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A POLYNOMIAL ALGORITHM FOR MODEL
UPDATING OF ENGINEERING TRUSS#

Chun Nam Wong1, Jingqi Xiong1,
Hong-Zhong Huang1, and Yao Jiang Zhao2
1School of Mechanical, Electronic and Industrial Engineering,
University of Electronic Science and Technology of China,
Chengdu, Sichuan, China
2Jinchuan Group Ltd., Jinchang, Gansu, China

A polynomial algorithm is established to update structural variants of an engineering
truss model. By expanding the bivariate to multivariate approach, eigenparameters
are written as the higher order Lagrange factor functions of the structural variants.
Using Taylor series expansion of these functions, higher order single- and multiple-
variants system equations are constructed. Fixed-free finite element beam is established
to analyze the convergences of first- to third-order algorithms under small to large
percentage single and multiple modifications. The engineering truss model is constructed
to validate the order analysis under different percentage modifications of the model
elements. Both single and multiple modification cases are investigated using the model.

Keywords: Engineering truss; Model updating; Multivariate polynomial; Taylor series; Termination
criterion.

INTRODUCTION

Model updating is a design process which modifies the system parameters
of engineering model through matching the analytical responses with the actual
responses. It is a test and analysis correlation procedure including (1) analytical
model establishment, (2) test/simulated response acquisition, and (3) model
updating algorithm. Initially, exact formulation, finite element model, or numerical
computation approaches are used to establish the analytical model. Then different
measurement techniques are employed to acquire the test responses. They include
vibration mode, physical dimension, part temperature, thermoelastic measurement,
ambient test, and static concentrated load (Bagchi, 2005; Bakir et al., 2007;
Butkewithsch and Steffen, 2002; Humbert et al., 1999; Ip and Tse, 2001; Sinha
et al., 2001; Steeneckers et al., 2007; Teughels and Roeck, 2004; Wahab et al., 1999;
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2 WONG ET AL.

Xi et al., 2000; Zhang, 1999). Finally, the system parameters are updated by the
developed algorithm using the actual responses from engineering system.

Model updating algorithms can be classified as direct or iterative generally.
In direct algorithms, the modification process is determined through direct
mathematical operation between system parameters and system characteristic
responses. For example in Xi’s work, the finite element model was transformed
to the space-fixed frame for the rotation of circular saw, where vibration mode
shapes remained the same and natural frequencies were affected by the product
of the rotation speed and order of the mode shape (Xi et al., 2000). Shape
optimization was used for the desired configuration changes, while reliable model
was used in the design of heavy truck side bumper by Butkewithsch and Steffen
(2002). Ip and Tse (2001) developed inverse scheme for characterizing the dynamics
flexural and shear moduli using Timoshenko beam model. Steeneckers et al. (2007)
developed a model update method from output-only transmissibility measurements.
The known modal matrix was decomposed by Zhang (1999) using singular value
decomposition technique and the best updating solution was defined according to
the best approximation theory. A matrix update method was used to update the
beam and free shell elements of a three span continuous steel force deck bridge
located in western Canada as proposed by Bagchi (2005).

On the other hand, some algorithms determine the modification value in
an iterative approach. Humbert et al. (1999) used thermoelastic measurements
to improve the finite element model of a thin plate bending using a variable
metric Gauss–Newton method with a polynomial line search. Sinha et al. (2001)
proposed a gradient-based updating method to detect spring support locations by
updating the position parameters of the support through the optimization of an
error criterion. An iteration sensitivity-based method to update a finite element
model with ambient test was proposed by Teughels and Roeck (2004). In the works
of Wahab et al. (1999) and Bakir et al. (2007), a sensitivity-based finite element
model updating technique was used to update modification using static concentrated
load. For computing the eigenparameter perturbations, Chen (2007) had established
the derivatives of modes for distinct, repeated, or close eigenvalues. Perturbations
of distinct, repeated, or close eigenvalues, complex modes of systems with real
unsymmetric matrices, defective or near defective systems were derived. However in
these formulations, only up to second-order perturbations and exact derivatives are
computed.

Herein, the developed algorithm is iterative in nature, which generates an
empirical function by interpolating the system responses. It is based on eigenvalue
reanalysis to construct the polynomial function of the eigenparameters. Spath
(1995) made use of the fundamental Lagrange polynomials (Issacson and Keller,
1973; Spath, 1995) to develop the Lagrange form of the bivariate polynomial
interpolation. With the basic form of the Lagrange factor function of each separate
variant, the eigenparameter function is generalized to its multivariate polynomial
interpolation form. Also, different order derivative terms are computed using the
constructed polynomial functions. Higher order polynomial equations developed in
this work are established by relating these polynomial functions and derivative terms
with the structural variants.
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MODEL UPDATING OF TRUSS 3

POLYNOMIAL EIGENPARAMETER FUNCTION AND ITS DERIVATIVE

In this model updating process, Taylor series expansion equation is utilized
to relate the changes of the eigenparameters with the modifications of structural
variants. By inverse computation, these modifications in the structural variants are
estimated from an optimization algorithm. The updating process is repeated until a
specific termination criterion is reached.

Multivariate Polynomial Eigenparameter Function

Let G = �G1�G2� � � � �Gm�
T be the structural variant vector of the

computational structure, where Gi denotes the stiffness value of the ith structural
variant including Young’s modulus, moment of inertia, or stiffness value.
These correspond to the modification of material properties due to dimensional
change or material selection in structural design. G = �G1�G2� � � � �Gm�

T is the
structural variant vector of the updated structure, while G� = �G�1�G�2� � � � �G�m�

T

is the structural variant vector of the actual structure. The selected sets of
n eigenparameter pairs corresponding to the updated and actual structures
are denoted by � and �� respectively, where � = ��1� �̄1� �2� �̄2� � � � � �n� �̄n�T

and �� = ��1�� �̄
1
�� �

2
�� �̄

2
�� � � � � �

n
�� �̄

n
��

T with �k and �̄k (k = 1� 2� � � � � n) being
the kth eigenvalue and eigenvector of updated structure, while �k� and �̄k

�

(k = 1� 2� � � � � n) being the kth eigenvalue and eigenvector of actual structure.
These eigenparameter pairs corresponding to different combination of Ki

prescribed values of Gi (denoted by G
�1�
i � G

�2�
i � � � � , and G

�Ki�
i �, are calculated

autonomously using a finite element model. By denoting its structural
variant vectors �G

�k1�
1 �G

�k2�
2 � � � � �G�km�

m �T as �k1k2 · · · km�, its eigenparameter
vector is denoted by ��k1k2···km� where each vector is partitioned in the form
��k1k2···km� = ��1�k1k2···km�� �̄

1
�k1k2···km�� �

2
�k1k2···km�� �̄

2
�k1k2···km�� � � � � �

n
�k1k2 ··· km�� �̄

n
�k1k2 ··· km��

T

(j = 1� 2� � � � � Ki). For the kth pair, �k�k1k2···km� (k = 1� 2� � � � � n) is the kth eigenvalue
and �̄k

�k1k2···km� (k = 1� 2� � � � � n) is the kth eigenvector. This procedure is called
the structural reanalysis. Note that only the selected degrees of freedom (d.o.f)
of the structure are used in the selected eigenvectors, which correspond to low
stiffness-to-mass ratios (Allemang and Brown, 1982; Penny et al., 1994). Based
on the k1× k2× · · · × km ordered sets, 	G�k1k2···km����k1k2···km�
, one can interpolate
m-variate polynomial function of � in terms of G1�G2� � � � �Gm as

� =
K1∑

k1=1

K2∑
k2=1

· · ·
Km∑

km=1

��k1k2···km�L
�k1�
1 �G

�k1�
1 �L

�k2�
2 �G

�k2�
2 � · · ·L�km�

m �G�km�
m �� (1)

where � = ��1� �̄1� �2� �̄2� � � � � �n� �̄n�T , and L
�ki�
i �G

�ki�
i � is the Lagrange factor

function of the ith structural variant at the kith interpolated stiffness value, given by

L
�ki�
i �G

�ki�
i � =

Ki∏
k=1
k �=ki

(
Gi −G

�k�
i

G
�ki�
i −G

�k�
i

)
� �ki = 1� 2� � � � � Ki� (2)
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4 WONG ET AL.

First-order derivative terms can be obtained by direct derivative on the
corresponding Lagrange factor L

�ki�
i �G

�ki�
i � with respect to Gi. For single variant

modification, the first-order eigenparameter derivative is

��

�G1

=
K1∑

k1=1

��k1�
�L

�k1�
1 �G

�k1�
1 �

�G1

� (3)

where

�L
�k1�
1 �G

�k1�
1 �

�G1

=
K1∑

k1�1�=1
k1�1��=k1

1

G
�k1�
i −G

�k1�1��
1

K1∏
kj=1
kj �=k1

kj �=k1�1�

[
G1 −G

�kj�
1

G
�k1�
1 −G

�kj�
1

]
�

There is one summation series in this Lagrange factor derivative. Meanwhile, for
multiple variants modification with m > 1, the first-order eigenparameter derivative
can be expressed as

��

�Gi

=
K1∑

k1=1

K2∑
k2=1

· · ·
Km∑

km=1︸ ︷︷ ︸
m summation

��k1k2···km�L
�ki�
i �G

�ki�
i � · · · �L

�ki�
i �G

�ki�
i �

�Gi

· · ·L�km�
m �G�km�

m �� (4)

where

�L
�ki�
i �G

�ki�
i �

�Gi

=
Ki∑
k=1
k �=ki

1

G
�ki�
i −G

�k�
i

Ki∏
kj=1
kj �=ki
kj �=k

[
Gi −G

�kj�
i

G
�ki�
i −G

�kj�
i

]
�

On the other hand, the second-order derivative consists of two terms namely the
repeated differential and the unrepeated differential. For the unrepeated term,
it is given by the direct first-order derivative of the Lagrange factor according to
the structural variant involved. Special care is given to the repeated terms where
direct second-order derivative of the corresponding Lagrange factor is encountered.
For single variant with m = 1, we have the simplified form of the second-order
eigenparameter derivative

�2�

�G2
1

=
K1∑

k1=1

��k1�
�2L

�k1�
1 �G

�k1�
1 �

�G2
1

� (5)

where

�2L�k1��G�k1�
1 �

�G2
1

=
K1∑

k1�1�=1
k1�1��=k1

1

G
�k1�
1 −G

�k1�1��
1

K1∑
k1�2�=1
k1�2��=k1

k1�2��=k1�1�

1

G
�k1�
1 −G

�k1�2��
1

K1∏
kj=1
kj �=k1

kj �=k1�1�
kj �=k1�2�

[
G1 −G

�kj�
1

G
�k1�
1 −G

�kj�
1

]
�
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MODEL UPDATING OF TRUSS 5

Meanwhile, for multiple variants with m > 1, the second-order eigenparameter
derivative is expressed as

�2�

�Gi�Gj

=




K1∑
k1=1

K2∑
k2=1

· · ·
Km∑

km=1

��k1k2···km�L
�k1�
1 �G

�k1�
1 � for i �= j

· · · �L
�ki�
i �G

�ki�
i �

�Gi

· · · �L
�kj�
j �G

�kj�
j �

�Gj

· · ·L�km�
m �G�km�

m �

K1∑
k1=1

K2∑
k2=1

· · ·
Km∑

km=1

��k1k2···km�L
�k1�
1 �G

�k1�
1 � for i = j

· · · �
2L

�ki�
i �G

�ki�
i �

�G2
i

· · ·L�km�
m �G�km�

m �

� (6)

where

�2L
�ki�
i �G

�ki�
i �

�G2
i

=
Ki∑

ki�1�=1
ki�1��=ki

1

G
�ki�
i −G

�k�
i

Ki∑
ki�2�=1
ki�2��=ki

ki�2��=ki�1�

1

G
�ki�
i −G

�km�
i

Ki∏
kj=1
kj �=ki

kj �=ki�1�
kj �=ki�2�

[
Gi −G

�kj�
i

G
�ki�
i −G

�kj�
i

]
�

Moreover, the pth-order derivative terms are constructed from different
combinations of higher order repeated and unrepeated derivatives of the Lagrange
factor. For single variant, the pth-order eigenparameter derivative is

�p�

�G
p
1

=
K1∑

k1=1

��k1�
�pL

�k1�
1 �G

�k1�
1 �

�G
p
1

� (7)

where

�pL
�k1�
1 �G

�k1�
1 �

�G
p
1

=
K1∑

k1�1�=1
k1�1��=k1

1

G
�k1�
1 −G

�k�
1

· · ·
K1∑

k1�p�=1
k1�p� �=k1

k1�p� �=k1�p−1�

���
k1�p� �=k1�1�

1

G
�k1�
1 −G

�k1�p��
1

×
K1∏
kj=1
kj �=k1

kj �=k1�1�

���
kj �=ki�p�

[
G1 −G

�kj�
1

G
�k1�
1 −G

�kj�
1

]
�

There are p summation series in this Lagrange factor function. Furthermore,
for multiple variants with m > 1, there are two extreme cases in the pth
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6 WONG ET AL.

eigenparameter derivative namely, the structural variants are all different and all
structural variants are the same, i.e.,

�p�

�Gi�Gj · · · �Gt︸ ︷︷ ︸
p terms

=




K1∑
k1=1

K2∑
k2=1

· · ·
Km∑

km=1︸ ︷︷ ︸
m summation

��k1k2···km�L
�k1�
1 �G

�k1�
1 � · · · �L

�ki�
i �G

�ki�
i �

�Gi

· · · �L
�kj�
j �G

�kj�
j �

�Gj

· · · �L
�kt�
t �G

�kt�
t �

�Gt

· · ·L�km�
m �G�km�

m � for i �= j �= · · · �= t

K1∑
k1=1

K2∑
k2=1

· · ·
Km∑

km=1︸ ︷︷ ︸
m summation

��k1k2···km�L
�k1�
1 �G

�k1�
1 �

· · · �
pL

�ki�
i �G

�ki�
i �

�G
p
i

· · ·L�km�
m �G�km�

m � for i = j = · · · = t

�

(8)

where

�pL
�ki�
i �G

�ki�
i �

�G
p
i

=
Ki∑

ki�1�=1
ki�1��=ki

1

G
�ki�
i −G

�ki�1��
i

· · ·

×
Ki∑

ki�p�=1
ki�p��=ki

ki�p��=ki�p−1�

���
ki�p��=ki�1�

1

G
�ki�
i −G

�ki�p��
i

Ki∏
kj=1
kj �=ki

kj �=ki�1�

���
kj �=ki�p�

[
G−

i G
�kj�
i

G
�ki�
i −G

�kj�
i

]
�

Note that these derivative terms process the symmetric property, such as that in the
pth-order term

�p�
k

�Gi�Gj · · · �Gt

= �p�
k

�Gt�Gj · · · �Gi

� (9)

After the establishment of eigenparameter functions and their derivatives, efforts
are made to relate the changes of structural variants to the changes in these
eigenparameters using the Taylor series expansion about the original structure.
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MODEL UPDATING OF TRUSS 7

Establishment of Polynomial System Equation

In general, one can use Taylor series expansion to obtain the change of the n
eigenparameter pairs due to �Gi = G�i −Gi (i = 1� 2� � � � � m�:

�� −� =
m∑
i=1

��

�Gi

�Gi +
1
2!

m∑
i=1

m∑
j=1

�
2
�

�Gi�Gj

�Gi�Gj + · · ·

+ 1
p!

m∑
i=1

m∑
j=1

· · ·
m∑
s=1︸ ︷︷ ︸

p summations

�
p
�

�Gi�Gj · · · �Gt

�Gi�Gj · · · �Gt + �
p
�� (10)

where �
p
� is the error vector in representing the selected eigenparameter pairs by

polynomial function of structural variants of order p. The partial derivative terms
in Eq. (10) with respect to different structural variants can be calculated from
Eqs. (3)–(8).

Now the polynomial system equations are established. In what follows, the
error term in Eq. (10) is neglected in order to obtain the polynomial system
equations corresponding to the n selected eigenparameter pairs. The number of
equations is larger than that of the unknowns �Gi (that is m) in order to improve
the uniqueness of the obtained update. They are used in the first step of this
algorithm to update the modification location. Left-hand side of Eq. (10) represents
the differences of the eigenparameters between the actual and original structures,
which are known. The structural variants in Eq. (10) can be determined using an
optimization algorithm, such as quasi-Newton algorithm. When Eq. (10) is of first
order, �Gi can also be determined by using the generalized inverse algorithm.

ITERATIVE ALGORITHM FOR SOLVING
POLYNOMIAL SYSTEM EQUATION

Many of the existing experimental methods (known as design of experiments)
work on the establishment of an input-output matrix and match it to the desired
eigenparameters. For each structural variant, a number of nominal values are
defined that represent the range for which the effect of that structural variant is
desired to be known. The set-up is costly and tedious as thousands of experiments
are involved. We give a moderate modification of ±25% as an example. For five
structural variants with 10 trial increments of 5% original values, the total number
of matrix experiments is 105. Thus the works demanded increase exponentially as the
numbers of structural variants and trial runs increase. Nevertheless, the termination
accuracy cannot be refined as the modification ranges are in fixed percentages.

This iterative algorithm is developed to update structural variants using the
established polynomial system equations, bound the updated results, and apply
the termination criterion to refine the updates in a single process. As the Taylor
series equation contains the nonlinear coefficients, we use nonlinear optimization
algorithm (Wong et al., 2004) that can iterate the interpolated stiffness values with
these coefficients inversely. In the first update, the same equation as that in Eq.
(10) is derived. From the known changes of the eigenparameters on the left-hand
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8 WONG ET AL.

side of Eq. (10), one can determine the changes of the structural variants using
an optimization algorithm. They are denoted by �G

�q�
, where the number in the

subscript denotes the number of update. The structural variants are modified by

G
�q+1� = G

�q� + �G
�q�

��G�q��

�q� ·Gh� (11)

where ��G�q�� =
√
�G

�q� · �G�q�
, Gh is assumed to be the original stiffness value for

all the structural members, and 
�q� is the modification scale factor of the qth update.
In each update, Eq. (10) is modified by replacing G with G

�q�
, and Gi, Gj� � � � , and

Gs with G
�q�
i , G�q�

i � � � � , and G�q�
s , respectively. From the calculated changes of the

eigenparameters on the left-hand sides of the resulting polynomial system equations,
one calculates inversely the changes of the structural variants �G

�q�
, and modifies the

structural variants by using Eq. (11). This process is completed when the termination
criterion is reached. On the other hand, changes of structural variants are bounded
by the scale factors of a generic sequence. It allows the modification values to
jump into the principal domain initially, but does not allow it to jump outside
the principal domain afterward. Usually, in large percentage modifications, 
�q� is
set initially at a large percentage (e.g., 50%), which allows the updated solution to
jump directly into the principal domain. Then it is reduced progressively so that the
solution domain can be confined in the solution ranges.

TERMINATION INDICATOR AND CRITERION

Termination criterion is established to control the accuracy of iterative
process. For the model updating of engineering truss model, the objective of model
updating is met when the eigenparameters of the modified model are closest to that
of the actual model. As a result, the norm of difference vector �d� is chosen as the
termination indicator.

One of the first termination criterion is stated by Paskov (1995). The iteration
process stops when either one of the following termination indicators drops below
the criterion in the first time:

1. Norm of the eigenparameter difference vector first drops below nd ratio of the
norm of normalized modified eigenparameter;

�d��qnd� =
n∑

i=1

(∥∥�̄i
qnd

− �̄i
d

∥∥+
∥∥∥∥�

i
qnd

− �id

�id

∥∥∥∥
)
≤ nd

( n∑
i=1

∥∥�̄i
d

∥∥+ n

)
� (12)

where qnd is the smallest update number for which the minimum allowed level is
reached.

2. Maximum of absolute updated structural variant vector first drops below nd
ratio of the maximum of absolute original structural variant vector,

�d��qnd� = max
{
abs�G

�qnd�
�
} ≤ nd ·max

{
abs�Gh�

}
� (13)
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MODEL UPDATING OF TRUSS 9

where qnd is the smallest update number for which the minimum allowed level
is reached. Otherwise it stops when the number of updates qnd exceeds the
maximum preset value nmax, i.e., qnd > nmax.

ORDER ANALYSIS ON FIXED-FREE BEAM MODEL

To investigate the applicability on different orders of the developed algorithm,
various modification cases are introduced to a fixed-free beam model. The
beam of length Lt = 0�7m, width W = 0�0254m, and thickness H = 0�0031m has
an area moment of inertia I = 1

12WH3 = 6�3058× 10−11 m4 and a mass density
�= 2715 kg/m3. Its finite element model shown in Fig. 1 is used to model its
transverse vibration. The beam is divided into four typical elemental units with
the length of each element being le = Lt

4 , and there are 5 nodes. With Vi and �i
denoting the translational and rotational displacements at node i (i = 1� 2� � � � � 5�,
the displacement vector of the ith (i = 1� 2� � � � � 4� element is 	Vi� �i� Vi+1� �i+1


T .
Young’s modulus is assumed to be constant over each beam element and that of
the ith element is denoted by Gi. The Young’s modulus of the original beam is
Gh = 69× 109 N/m2. Hence G�1�

i = Gh for i = 1� 2� � � � � 4. Small, medium, and large
level of modifications, which correspond to the reduction in stiffness values of 20%,
50%, and 80% respectively, are simulated on the model. Mass matrix of the ith beam
element is

Me
i = �WHle

420




156 22le 54 −13le
22le 4l2e 13le −3l2e
54 13le 156 −22le

−13le −3l2e −22le 4l2e


 � (14)

and its stiffness matrix is

Ke
i =

GiI

l3e




12 6le −12 6le
6le 4l2e −6le 2l2e
−12 −6le 12 −6le
6le 2l2e −6le 4l2e


 � (15)

Figure 1 Finite element model of the four-element fixed-free beam.
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10 WONG ET AL.

Using the standard assembly process yields the 10× 10 global mass and stiffness
matrices. Constraining the translational and rotational displacements of the first
node at the fixed-end to be zero yields the M and K matrices with dimension
N × N , where N = 8 is the d.o.f of the system. The displacement vector of
the system, involving the displacements of the second through fifth node, is
	V2� �2� V3� �3� � � � � V5� �5


T . The matrix �K
�Gi

(i = 1� 2� � � � � 4� can be obtained from K
by setting Gi = 1 and G1 = · · · = Gi−1 = Gi+1 = · · · = GN = 0.

Without loss of generality, the first modification scale factor is set to 
�q1� until
q1th iteration. Efforts are made such that in most cases, G�q1� becomes saturated
and oscillating in a stable range when the q1th update is reached. The second scale
factor is set to 
�q2�, such that G�q2� becomes saturated at the q2th update. Finally
the scale factor is set to 
�q3�, where the solution converges in an optimum path to
the desired solution at q3th update. Therefore the generic sequence is set as


�q� =



�q1�� 
�q1�� � � � � 
�q1�︸︷︷︸

q1

� 
�q2�� 
�q2�� � � � � 
�q2�︸︷︷︸
q2

� 
�q3�� 
�q3�� � � � � 
�q3�︸︷︷︸
q3


 � (16)

Multiple Small Percentage Structural Modification

For small percentage structural modification case, 10% modifications are
introduced at the Young’s moduli of elements B2, B3, and B4 respectively, G� =
�B1 B2 B3 B4�T = Gh�1�1 0�9 1 1�1�T . First-order algorithm is applied to assess this
case, which terminates at nd = 1e− 8 under criterion (2) of Eq. (13) or nmax = 100.
The first scale factor 
�q1� is set to 0.1 with q1 = 20. In the second stage, 
�q2� is set to

Figure 2 Case B_o1_s234: updating of fixed-free beam elements B2, B3, and B4 with ±10%
modification by first-order algorithm.
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MODEL UPDATING OF TRUSS 11

0.02 with q2 = 40. For the third stage, 
�q3� is set to 0.01 with q3 = 60. The generic
sequence is set as


�q� =

0�1� 0�1� � � � � 0�1︸︷︷︸

�20�

� 0�02� 0�02� � � � � 0�02︸︷︷︸
�40�

� 0�01� 0�01� � � � � 0�01︸︷︷︸
�60�


 �

From the updating curves plotted in Fig. 2, element B3 drops to lower level,
fluctuates chaotically until update 20, and remains at the solution level. All other
elements interact with each other in this region, and they propagate gradually
toward update 30. Afterward they remain at the solution levels and terminate at
update 43. Then second-order algorithm is used with the results in Fig. 3. In this
case, element B2 ramps up to the solution level until update 20. Elements B3 and
B4 propagate gradually toward the solution levels. Then they remain flat at the
solution levels. Element B1 fluctuates in large percentage, then propagates gradually
toward the solution level. Then it remains at the solution level. Finally, third-order
algorithm is applied to the case, and the updating curves are plotted in Fig. 4.
Element B3 rises and remains flat until update 10, then it oscillates and drops to the
solution level. Afterward it remains flat at the solution level. Element B1 rises to a
peak and drops regularly toward the solution level. Then they propagate gradually
toward the solution levels. Element B2 rises to a peak, drops, and rises again to
the solution level in an oscillatory pattern until update 20. Then it continues to
rise gradually to the solution level. For element B4 it rises to the peak level and
drops in fluctuation pattern. And it rises gradually toward the solution level. From
this analysis, one can observe that the first-order algorithm converges at update
43. The second-order algorithm converges at update 50. Meanwhile the third-order

Figure 3 Case B_o2_s234: updating of fixed-free beam elements B2, B3, and B4 with ±10%
modification by second-order algorithm.
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12 WONG ET AL.

Figure 4 Case B_o3_s234: updating of fixed-free beam elements B2, B3, and B4 with ±10%
modification by third-order algorithm.

algorithm converges at update 60. Therefore the first-order algorithm is the best for
the small percentage modification.

Multiple Medium Percentage Structural Modification

For the medium percentage structural modification case, 25% modifications
are introduced at the Young’s moduli of elements B1 and B3 respectively, i.e.,

Figure 5 Case B_o1_m13: updating of fixed-free beam elements B1 and B3 with ±25% modification
by first-order algorithm.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

lb
er

ta
] 

at
 1

6:
17

 1
2 

O
ct

ob
er

 2
01

2 



MODEL UPDATING OF TRUSS 13

G� = �B1 B2 B3 B4�T = Gh�0�75 1 1�25 1�T . For this structure, the scale factors are
insignificant in bounding the updating ranges. Thus the generic sequence is set same
as before,


�q� =

0�1� 0�1� � � � � 0�1︸︷︷︸

�20�

� 0�02� 0�02� � � � � 0�02︸︷︷︸
�40�

� 0�01� 0�01� � � � � 0�01︸︷︷︸
�60�


 �

Iteration process terminates at nd = 1e− 8 under criterion (2) of Eq. (13) or
nmax = 100. Updating curves of using the first-order algorithm are plotted in Fig. 5.
Element B3 rises to the solution level, while element B1 drops to the solution
level in five updates. Elements B2 and B4, arrange chaotically to the solution
levels in five updates. Then the four elements oscillate in the range until update
20. Afterward, they converge to the solution levels in four to five updates. In the
subsequent updates, they just propagate around the solution levels and terminate
with criterion (2) where nd = 1e− 8. On the other hand, second-order algorithm is
applied to this case (Fig. 6). Element B3 rises to the solution level around update 20,
then it remains flat at the solution level. Elements B3 and B4 fluctuate oscillatory
until update 20, then they remain flat at the solution level. Finally, third-order
algorithm is used with the results plotted in Fig. 7. Element B1 drops rapidly to
the lower level, then it propagates gradually around the solution level. Afterward,
it remains flat at the solution level. Element B3 ramps up to the solution level until
update 20, then it remains flat at the solution level. Elements B2 and B4 oscillate
through the valley region, fluctuate, and decrease to the lower levels and terminate
under the same criterion. From this analysis, one can observe that the third-order
algorithm converges at update 42 and the first-order algorithm converges at update

Figure 6 Case B_o2_m13: updating of fixed-free beam elements B1 and B3 with ±25% modification
by second-order algorithm.
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14 WONG ET AL.

Figure 7 Case B_o3_m13: updating of fixed-free beam elements B1 and B3 with ±25% modification
by third-order algorithm.

50. Meanwhile, the second-order algorithm converges at update 57. Therefore, the
third-order algorithm is the best for the medium percentage modification.

Single Large Percentage Structural Modification

Assume that there is 50% modification at the second element B2 in the large
percentage structural modification case with G� = �B1 B2 B3 B4�T = Gh�1 1�5 1 1�T .
Again, the generic sequence is set as


�q� =

0�1� 0�1� � � � � 0�1︸︷︷︸

�20�

� 0�02� 0�02� � � � � 0�02︸︷︷︸
�40�

� 0�01� 0�01� � � � � 0�01︸︷︷︸
�60�


 �

Consider first-order algorithm with updating curves as shown in Fig. 8. Element B2
rises to the solution level in five updates, then it propagates in specific percentage.
Afterward it ramps up a little bit to the accurate level update 25, remains flat
at solution level, and converges at update 32. For elements B1 and B3, they
interact complementary in around ten updates. Afterward they interact and slightly
propagate at the solution levels. For element B4, it remains flat at solution level
initially, then drops to lower level in two updates. Then it ramps up and propagates
to the solution level. For second-order algorithm in Fig. 9, element B2 rises
gradually toward the solution level until update 30. Elements B1 and B4 rise and
fall interactively with each other until update 30. Then they rise gradually toward
the solution levels and converge at update 54. When the third-order algorithm is
applied, the updating curves are plotted in Fig. 10. It is interesting to note that they
follow the similar updating patterns as the second-order algorithm and converge at
update 54. Reason behind that needs to be further investigated. Average percentage
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MODEL UPDATING OF TRUSS 15

Figure 8 Case B_o1_l2: updating of fixed-free beam element B2 with +50% modification by first-order
algorithm.

error deviated from second-order algorithm is 2.29e–2% with maximum of 1.041%

and minimum of –2.23e–1%. From this analysis, we found that the first-order

algorithm is the best for the large percentage modification.

Figure 9 Case B_o2_l2: updating of fixed-free beam element B2 with +50% modification by second-
order algorithm.
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16 WONG ET AL.

Figure 10 Case B_o3_l2: updating of fixed-free beam element B2 with +50% modification by third-
order algorithm.

FINITE ELEMENT MODEL SIMULATION
OF FOUR-BAY ENGINEERING TRUSS

In this study, different modification cases are simulated using the finite element
model of a typical four-bay engineering truss. This truss is a structure with typical
baywise unit of three-dimensional rectangular truss. It is fixed to the ground at
the four foundation columns. In the structural reanalysis program, it calls in the
stiffness matrix of each building unit to assemble the overall stiffness matrix. Both
the fixed-free beam and this truss are composed of four elemental units, and similar
boundary conditions are applied to these structures. Hence eigenvalue analysis of
the beam model is analogue to that of the engineering truss, and order analysis of
the beam can be applied to this structure. Design of its finite element model was
mainly based on the following principles. It is physically alike to the actual truss
composed of the same major elements listed in Table 1. Also, its d.o.fs are similar
to the actual structure. Each of them can be detached without affecting the whole
structure. The elements are assembled at the joints and nodes as the actual structure.
Based on the aforesaid criteria, the model created is shown in Fig. 11. Dimensions

Table 1 Detail dimensions of engineering truss elements

Element
Nominal

length (mm)
Cross-sectional

dimensions (mm)

Column 609.6 Angle 38�1× 38�1× 6�35 (Thickness)
Diagonal-1 845.6 Bar 25�4× 12�7
Diagonal-2 779.6 Bar 25�4× 12�7
Horizontal-1 586 Bar 25�4× 12�7
Horizontal-2 486 Bar 25�4× 12�7
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MODEL UPDATING OF TRUSS 17

Figure 11 Finite element model of four-bay engineering truss.

of the elements are the same as the actual structure, while the nodes are arranged for
the ease of numbering. The model is composed of aluminium truss elements which
are assembled together by the constrained d.o.f. Boundary conditions at each node
connected to the ground are modeled as grounded d.o.f.

An automated program using the aforementioned principles is generated in
conjunction with structural reanalysis using a finite element code. The program
reads in the eigenparameter database of the original analytical model and its
interpolated models for each structural variant separately. Then it reconstructs the
reduced-order modes according to the selected master d.o.f using the database.
Through this process the right modes are extracted and arranged in order, while the
phases of the eigenparameters are corrected. As the truss elements are connected
directly to the nodal points, efforts are made to identify the modified elements by
the change of the mode shapes at these nodal points. In the variation analysis of
mode selection, profound linear relationships are indicated between the fundamental
bending modes (in X and Y direction of Fig. 11) and the structural variants.
This finding proved that these modes are highly sensitive to the corresponding p

values and the higher order polynomials serve as suitable representations of the
eigenparameter functions. From Table 2, one can observe that the most affected
structural variants by the first X-bending mode and Y -bending mode are those of
diagonal and column elements at first bay. Meanwhile, the most affected structural
variants by the first torsional mode are those of diagonal and column elements
at all bays. From this analysis, the fundamental modes give direct implications on

Table 2 Relationship between mode shapes and structural
variants

Mode Most affected element

First X-Bend Bay 1: diagonal and column elements
First Y-Bend Bay 1: diagonal and column elements
First Torsion All bays: diagonal and column elements
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18 WONG ET AL.

the locations of modifications. This approach is particularly useful for updating a
complicated large structure, which is composed of many detachable elements.

All these modes then went through the orthogonalization processes.
As indicated by Lim (1990), the mass orthogonalized eigenvectors can be defined by
the matrix orthogonalization procedure as

�̄k = �̄k
/√

�̄kTM�̄k� (17)

In most engineering components, columns and horizontals are usually strong major
elements taking most of the static design loads. Diagonals are weak minor elements
instead to well position the major elements. When all diagonals at each individual
bay are modified, i.e., G�i = Di, the number of structural variants to be modified
is four, i.e., m = 4. Now consider the number of independent equations. There are
16 equations from each bending modes and 32 equations from the torsional mode
of the truss model. This sum up to 64 equations, i.e., N = 64. Therefore, this is
an overconstrained system and its unique solution should be robustly obtained.
Simulated cases of both single and multiple structural modifications are discussed
below.

Multiple Small Percentage Structural Modification

According to the order analysis of fixed-free beam, second-order algorithm is
the best to update small percentage modifications. For this multiple modifications
case T_o1_s124, 10% modifications are introduced at the first and third bays at
all the diagonals as the truss elements. Therefore, its modification vector is written
as G� = �D1 D2 D3 D4�T = Gh�1�1 0�9 1 1�1�T . For small structural modification
updating, one can set the initial scale factor to a general level, e.g., 10% of the
original structure’s stiffness value, 
�q1� = 0�1Gh with q1 = 20. In the second and
third stages, 
�q2� and 
�q3� are set to 0.1 also. The generic sequence is set as


�q� =

0�1� 0�1� � � � � 0�1︸︷︷︸

�20�

� 0�1� 0�1� � � � � 0�1︸︷︷︸
�40�

� 0�1� 0�1� � � � � 0�1︸︷︷︸
�60�


 �

Termination criteria are set at convergence level nd = 5e− 5 in criterion (1) of
equation (12) or nmax = 100. By applying the iterative polynomial algorithm, the
updating results are plotted in Fig. 12. Element B2 drops to the lower level initially.
Then it oscillates with diminishing amplitude, which vanishes near the ultimate
solution. Element D1 rises to a higher level and then oscillates with a diminishing
amplitude, which vanishes near the ultimate solution. Then for element D4, it rises
to the higher level then oscillates with an increasing amplitude until update 12.
It oscillates with constant amplitude and arrives at the solution level. Element
D3 remains constant in the updating process. Termination chart of the case is
plotted in Fig. 13. It drops rapidly initially, and oscillates with decreasing amplitude.
Afterward, it oscillates with constant amplitude until update 31 where the set
termination criterion is attained.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

lb
er

ta
] 

at
 1

6:
17

 1
2 

O
ct

ob
er

 2
01

2 



MODEL UPDATING OF TRUSS 19

Figure 12 Case T_o1_s124: updating of engineering truss elements D1, D2, and D4 with ±10%
modifications by first-order algorithm.

Multiple Medium Percentage Structural Modification

For the multiple structural modification case T_o2_m23, two sets of truss
elements, i.e., all diagonals at the second and third bays, with medium percentage
(25%) modifications are introduced. Its modification vector is given as G� =
Gh�1 0�75 1�25 1�T . The first-scale factor 
�q1� is set to 0.5 with q1 = 20. In the second
stage, 
�q2� is set to 0.3 with q2 = 40. For the third stage, 
�q3� is set to 0.1 with
q3 = 60. The generic sequence is set as


�q� =

0�5� 0�5� � � � � 0�5︸︷︷︸

�20�

� 0�3� 0�3� � � � � 0�3︸︷︷︸
�40�

� 0�1� 0�1� � � � � 0�1︸︷︷︸
�60�


 �

Figure 13 Case T_o1_s124: termination indicator of engineering truss elements D1, D2, and D4 with
±10% modifications by first-order algorithm.
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20 WONG ET AL.

Figure 14 Case T_o2_m23: updating of engineering truss elements D2 and D3 with ±25%
modifications by second-order algorithm.

Termination criteria are set as the small percentage modification case. Although
third-order algorithm is suitable to update medium percentage modification as
indicated by the order analysis, our analysis on this more complicated truss is
limited to second-order at this stage. In the updating chart of Fig. 14, elements D1
to D4 fluctuate in large percentages in the first 10 updates. Then they oscillate in
large percentage until update 20. Afterward they change patterns and oscillate until
gradually toward the solution levels. The termination chart (as shown in Fig. 15)
indicates a two-peak pattern during the convergence. For the first peak, it jumps
from 6.95e–2 to 2.52e–1. Meanwhile for the second peak, it ramps from 1.43e–1

Figure 15 Case T_o2_m23: termination indicator of engineering truss elements D2 and D3 with ±25%
modifications by second-order algorithm.
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MODEL UPDATING OF TRUSS 21

to 2.73e–1. Then it drops gradually to update 42 and drops rapidly until update 48.
Afterward, it converges gradually toward the ultimate solution at update 85.

Single Large Percentage Structural Modification

From the order analysis, first-order algorithm is most appropriate to update
large percentage modification. Large percentage modification case T_o1_l4 with
Di = 0�5Gh is generated with the modification vector G� = Gh�1 1 1 1�5�T . For
large percentage structural modification, one can set the initial scale factor to a
medium percentage, e.g., 50% of the Young’s modulus of the original structure with

�q1� = 0�5Gh with q1 = 20. In the second stage, 
�q2� is set to 0.3 with q2 = 40. For
the third stage, 
�q3� is set to 0.1 with q3 = 60. The generic sequence is set as


�q� =

0�5� 0�5� � � � � 0�5︸︷︷︸

�20�

� 0�3� 0�3� � � � � 0�3︸︷︷︸
�40�

� 0�1� 0�1� � � � � 0�1︸︷︷︸
�60�


 �

The d norm (Fig. 16) oscillates in large percentage in the first stage until update 20.
In the second stage, its oscillation amplitude diminishes until update 40. Meanwhile,
in the third stage, its amplitude increases gradually until update 60. Finally, it
decreases gradually until the termination criterion is reached at update 72. In the
updating chart (Fig. 17), element D4 oscillates in a large range until update 20. Then
it ramps to a higher level and oscillates in a smaller range until update 40. It drops to
the solution level and oscillates in a smaller range until update 60. Afterward it rises
gradually toward the solution level. Similar pattern can be observed for elements B1,
B2, and B3, but with smaller ranges while they remain around the solution levels.

Figure 16 Case T_o1_l4: updating of engineering truss element D4 with +50% modification by first-
order algorithm.
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22 WONG ET AL.

Figure 17 Case T_o1_l4: termination indicator of engineering truss element D4 with +50%
modification by first-order algorithm.

CONCLUSION

Lagrange factor functions and Taylor series expansions are integrated to
define the multivariate polynomial functions between actual eigenparameters and
structural variants. Using the fixed-free beam model, the first-order algorithm is
the best for the small percentage modification, the third-order algorithm is the
best for the medium percentage modification, and the first-order algorithm is
the best for the large percentage modification. For single modification cases on
the engineering truss, the updating errors dropped to around one percent. For
multiple modifications cases, the updating errors were rapidly converged within few
percents. Development of third-order algorithm on the engineering truss is needed
for further investigation. As the algorithms are robust at small selected d.o.f. to total
d.o.f. ratios, they are validated to be effective in updating both single and multiple
modifications of the engineering truss.

NOTATION

The following symbols are used in this paper:

Gi (i = 1� 2� � � � � m) ith structural variant of the updated structure;
��k1k2���km� eigenparameter pairs corresponding to different

combination of Ki prescribed values of Gi

(denoted by G
�1�
i , G�2�

i � · · · and G
�Ki�
i �;

L
�ki�
i �G

�ki�
i � Lagrange factor function of the mth structural variant

at the kith interpolated stiffness value;
G = �G1�G2� � � � �Gm�

T structural variant vector of the updated structure;
G� = �G�1�G�2� � � � �G�m�

T structural variant vector of the actual structure;
� selected sets of eigenparameter pairs corresponding to

the updated structure;
�� selected sets of eigenparameter pairs corresponding to

the actual structure;
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�
p
� error vector in representing the kth eigenparameter

pair by polynomial function of structural variants
of order p;

G
�q�

structural variant vector at the qth number of
updates; and


�q� modification scale factor.
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