. For two
solutions X1, X2, if

ftðx1Þ< ftðx2Þ; for some t 2 f1; 2; . . . ;ng
ftðx1Þ6 ftðx2Þ; for all t 2 f1; 2; . . . ;ng

�

then solution X2 is dominated by solution X1. In the
feasible solution space V, if there does not exist any
solution that can dominate solution X, then solution
X is called a non-dominated solution.

In the multi-objective optimization problem, a set
of non-dominated solutions form the Pareto frontier.
An example is shown in Fig. 1, where the filled circles
represent the non-dominated solutions that form the
Pareto frontier and the open circles represent the
dominated solutions. This is a two-objective optimi-
zation problem, with the goal of minimizing those
two objectives, i.e. to search for the non-dominated
solutions located along the Pareto frontier.

4.2 Uniform design for building multiple
search directions

In a multi-objective optimization problem, in order
to find more non-dominated solutions for the deci-
sion maker to choose from, the search directions

towards the Pareto frontier need to be expanded
effectively. In this work, an experimental design
method called ‘uniform design’ is used to expand the
search directions.

Uniform design can be used to sample a small set
of points from a given large set of points, so as to
make the sampled points uniformly scattered over
the space of all the given points. The uniform design
method can be described as follows. Suppose there
are n factors, and each factor has k levels, then there
are a total of kncombinations. From the above com-
binations, to select k combinations that are uni-
formly scattered over the space, a uniformmatrix can
be given as follows

Uðn; kÞ ¼ ½Ui; j�k ·n ¼
U11 U12 . . . U1n

U21 U22 . . . U2n

. . . . . . . . . . . .
Uk1 Uk2 . . . Ukn

2
664

3
775 ð4Þ

In equation (4),Ui,j is the level of the factor j in the ith
combination. When k is prime and k>n, then Ui,j

can be concluded as follows [19]

Ui;j ¼ ðisj� 1modkÞ þ 1 ð5Þ
where s is a parameter as shown in Table 1, and it is
determined by the number of factors and the number
of levels per factor.

For a multi-objective optimization problem, in
order to get a set of search directions that are uni-
formly scattered towards the Pareto frontier in the
solution space, the following equation can be used to
conclude the weight vectors that determine the above
search directions.

Wij ¼ UijPj¼n

j¼1

Uij

i 2 ½1; k�; j 2 ½1;n� ð6Þ

In equation (6), n can be regarded as the number of
objective functions, and k as the number of search
directions. Then, the weight matrix

½Wi;j�k ·n ¼
W11 W12 . . . W1n

W21 W22 . . . W2n

. . . . . . . . . . . .
Wk1 Wk2 . . . Wkn

2
664

3
775 ð7Þ

Each row of the above matrix is a weight vector to be
used for building the fitness function. There are a
total of k weight vectors, for each weight vector the
sum of the weights is equal to one. Using the weight
vectors concluded from equation (6), the fitness
functions with k uniformly scattered search direc-
tions can be built. In this work, uniform design will
be used to generate the weight vectors to guide the
search directions of the ant colony, as will be dis-
cussed in section 5.3.

Fig. 1 Non-dominated solutions with multiple search
directions
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5 APPLICATION OF ACO FOR DISASSEMBLY
PLANNING

In this section, the application of ACO with multiple
search directions for disassembly planning is
discussed.

5.1 Geometric precedence feasibility in
disassembly planning

In disassembly planning, the geometric precedence
feasibility is a constraint that the ants must satisfy
during the moving process. This means only the parts
that can be disassembled without any interference
can be chosen by the ants in the next step. In order to
conclude the geometric precedence feasibility, the
interference matrix is used in this work.

The interference matrix was first proposed by Dini
and Santochi [20] in assembly planning, and it can
also be used for precedence feasibility judgment in
disassembly planning. For an assembly consisting of
n parts, an interference matrix Id (d represents the
disassembly direction) can be represented as

Id ¼

P1 P2 . . . Pn

P1

P2

. . .
Pn

P11 P12 . . . P1n

P21 P22 . . . P2n

. . . . . . . . . . . .
Pn1 Pn2 . . . Pnn

2
664

3
775

P1, . . .,Pn are used to represent the n parts in the
assembly, let Pij¼ 1 (i2[1, n], j2[1, n]) if part Pi col-
lides with Pj when Pi is disassembled along the
direction d from the current assembly position;
otherwise, let Pi j¼ 0. Let Pi i¼ 0 because the part
cannot collide with itself. Because Pi j in the �d
direction is equal to Pj i in the þd direction, three
interference matrices IþX, IþY, and IþZ can be used to
conclude the precedence feasibility in a disassembly
sequence: (A Cartesian coordinate system whereby
the six axes –X, –Y, –Z are the principal axes along

which the components are disassembled is used in
this work.)

In the disassembly process, when part Pi is
disassembled before a remaining product assembly
Sm consisting of m parts, then the feasible dis-
assembly direction of Pi to Sm can be derived as
follows: for disassembly direction d, d2{–X, –Y, –Z},
let Pj2 Sm, determine Dd(PiSm)¼

P
Pij (Pij is the ele-

ment in Id). If Dd(PiSm)¼ 0, then direction d is the
feasible disassembly direction of Pi to Sm; otherwise,
direction d is infeasible. If none of the six directions is
feasible, then Pi can not be disassembled at the cur-
rent stage; otherwise, Pi can be disassembled from
the product without collision interference.

5.2 Three objectives in disassembly planning

The purpose of disassembly planning is to derive
a feasible disassembly sequence with the minimal
disassembly cost or disassembly time. The dis-
assembly cost or time can usually be determined by
three objectives: the number of disassembly orienta-
tion changes, tool (gripper) changes, and changes in
disassembly operation types. In the disassembly
process, a change of disassembly orientation or dis-
assembly tool needs time and usually increases the
disassembly cost. Different types of assembly opera-
tions are needed to complete the assembly process –
such as pressing, screwing, riveting, etc.; accordingly,
different disassembly operations are needed for dif-
ferent parts in the disassembly process. Changes of
disassembly operation also require tool changes, and
thus increase the disassembly time and cost. Hence,
in disassembly planning, the above three objectives –
disassembly orientation changes, tool changes, and
changes in disassembly operation types – should be
minimized to reduce the disassembly time and cost.

5.3 Application of ACO with multiple search
directions for disassembly planning

In order to apply ACO in disassembly planning, the
first part in the disassembly sequence can be regar-
ded as the nest of the ant colony, and the last part in
the disassembly sequence can be regarded as the
food source. The shortest path can be equivalent to
the disassembly sequence with the minimal cost or
time; thus in this work, the shortest path can be
represented by the optimum disassembly sequence
considering three objectives: disassembly orientation
change, disassembly tool change, and disassembly
operation change.

In the disassembly planning problem, Pz(i, j) in
equation (1) can be modified and represented as the
probability that ant z selects the disassembly

Table 1 Values of s for different numbers of levels per
factor and different numbers of factors

No. of levels per factor No. of factors s

5 2–4 2
7 2–6 3
11 2–10 7
13 2 5

3 4
4–12 6

17 2–16 10
19 2–3 8

4–18 14
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sequence step from part i to part j in a given search
direction t, and it can be represented by

PzðtÞði;jÞ ¼
ttði;jÞ½htði;jÞ�lX

s2AllowedzðiÞ
ttði;sÞ½htði;sÞ�l

; if j 2AllowedzðiÞ

0; otherwise

8>><
>>:

ð8Þ
where: t2 [1, k]; tt(i, j) is the quantity of pheromone
deposited on the disassembly sequence step from
part i to part j in search direction t; ht(i, j) is the
heuristic value corresponding to the disassembly step
from part i to part j in search direction t, and it can be
represented as

h1ði; jÞ ¼ 1:5 � ðW11f1 þ W12f2 þ W13f3Þ
h2ði; jÞ ¼ 1:5 � ðW21f1 þ W22f2 þ W23f3Þ

. . .
hkði; jÞ ¼ 1:5 � ðWk1f1 þ Wk2f2 þ Wk3f3Þ

9>>=
>>; ð9Þ

where, f1, f2, and f3 are given as

f1 ¼

1; if need orientation change in

disassembly step from part i to part j

0; if no orientation change in

disassembly step from part i to part j

8>>><
>>>:

f2 ¼
1; if need tool change in disassembly

step from part i to part j
0; if no tool change in

disassembly step from part i to part j

8>><
>>:

f3 ¼
1; if need operation change in

disassembly step from part i to part j
0; if no operation change in

disassembly step from part i to part j

8>><
>>:

In equation (9), [Wi,j]k · 3 is the weight matrix
derived from equation (6), which is used for three
objectives: disassembly orientation change, dis-
assembly tool change, and disassembly operation
change. Thus, ht(i,j) (t2 [1, k]) can be used for guid-
ing the ants to search the next disassembly sequence
step along k different directions which are uniformly
scattered towards the Pareto frontier, as mentioned
in section 4.2.

In disassembly planning, for k different search
directions, the local updating function tt(i, j) can be
represented as

ttði; jÞ ¼ ð1 � aÞttði; jÞ þ at0ði; jÞ; t 2 ½1; k�
ð10Þ

For k different search directions, the global updating
function in ACO can be represented as

ttði; jÞ ¼ ð1 � bÞttði; jÞ þ bDttði; jÞ; t 2 ½1; k�
ð11Þ

where

Dttði; jÞ ¼
FtðgbÞ; if step ði; jÞ 2 global best

disassembly sequence

0; otherwise

8><
>:

FtðgbÞ ¼ Z = ð1 þ Wt1N1 þ Wt2N2 þ Wt3N3Þ

t 2 ½1; k�
Z¼ constant parameter used to adjust the added

pheromone level in the step (i, j)
N1, N2, N3¼number of orientation changes,

number of tool changes, and number of disassembly
operation changes in current global best disassembly
sequence respectively.
After local updating and global updating of the
pheromone, tt(i, j) is the quantity of pheromone
deposited on the disassembly sequence step from
part i to part j for the search direction t (t2 [1, k]).

From the above, it can be seen that for different
search directions, the selection probability that ant z
selects the disassembly sequence step from part i to
part j could be different due to the quantity of pher-
omone deposited and the heuristic value. The overall
ACO algorithm with multiple search directions for
disassembly planning is proposed as follows.

Algorithm: overall ACO algorithm for disassembly
planning

Step 1. Set the number of factors (objectives) n, and
set the number of levels of each factor
(search directions) k; derive the parameter s
from Table 1.

Step 2. Conclude the weight matrix using equations
(4), (5), and (6).

Step 3. For the assembly consisting of m parts, place
k ants on each of the q parts that can be
initially disassembled.

Step 4. Set initial quantity of pheromone on each
disassembly step as tt(i, j)¼ c.

Step 5. Set the maximal cycle number Nc (max), and
let the cycle number Nc¼ 1.

Step 6. For search direction t (t2 [1, k]), let t¼ 1.
Step 7. For the ant z that is searching the route along

the direction t, if the ant z has not completed
the visit from the first part to the last one,
calculate the selection probability Pz(t)(i, j)
using equation (8), where part j belongs to
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the remaining parts in the product that
have a feasible disassembly direction at
this stage.

Step 8. Select the part j as the next part to be dis-
assembled using the roulette-wheel selec-
tion method.

Step 9. Move the ant z to the new position – part j.
Step 10. Locally update the pheromone level on the

disassembly sequence step from part i to
part j using equation (10).

Step 11. If ant z has completed the visit from the first
part to the last one, go to step 12; else, go to
step 7.

Step 12. Globally update the pheromone level on the
best disassembly sequence found so far
using equation (11).

Step 13. Let t¼ tþ 1, if t< k, go to step 7; else, go to
step 14.

Step 14. Let Nc¼Ncþ 1, if Nc<Nc(max), go to step 6;
else, go to step 15.

Step 15. Output the non-dominated solutions found
by the ants.

6 CASE STUDY AND DISCUSSION

The proposed disassembly planning approach with
the ACO algorithm has been implemented using
Visual Cþþ 6.0. In this section, an assembly product
[12] (shown in Fig. 2) is used to validate the proposed
approaches.

6.1 Case study

In this case, there are three objectives to be opti-
mized, and the number of search directions k is set

as five. The parameter s can then be derived from
Table 1 as s¼ 2. From equations (4) and (5), the
uniform matrix U(3, 5) can be derived as follows

Uð3; 5Þ ¼ ½Ui;j�5 · 3 ¼

2 3 5
3 5 4
4 2 3
5 4 2
1 1 1

2
66664

3
77775

From equations (6) and (7), the weight matrix can be
derived as

½Wi; j�5 · 3 ¼

1=5 3=10 1=2
1=4 5=12 1=3
4=9 2=9 3=9
5=11 4=11 2=11
1=3 1=3 1=3

2
66664

3
77775

For seven parts that can be initially disassembled
in this case, five ants are placed on each part, and
each ant will search the route along one of five
directions respectively. Based on some reference
works [16, 17], some parameters for the ACO algo-
rithm are set as follows: the initial quantity of pher-
omone on each disassembly step is set as t0¼ 0.5; the
pheromone decay parameters a and b are set as 0.1;
the parameter l is set as 0.8. Through the experiment
in the case study, the maximum cycle number Nc(max)

is set as 500, and the constant parameter used to
adjust the added pheromone level Z is set as 3.

In this case, parts 2, 3, and 15 have similar geo-
metric shapes and dimensions, so they can be
grasped with the same tool-chuck in the disassembly
process, and this tool is assigned with the number 2
in this case. Similarly, the other parts can be grouped

Fig. 2 An assembly consisting of 22 parts
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according to their geometric shape, dimension, and
weight, and can be grasped with different tools with
different tool numbers, as shown in Table 2. For the
operation type, parts 19, 20, 21, and 22 can be
unscrewed with the screwdriver in the disassembly
process, so these four parts are assigned with the
same operation type (number 2) in this case; simi-
larly, parts 9, 10, 11, 12, and 18 can be unscrewed
with the wrench (operation type number 1) in this
case; the other parts do not need any tool to unfasten
them in the disassembly process, so they are assigned
with operation type number 0 in this case, as shown
in Table 2.

6.1.1 Test 1

In test 1, the evolution test with 5 uniformly scattered
search directions is carried out 20 times, and the
result is shown in Table 3. All the 20 trials are con-
verged to the feasible disassembly sequences, during
which, 4 trials get 2 non-dominated solutions, 8 trials
get 3 non-dominated solutions, and 8 trials get 4 non-
dominated solutions. Of the above test results, 4 non-
dominated solutions found in the trial are shown in
Table 4. In the above non-dominated solutions, the
disassembly sequence of non-dominated solution
number 4 is given as

18–20-22–21–19–12–11–15–13–9–10–6–5–1–14–16

–17–8–7–4–2–3

the sequence started from part 18, with the search
direction (W1¼ 1/4,W2¼ 5/12,W3¼ 1/3), and it has 4
orientation changes, 8 tool changes, and 5 operation
changes.

For other non-dominated solutions, non-dominated
solution number 1 has 4 orientation changes, 7 tool
changes, and 6 operation changes, with the search
direction (W1¼ 4/9, W2¼ 2/9, W3¼ 3/9); non-
dominated solution number 2 has 3 orientation
changes, 8 tool changes, and 7 operation changes, with
the search direction (W1¼ 1/5, W2¼ 3/10, W3¼ 1/2);
non-dominated solution number 3 has 2 orientation
changes, 9 tool changes, and 5 operation changes,
with the search direction (W1¼ 5/11, W2¼ 4/11,
W3¼ 2/11).

In order to evaluate the evolution performance for
500 generations, in this case the equation F¼
3/(1þW1N1þW2N2þW3N3) is used to record the
fitness value of the sequence, where N1, N1, and N3

are the number of orientation changes, the number
of tool changes, and the number of operation chan-
ges respectively, and W1, W2, and W3 are the weight
for each of above three objectives respectively. The
evolution performance for 500 generations of the
sequence in the search direction (W1¼ 1/4,
W2¼ 5/12, W3¼ 1/3) is shown in Fig. 3.

6.1.2 Test 2

For comparison with test 1, only one fixed search
direction (W1¼ 1/4, W2¼ 5/12, W3¼ 1/3) is used in
test 2 to guide the ants to search the route. With the

Table 2 Tool type and operation type of each part in the assembly

Part number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Tool type 1 2 2 1 3 3 3 3 4 4 4 4 1 5 2 3 3 4 6 6 6 6
Operation type 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 2 2 2 2

Table 3 Twenty trial results in test 1

Total
trials

Trials that get two
non-dominated
solutions

Trials that get three
non-dominated
solutions

Trials that get four
non-dominated
solutions

20 4 8 8

Table 4 Test results of a trial in test 1

Non-dominated
solution number

Orientation
changes

Tool
changes

Operation
changes

1 4 7 6
2 3 8 7
3 2 9 5
4 4 8 5

Fig. 3 The evolution performance for 500 generations
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same settings for the other parameters, the evolution
result is shown in Table 5. All the 20 trials are con-
verged to the feasible disassembly sequences, during
which 11 trials get 1 non-dominated solution, 8 trials
get 2 non-dominated solutions, and 1 trial gets 3 non-
dominated solutions.

6.2 Discussion

The above two evolution test results show, compared
with the ant colony algorithm with only one search
direction, that the ant colony algorithm with multiple
uniformly scattered search directions can make it
easier to find more non-dominated solutions in one
trial. This is probably due to the fact that in the latter
algorithm, at each step, the ants are guided along the
uniformly scattered search directions towards the
Pareto frontier, so the ants have more chance to find
more non-dominated solutions located in the Pareto
frontier.

Because the assembly sequence can be concluded
by reversing the disassembly sequence, the proposed
approach can also be used to derive the assembly
sequence. Compared with the assembly planning
approach using a multi-objective genetic algorithm
in the same case study [12], the approach using
the ant colony algorithm is more stable and faster; all
of the 20 trials found the feasible disassembly
sequence, and the average run time was 6–8 s to
converge to a global optimal or near-global optimal
sequence. However, for the 20 trials using the
assembly planning approach with a multi-objective
genetic algorithm, at least 2 trials could not find
the feasible assembly sequence, and the average run
time was 20–25 s to converge to a global optimal
or near-global optimal sequence. This difference
could be analysed as follows: in the disassembly
planning approach with the ant colony algorithm,
the ants search the route step by step, and only the
dismountable part can be selected by the ants, so it
can easily avoid the infeasible solution, and this
can also help find the feasible solution quickly.
However, in the assembly planning approach with
the genetic algorithm, the initial solutions are
randomly generated as a whole sequence. There
could be much assembly interference due to pre-
cedence constraints and the solutions are evolved as
a whole sequence by genetic operators in the later

stages; this could cost much time to repair and evolve
the solution to a feasible and optimal solution.
Sometimes the solutions can not be evolved to fea-
sible solutions due to the highly constrained combi-
natory nature of this problem. Therefore, from the
above analysis, it can be seen that the disassembly
planning approach using the ant colony algorithm
could be more efficient than the approach using the
genetic algorithm.

7 CONCLUSION

This paper presents a multi-objective disassembly
planning approach using the ant colony optimization
algorithm. Three objectives in the disassembly pro-
cess are optimized concurrently to get the optimal or
near-optimal disassembly sequence in this work. In
order to guide the ants to search comprehensively
and find more feasible non-dominated solutions for
decision making, uniform design is used for estab-
lishing a multi-objective searching algorithm, and an
ant colony optimization algorithm for disassembly
planning is developed based on the above searching
algorithm. Through the case study and the compar-
ison with the approach using a genetic algorithm, it
can be verified that the proposed multi-objective
disassembly planning approach with the ACO algo-
rithm is more stable, faster, and more efficient for
finding more feasible non-dominated solutions.
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APPENDIX

Notation

Dd(PiSm) represented as
P

Pi j, Pj2 Sm
Id interference matrix for assembly direc-

tion d
N1 number of orientation changes
N2 number of tool changes
N3 number of disassembly operation

changes
Nc cycle number
Nc(max) maximal cycle number
Pz(i, j) probability that ant z selects next node j
Pz(t)(i, j) probability that ant z selects the dis-

assembly sequence step from part i to
part j in a given search direction t

Ui,j level of the factor j in the ith combination
Z constant parameter used to adjust the

added pheromone level in the step (i, j)

a parameter that determines the pher-
omone volatility on the edge from node i
to node j

b pheromone decay parameter
h(i, j) heuristic information corresponding to

the edge from node i to node j
ht(i, j) heuristic value corresponding to the dis-

assembly step from part i to part j in
search direction t

l parameter that determines the relative
importance of t(i, j) versus h(i, j)

t(i, j) quantity of pheromone deposited on the
edge from node i to node j

tt(i, j) quantity of pheromone deposited on the
disassembly sequence step from part i to
part j in search direction t

t0(i, j) initial pheromone level on the edge
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