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Toward a Better Understanding
of Model Validation Metrics
Model validation metrics have been developed to provide a quantitative measure that
characterizes the agreement between predictions and observations. In engineering
design, the metrics become useful for model selection when alternative models are being
considered. Additionally, the predictive capability of a computational model needs to be
assessed before it is used in engineering analysis and design. Due to the various sources
of uncertainties in both computer simulations and physical experiments, model validation
must be conducted based on stochastic characteristics. Currently there is no unified vali-
dation metric that is widely accepted. In this paper, we present a classification of valida-
tion metrics based on their key characteristics along with a discussion of the desired
features. Focusing on stochastic validation with the consideration of uncertainty in both
predictions and physical experiments, four main types of metrics, namely classical hy-
pothesis testing, Bayes factor, frequentist’s metric, and area metric, are examined to pro-
vide a better understanding of the pros and cons of each. Using mathematical examples,
a set of numerical studies are designed to answer various research questions and study
how sensitive these metrics are with respect to the experimental data size, the uncertainty
from measurement error, and the uncertainty in unknown model parameters. The insight
gained from this work provides useful guidelines for choosing the appropriate validation
metric in engineering applications. [DOI: 10.1115/1.4004223]

1 Introduction

With the increase of computing capacity, computational models
play an increasing role as predictive models for complex engi-
neering systems. Model validation, defined as the process of
determining the degree to which a model is an accurate represen-
tation of the real world from the perspective of the intended uses
of the model [1,2], is often required to either choose among alter-
native models or decide whether a model is acceptable or not
before it is used for engineering analysis and design. The funda-
mental concept and terminology of model validation have been
intensively investigated by professional societies and standard
committees [3–6]; however, there still exists no unified approach.
Our interest in this work is to examine the existing metrics for val-
idation with the consideration of uncertainty in both predictions
and physical experiments and to achieve a better understanding of
the advantages and disadvantages of each method. Even though
design-driven validation metrics have been proposed in previous
research [7], our focus here is on assessing the agreement between
model predictions and physical observations as opposed to utiliz-
ing the design objective to guide a validation process.

By definition, a validation metric provides a quantitative mea-
sure of agreement between a predictive model and physical obser-
vations. In engineering design, the metrics become useful for
model selection, when alternative models are being considered
and the improvement of an updated model needs to be assessed
[8,9]. Additionally, the predictive capability of a computational
model needs to be evaluated before it is used in engineering analy-
sis and design [7,10]; such information is crucial in model-based
design applications [11–13]. Traditional validation activities are
frequently based on deterministic frameworks where no uncer-
tainty is acknowledged in both predictions and physical observa-
tions, and the discrepancy between these two sets of data is
qualitatively measured through visual inspection of graphic plots

[14–16]. However, the measure of agreement from “graphical val-
idation” is not rigorous and varies from person to person [17].
Further, graphical validation does not consider uncertainties
which are inevitable in model validation. Based on the work of
Kennedy and O’Hagan [18], several different sources of uncer-
tainty can be identified in engineering computer models and
experiments, including the lack of knowledge uncertainty result-
ing from model parameter uncertainty and model inadequacy; nu-
merical or algorithmic uncertainty introduced from numerical
implementations of the computer model such as numerical inte-
gration; experimental uncertainty in the form of measurement
error, systematic error, and random errors; and interpolation
uncertainty due to lack of samples. Depending on whether the
uncertainty can be reduced by collecting more data, the above
sources of uncertainty have been broadly classified into two cate-
gories in the literature, i.e., aleatory versus epistemic uncertainty,
for which various representations have been proposed correspond-
ingly [19,20]. In this work, it is assumed that stochastic character-
izations are used to quantify both types of uncertainty. As a result,
model validation needs to quantitatively compare statistical distri-
butions resulting from both simulation predictions and experimen-
tal observations. Ideally, a validation metric should also consider
the predictive capability of a computational model in both the
experimentally tested and untested design regions [21–23].

In this paper, existing validation metrics are classified into dif-
ferent categories based on a few key characteristics. As shown in
Table 1, validation metrics belong to either deterministic or sto-
chastic category based on whether uncertainty is considered in
comparing computational and experimental data [24–33]. More-
over, with the consideration of uncertainty, the responses of the

Table 1 Classification of validation metrics

Uncertainty
type

Number of response
quantities

Number of controllable
input settings

Deterministic Univariate Single
Stochastic Multivariate Multiple
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computer model prediction and experimental observation could be
univariate or multivariate. A single response of interest is consid-
ered in univariate validation [28,30–34], whereas multivariate vali-
dation refers to the case where there is more than one response
of interest from the same experiment. There are mainly two situa-
tions resulting in multivariate responses: (1) A physical experiment
and the computational model generate multiple responses or
measurements [15,35,36]. These responses usually have distinct
magnitudes and scales, e.g., acceleration versus displacement; (2)
The responses of interest measured from the same experiment is
a function of spatial [37] and temporal [22,38–40] variables. In
both cases, there is a strong correlation between any pair of
response quantities from the same experiment [21,41,42]. Further-
more, validation metrics may be employed at either a single
setting (validation) of controllable inputs or multiple settings of
controllable inputs over an intended prediction region. In the latter
case, the global predictive capability of a model should be assessed
[30,31].

In this paper, taking into account the uncertainty in both predic-
tions and experimental observations, four main types of validation
metrics, namely classical hypothesis testing, Bayes factor, fre-
quentist’s metric, and area metric, are examined to achieve a bet-
ter understanding of existing methods under the category of
stochastic validation. Our main focus is revealing their differences
in fundamental principles and the advantages and disadvantages
of each metric. Using mathematical examples, a set of numerical
studies are designed to answer various research questions and
study how sensitive these metrics are with respect to the experi-
mental data size, the uncertainty from measurement error, and the
uncertainty in unknown model parameters.

The remainder of the paper is organized as follows: the desired
features of a validation metric and an overview of stochastic vali-
dation metrics is provided in Sec. 2. A detailed examination is car-
ried out by numerical examples in Sec. 3 to illustrate the
effectiveness of each validation metric. This is followed by a sum-
mary and remarks in Sec. 4. Section 5 is the closure of the paper.

2 Overview of Validation Metrics

2.1 Desired Features of Validation Metrics. By combining
several different sources [22,43], including our own views, a list
of desired features (properties) of model validation metrics is pro-
vided as follows with the emphasis on assessing the accuracy of a
predictive model. In Sec. 3, the validation metrics will be exam-
ined against these desired features.

• A metric should be a quantitative measure of the agreement
between predictions and physical observations [22]. A metric
should also be objective, which means that given the predic-
tive and experimental data sets, the metric will produce the
same assessment for every analyst independent of their indi-
vidual preferences [43].

• Criteria used by an analyst/designer to accept a model for
prediction should be separate from the validation metric itself
[22], i.e., the criteria used for determining whether a model is
acceptable or not should not be a part of the metric which is
expected to provide a quantitative measurement only.

• The uncertainties resulting from both computer models and
experiments need to be considered, together with the correla-
tion among multivariate responses [41]. Ideally, the value of
a stochastic validation metric should degenerate to the value
from a deterministic comparison between scalar values when
uncertainty is absent [43].

• Additionally, the validation metric is desired to provide a sta-
tistical confidence level associated with the amount of avail-
able experimental data.

• A validation metric should differentiate between models con-
taining greater and lesser amounts of uncertainty, for example,
its value should not be improved if the analyst introduces addi-
tional sources of uncertainty into modeling, e.g., widening the

probability distribution of a model parameter to gain a greater
chance of encompassing physical observations.

• A metric should have the flexibility of measuring the agree-
ment of prediction and physical observations either at a sin-
gle setting or multiple settings of controllable inputs over an
intended prediction region to assess the global predictive
capability. This last feature is critical from the viewpoint of
engineering design.

2.2 Validation Metrics Considering Uncertainty in
Prediction. While various representations of uncertainty, such as
probabilistic [15,34,43–45] and interval-based methods [23,28,29,33],
are considered in the model validation literature, the comparative
study in this work is focused on the metrics that utilize the probabilis-
tic representation and treat the outputs from both model and experi-
ments as stochastic quantities. Validation with stochastic uncertainty
involves quantification of the statistical distribution of model predic-
tions and comparing the result with physical observations, which also
follows a statistical distribution [21,46]. When multivariate responses
are considered, the associated uncertainty needs to be characterized
by a multivariate joint probability distribution. In such situations, vali-
dation metrics should measure the agreement not only in the marginal
distribution of each response but also in the dependency among multi-
ple responses [41]. Other desired properties, shown in Sec. 2.1, should
also be taken into account. In the remaining part of Sec. 2.2, four vali-
dation metrics commonly used in engineering applications with the
consideration of stochastic uncertainty are introduced.

2.2.1 Classical Hypothesis Testing. The primary idea of clas-
sical hypothesis testing is to construct an unbiased test statistic
with the underlying hypothesis that the physical observations
come from the prediction populations. According to the estimated
test statistic from the available physical observations, one can
decide whether there is enough evidence to reject or not reject a
null hypothesis. Two hypotheses, called the null hypothesis H0

and the alternative hypothesis H1, should be defined before calcu-
lating a test statistic. Under the assumption that the null hypothe-
sis is true, a test statistic S which follows a certain distribution
(e.g., t distribution, F distribution, etc.) can be constructed. If the
observed value of the test statistic S

_
, based on the physical obser-

vations, falls outside of the critical region ½�Scrit; Scrit� of the test
statistic S, the null hypothesis will be rejected. The critical region
is constructed using a confidence level of 100ð1� aÞ% which
indicates ð100� aÞ% (e.g., 5%, 10%) of making a type I error,
i.e., rejecting a null hypothesis when it is actually true, Prfj S

_
j

> ScritjH0g [2,44]. On the other hand, classical hypothesis testing
also faces a type II error, i.e., accepting a null hypothesis when it
is actually false, Prfj S

_
j < ScritjH1g. Therefore, prespecifying a

higher confidence level 100ð1� aÞ%, i.e., lower a, would widen
our acceptance region, hence reducing the chance of rejecting a
valid null hypothesis but increasing the probability of accepting
an invalid null hypothesis [15,30,31,45].

The test statistic S may vary from case to case depending on the
hypothesis being tested, the underlying assumption, and the avail-
able sample size. Two common hypothesis scenarios include (1)
comparison of the means of the predictions and physical observa-
tions and (2) comparing the full statistical distributions of the pre-
dictions and physical observations. With the assumption that the
populations of the predictions and physical observations are nor-
mally distributed, the t-test statistic and F-test statistic could be
used for examining the consistency of mean and variance, respec-
tively [21,44]. Instead of comparing only the first two moments,
hypothesis testing can be extended to measure the differences
between the empirical and prediction cumulative density functions
(CDFs), e.g., Anderson–Darling test [47], Kolmogorov–Smirnov
(K-S) test [48], Cramér–von Mises test [48], etc. Further exten-
sions to multivariate scenarios are discussed in Ref. [41].

For the situation where only one physical experiment data point
is available at each validation site, the aforementioned test statis-
tics become inapplicable, since the estimated mean and variance
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of physical observations cannot be computed with only one sam-
ple. Hills and Trucano [15] proposed a hypothesis testing proce-
dure to handle such scenario, and the method has been applied in
several different fields [30,31,35,45,49]. Hypothesis testing states
that if the physical observation falls within the performance range
obtained from the 100ð1� aÞ% confidence bound of the predic-
tion distribution (could be a joint distribution for multivariate
responses [15,35]), the predictive model is consistent with the ex-
perimental results at this validation site (i.e., one does not have
enough evidence to reject the model); otherwise, one can reject
the model with 100ð1� aÞ% confidence level. The downside of
this method, as to be illustrated in the numerical study in Sec. 3, is
that the method tends not to reject an incorrect model, because the
single physical observation happens to fall inside the distribution
of a model prediction which has a large amount of uncertainty.

2.2.2 Bayes Factor. The Bayes factor approach to model val-
idation is rooted in Bayesian hypothesis testing. The statistical pa-
rameters (e.g., mean and/or standard deviation) of the prediction
distribution are treated as random variables and can be updated
via the observed physical data. The validation metric is based on
the ratio of posterior distributions of the null and alterative
hypothesis to infer whether the experimental data comes from one
of the statistical populations derived from the predictive model.

With the assumption of normality for predictions and physical
observations, the Bayes factor for a general case is defined as

B0 ¼
Prfdata jH0 : l ¼ l0;r ¼ r0g
Prfdata jH1 : l 6¼ l0;r 6¼ r0g

¼ Lðdata jl0; r0ÞÐ Ð
Lðdata j l; rÞf prrðl; rÞdldr

(1)

In the above formulation, l0 and r0 are the mean and standard
deviation of the model prediction, respectively. The above is an
extended formulation compared to the original Bayes factor
approach [21,44,47], where only the mean is examined. The
Bayes factor is interpreted as a ratio of relative likelihood of the
null hypothesis that the experimental data supports the predictions
and the alternative hypothesis that the data does not support the
predictions, which could follow any competing distribution. The
Bayes factor ratio can also be expressed as [32]

B0 ¼
f pstðl;r j dataÞ

f prrðl;rÞ

����
l¼l0 ;r¼r0

(2)

In Eqs. (1) and (2), Lðdata jl0;r0Þ is the likelihood of observing
the data under the null hypothesis; f prrðl; rÞ is the prior density
function of mean and standard deviation under the alternative hy-
pothesis and f pstðl; r j dataÞ is the posterior density function of
mean and standard deviation given the physical observations. If
both the prior probabilities of the null and alternative hypotheses
are 0.5, the corresponding model acceptance confidence is directly
related to the Bayes factor and is written as

PrðH0 : l ¼ l0; r ¼ r0 j dataÞ ¼ B0

1þ B0

(3)

Here, the Bayes factor acts as a metric in model validation, and
the predictive model is accepted at a test site if B0 > 1. A larger
Bayes factor indicates that the physical observations increasingly
favor the predictive model and vice versa. This validation metric
can be further extended to the multivariate case, where a joint
likelihood should be used in Eq. (1). For assessing the global pre-
dictive capability of a model, the current approach is to multiply
the values of Bayes factor at multiple validation sites [21]. Since
the values of Bayes factors could switch between larger than 1.0
and less than 1.0 at different validation sites, the product of all the
Bayes factors is sensitive to the locations of validation sites and

the end result does not necessarily provide a direct association
between its value and the global accuracy for a model.

Instead of focusing on rejecting the null hypothesis, Bayesian
model validation emphasizes accepting a null hypothesis with cer-
tain posterior confidence PrðH0 j dataÞ. One cannot accept the null
hypothesis in classical hypothesis testing even if the test statistic
falls into the critical region, but Bayesian model validation can
claim the acceptance with a certain confidence under the given
prior knowledge [50]. A better way to understand the Bayes factor
approach is that the prior distribution (knowledge) provides the
probability of all possible statistical populations that analysts
believe the physical observations may come from, and the poste-
rior distribution reflects the updated probabilities of a statistical
population that favor these physical observations. If the posterior
probability is larger than the prior probability, it means the physi-
cal observations support the population from the predictive model
and vice versa. Based on the posterior probability, the type I and
type II errors can be quantified when the analysts make a decision
to accept or reject the model.

In the most recent work of Rebba and Mahadevan [47], an
interval Bayesian hypothesis testing is proposed. The core idea is
to introduce an interval null hypothesis which includes the desired
model accuracy (or allowable error) instead of the point null hy-
pothesis in Eq. (1). The resulting Bayes factor will reflect the
model adequacy under the allowable error. Since the specification
of the interval (allowable error) is problem dependent, this paper
focuses on the point null hypothesis situation presented above that
is not problem dependent.

2.2.3 Frequentist’s Metric. Instead of making a “yes” or “no”
statement about the agreement between the predictive model and
physical observations from the classical hypothesis testing and/or
the Bayes factor approach, the frequentist’s metric proposed by
Oberkampf et al. [1,22,51] quantifies the agreement from a differ-
ent perspective by measuring the distance between the mean of
the predictions and the estimated mean of the physical observa-
tions. Due to the lack of sufficient physical observations, the
uncertainty of the distance is quantified by a confidence bound.
The validation metric, at validation sample site xi, is interpreted
as the estimated error in the predictive model ê with a confidence
level of 100ð1� aÞ% that the true error is in the interval

ê� ta=2ðN � 1Þ � sffiffiffiffi
N
p ; êþ ta=2ðN � 1Þ � sffiffiffiffi

N
p

� �
(4)

where ta=2ðN � 1Þ is the 1� a=2 quantile of the t distribution for
v ¼ N � 1 degrees of freedom. ê is the estimated prediction error
computed as ê ¼

PN
l¼1 ðye

l ðxiÞ � lm
xi
Þ=N. ye

l ðxiÞ is assumed to be
independently, identically, and normally distributed, and s is the
estimated standard deviation of the N repetitive physical observa-
tions. One can see from Eq. (4) that, as the amount of experimen-
tal data increases, the uncertainty of experimental observations
reduces and the confidence bound narrows correspondingly.

To assess the global predictive capability of the computational
model, a single global validation metric can be computed by inte-
grating the estimated errors over the entire test region. For exam-
ple, the average absolute error metric is defined as

êj jabs ¼
1

ðxU � xLÞ

ðxU

xL

lm
xi
� �yeðxiÞ

�� ��dxi (5)

with the average absolute confidence indicator as

CIj jabs ¼
ta=2ðN � 1Þ
ðxU � xLÞ

ffiffiffiffi
N
p

ðxU

xL

sðxiÞj jdxi (6)

In the frequentist’s metric, the decision criterion of accepting or
rejecting a model is separate from the metric itself. Since the fre-
quentist’s metric directly measures the distance between the
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predictions and experimental observations, the analysts/designers
can accept the predictive model with allowable accuracy based on
either the metric at a single validation site or the global metric
over a region, depending on the practical needs.

2.2.4 Area Metric. With the aim of measuring the agreement
of the entire distributions of predictions and observations, Ferson
et al. [29,43] proposed a validation metric which uses the area
between the prediction distribution Fm

xi
ð�Þ and the observation dis-

tribution Fe
xi
ð�Þ. The quantitative measure of the mismatch

between the two distributions is formulated as

d Fe
xi
;Fm

xi

� �
¼
ðþ1
�1

Fe
xi
ðxÞ � Fm

xi
ðxÞ

�� ��dx (7)

Compared to the aforementioned validation metrics, the area met-
ric has two important merits. First, the area metric measures the
differences between the entire distributions from the observations
and predictions. Second, the metric can be used when only a few
data points from predictions or experiments are available.

Built upon the idea of the area metric, the u-pooling method
was proposed by Ferson et al. [43] to measure the agreement
between full distributions of predictions and physical observations
when the data is sparse at multiple validation sites. A favorable
feature of the u-pooling method is that it allows for pooling all
physical experiments over the intended prediction domain at mul-
tiple validation sample sites into a single aggregated metric. The
method begins with calculating a u-value, ui, for each experimen-
tal data point by calculating the CDF at ye

l ðxiÞ as

ui ¼ Fm
xi
ðye

l ðxiÞÞ (8)

where Fm
xi
ð�Þ is the corresponding CDF generated by the predictive

model at the validation site xi where the experiment was con-
ducted. Figure 1(a) provides an illustration of calculating the val-
ues ui for three observations yeðx1Þ, yeðx2Þ, and yeðx3Þ at three
different validation sites. After pooling all values of ui for all
physical observations, a distribution of ui is characterized.
According to Ferson et al. [43], if each experimental observation
yeðxiÞ hypothetically comes from the same “mother” distribution
Fm

xi
ð�Þ, all ui are expected to constitute a standard uniform distribu-

tion on the range of [0, 1]. By comparing the area difference of
the empirical distribution of ui to that of the standard uniform dis-
tribution (depicted as the shaded region in Fig. 1(b) with a range
of ½0; 0:5�), henceforth termed “u-pooling” metric, can be used to
quantify the mismatch or dispersion of the distributions of outputs
from both experiments and predictions in a global sense. A larger
area difference indicates less agreement and, therefore, a less
accurate computer model.

Similar to the frequentist’s metric, the area metric does not
include any criterion of accepting the model, but only quantifies
the discrepancy between predictions and observations. Model ac-
ceptance will be determined according to the accuracy require-
ment of individual problems.

3 Numerical Case Study and Comparisons

3.1 Test Settings. In this work, a set of numerical studies are
designed to compare the performance of the four validation met-
rics against the desired features listed in Sec. 2.1. Two sets of test
problems are created. Test set 1 focuses on examining whether the
metrics can provide a correct judgment of model validity and how
sensitive the validation metrics are with respect to the experimen-
tal measurement error. Test set 2 is used to study whether the met-
ric can differentiate between models of greater and lesser
uncertainty. The purpose of test set 2 is to explore the desired fea-
ture of a validation metric to not increase the chance of accepting
a model after more uncertainty is introduced. In all cases, the
physical observation data is artificially generated using the follow-
ing model:

yeðx; hÞ ¼ sinðx� 0:5phÞ þ cosðhþ 0:25pÞ þ 0:2xþ ee (9)

where x (0 � x � 8) is the deterministic input that defines the set-
tings of controllable variables. h is a model parameter fixed at
h¼ 1.5. Measurement error, ee, follows a Gaussian distribution
Nð0;r2

e Þ and the variance is specified based on the test set. The
tested predictive models in test sets 1 and 2 are summarized in
Table 2. To study how sensitive the metric is with respect to the
number of physical observations, it is assumed that the measure-
ment error is pre-estimated and included as a part of the predictive
model.

3.1.1 Test Set 1. In test set 1, two predictive models are vali-
dated against the hypothetical physical observations. Model I is
considered to be a correct predictive model with model parameter
h exactly equal to 1.5; model II is set to be an incorrect predictive
model with h equal to 1.2. To examine the influence of the amount
of uncertainty from measurement errors, two cases, with the
standard deviation of measurement error re equal to 0.08 and 0.2,
respectively, are considered. The mean and 95% confidence inter-
val of model predictions and physical observations are plotted in
Fig. 2. Because model I is exactly the same as the physical obser-
vations, the curves of the computer model and the physical obser-
vations completely overlap with each other as shown in Fig. 2(a).
The same figure shows that model II is incorrect along x, but the
discrepancy varies from site to site. For example, there is no over-
lap between the confidence bounds of the predictions and

Fig. 1 Illustration of the u-pooling method. (a) u-values at multiple validation sites; (b) area
metric of mismatch between the empirical distribution of u-values and the standard uniform
distribution.
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observations in the range of x ¼ 1:0 � 3:5, but the two curves
overlap in the range of x ¼ 4:0 � 6:0. It is noted from Fig. 2(b)
that as the uncertainty of measurement error increases, the predic-
tions from the incorrect model II overlap more with the physical
observations from Eq. (9). Test set 1 represents the scenario where
the distributions of predictions and physical observations partially
overlap, e.g., at validation site x¼ 6.0. Ideally, the metrics should
indicate that model I is better than model II.

3.1.2 Test Set 2. The predictive models in this test set have
an uncertain model parameter h due to lack of knowledge. In
model IIIa, h follows a Gaussian distribution N(1.5, 0.12), whereas
the parameter in model IIIb follows N(1.5, 0.22). The standard
deviation of measurement error re is set to 0.08 in all cases of this
test set. As stated in Sec. 2.1, one desired feature of a validation
metric is that one cannot manipulate the improvement of a metric
by simply introducing additional uncertainty into the model, e.g.,
widening the distribution of a model parameter. The mean and
95% confidence bounds of model predictions versus the true phys-
ical observations are plotted in Fig. 3 for models IIIa and IIIb.
Since model IIIa and model IIIb both have a perfect match of h in
mean but model IIIb has a wider distribution of uncertainty of h (h
is a constant in Eq. (9) for generating the experimental data),
ideally, it is expected that the validation metric should favor
model IIIa rather than model IIIb.

3.2 Comparison of Results From Different Validation
Metrics. Due to the uncertain nature of physical observations,
statistical performance of the validation metrics is assessed in the
following comparative studies. For a given number of physical
experiments (e.g., N¼ 1, 5, 15), 1000 data sets of physical obser-
vations are randomly generated for the replicated experiments at
each validation site to evaluate the statistics of the values of the

validation metrics. Physical data is sampled from Eq. (9) with
h¼ 1.5 and the standard deviation of measurement error re speci-
fied as 0.08 or 0.2. Validation site x¼ 6.0 is used as a representa-
tive site for point validation. At this site, the predictions and
experimental observations partially overlap in test set 1 and the
predictions completely encompass the experimental observations
in test set 2.

3.2.1 Classical Hypothesis Testing. In our study, the confi-
dence level for each hypothesis test is set to 95%, indicating 5%
type I error. As the classical hypothesis testing focuses on whether
a model is rejected, the statistical performance of the validation
metric is captured by the percentage of sets of physical observa-
tions where the predictive model is rejected.
� Observations from test set 1. Figure 4 plots the trend of the

percentage of model rejection along with the number of physical
observations at validation site x¼ 6.0. As shown in Fig. 4, adding
more physical observations has a minimal impact on the rejection
rate of model I, the correct model. On the other hand, as the num-
ber of physical observations increases, the percentage of rejecting
model II, the incorrect model, at validation site x¼ 6.0 rises. This
observation indicates that the method has a higher chance to reject
the incorrect model. Hence, it is able to identify model I as a bet-
ter model. Comparing the two curves for model II in Fig. 4, it is
noted that a larger measurement error (re ¼ 0:2) results in a lower
rejection rate because the distributions of predictions and observa-
tions overlap more (see Fig. 2).
� Observations from test set 2. The general trend of the per-

centage of model rejection versus the amount of physical observa-
tions at site x¼ 6.0 is illustrated in Fig. 5 for models IIIa and IIIb.
As more physical observations are collected, the percentage of
rejecting model IIIa and model IIIb both rise as shown in Fig. 5.
Nevertheless, the increasing rate is lower for model IIIa, which

Table 2 Formulae of the predictive models

Test set Model ID Formula Notes

Set 1 I ym
I ðxÞ ¼ yeðx; h ¼ 1:5Þ Model parameter is exact

II ym
IIðxÞ ¼ yeðx; h ¼ 1:2Þ Model parameter is incorrect, predictions have discrepancy

Set 2 IIIa ym
IIIaðxÞ ¼ yeðx; h � Nð1:5; 0:12ÞÞ Mean of the model parameter is exact, uncertainty is smaller

IIIb ym
IIIbðxÞ ¼ yeðx; h � Nð1:5; 0:22ÞÞ Mean of the model parameter is exact, uncertainty is larger

Fig. 2 Physical observations (Exp) versus model predictions (Pred) for test set 1
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contains a smaller uncertainty of h. When the number of physical
observations is more than one, model IIIb, which has a wider dis-
tribution of uncertainty than model IIIa, always has a greater
chance to be rejected, which is a desirable feature of validation
metrics. However, if only one experimental data point is available,
the probability of both model IIIa and model IIIb to not be
rejected is zero, as shown in Fig. 5, indicating that the classical
hypothesis testing is unable to identify the better model in this
situation.
� Discussion. According to the desired features stated in Sec. 2.1

and the observations from the above studies, the advantages of the
classical hypothesis testing method are summarized as follows:

(1) It provides a quantitative test statistic as a validation metric,
and the observed value of the test statistic is objectively
determined by the available physical observations.

(2) As observed in test set 1, the better model always has a
lower chance to be rejected. By adding physical observa-
tions, the chance of rejecting an incorrect model always

rises. The above analysis indicates that the hypothesis test-
ing metric is capable of identifying the model which has
closer predictions with the experimental population.

(3) By considering the correlation among multiple responses in
the null hypothesis, the classical hypothesis testing can be
further extended to multivariate cases [21,41].

On the other hand, there are several disadvantages of this
metric:

(1) Since the classical hypothesis method focuses more on
model rejection rather than acceptance [2,32], not having
enough evidence to reject the null hypothesis (predictive
model) does not necessarily indicate that the predictive
model is valid. Even though the equivalent testing method
has been proposed to stress model acceptance rather than

Fig. 3 Physical observations (Exp) versus model predictions (Pred) for test set 2

Fig. 4 Percentage of rejecting model versus the number of
observations at validation site x 5 6.0 in test set 1

Fig. 5 Percentage of rejecting model versus the number of
observations at validation site x 5 6.0 in test set 2
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rejection [52], there are difficulties in defining the appropri-
ate test statistic [53,54].

(2) Small perturbations in the prespecified confidence level can
have a significant impact on rejecting or not rejecting a pre-
dictive model [23]. The type II error is usually difficult to
quantify for the classical hypothesis testing [47,55,56].

(3) When only one physical observation is available, the classi-
cal hypothesis method is more likely to not reject a model
when the distribution of predictions encompasses the true
distribution of physical observations as observed in test set
2 (see Fig. 5 for N¼ 1). This dramatically increases the risk
of type II error.

(4) The Boolean result, either rejecting or not rejecting, does
not quantitatively measure the discrepancy between predic-
tions and observations and is not applicable for the case
where the asymptotic limit of uncertainty goes to zero.

(5) The classical hypothesis testing method lacks the ability to
integrate the validation results at multiple sites, because the
conclusions (rejecting or not rejecting) at difference valida-
tion sites might conflict with each other.

3.2.2 Bayes Factor. To alleviate the impact of the chosen
prior in using the Bayes factor approach, the prior distributions
for the mean and standard deviation under the alternative hypothe-
sis are assumed noninformative. Using Eq. (1), the prior distribu-
tion of the mean follows a uniform distribution with the range of
½ðlm

xi
� rm

xi
Þ; ðlm

xi
þ rm

xi
Þ�, while the standard deviation is also uni-

form in the range of ½0:5rm
xi
; 2rm

xi
�; lm

xi
and rm

xi
represent the mean

and standard deviation of the outputs from predictive models at
validation site xi, respectively. In this scenario, the population of
the predictions from models I and II is compared to all competi-
tive populations within the prior mean and standard deviation to
infer which population the experimental data could be from. The
statistical performance of the validation metric is accounted for by
examining the variation of the Bayes factor B0.
� Observations from test set 1. The percentages of B0 larger

than 1.0 (i.e., the predictive model is acceptable) is listed in Table
3. It is found that as the experimental data increases from N¼ 1 to
5, and 15, the chance to accept the correct predictive model
(model I) rises, whereas it decreases for the incorrect predictive
model (model II). When the magnitude of uncertainty of measure-
ment error is increased from re ¼ 0:08 to re ¼ 0:2, the error does
not significantly impact the acceptance percentage for model I.
However, due to the overlaps between observations and predic-
tions, which results from the larger measurement error, a higher
percentage of accepting model II is observed as seen in Table 3.
To examine the variation of B0, the distributions of logðB0Þ at val-
idation site x¼ 6.0 are plotted in Fig. 6. Having logðB0Þ > 0 indi-
cates that physical observations favor the population of the
outputs from the predictive model but not all competitive popula-
tions within the prior distribution and vice versa. Also, the larger
logðB0Þ, the greater the confidence level of accepting the predic-
tive model. It can be seen from Fig. 6(a), as the number of physi-
cal observations increase, the distribution of logðB0Þ of model I
shifts toward the right, and the distribution moves toward the left
for model II. This indicates that when increasing the amount of
physical observations, the confidence level of accepting a model
increases for the correct predictive model and decreases for the
incorrect predictive model. By comparing Fig. 6(a) with Fig. 6(b),
it can be found that for the incorrect predictive model with a
larger measurement error, there is a shift of the distribution of
logðB0Þ toward the right. This indicates the confidence level of
accepting the incorrect model increases when more experimental
uncertainty is introduced.

The global predictive capability of a model is examined by
multiplying the Bayes factor from multiple validation sites
(x¼ 0.0, 1.0, …, 8.0). The products of the Bayes factor with
respect to different amounts of physical observation are shown in
Table 4.

Table 3 Percentage of B0 	 1.0 at x 5 6.0 among 1000 sets of
experimental data in test set 1

re ¼ 0:08 re ¼ 0:2

Model I Model II Model I Model II

N¼ 1 82.2% 53.6% 81.0% 75.8%
N¼ 5 81.1% 14.2% 82.1% 62.1%
N¼ 15 90.2% 0.7% 90.1% 55.7%

Fig. 6 Distributions of log(B0) at validation site x 5 6.0
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Results from both re ¼ 0:08 and re ¼ 0:2 overwhelmingly
favor model I compared to model II because the magnitudes of
the products of Bayes factors are significantly different for these
two models.
� Observations from test set 2. To avoid the impact from the

prior distributions, in test set 2, the priors of mean and standard
deviation of predictions under alternative hypothesis are set to be
identical for model IIIa and model IIIb and encompasses a large
possible range. The mean is set to be a uniform distribution within
a range of [�0.1, 0.25]; while the standard deviation is uniformly
distributed within [0.05, 0.3]. The percentage of accepting the pre-
dictive models and the associated mean of Bayes factors versus
the number of available physical observations is plotted in Fig. 7.
It is observed that both percentages of accepting model IIIa and
model IIIb decrease rapidly as the number of physical observa-
tions increases. Regardless of the number of physical observa-
tions, model IIIb always has a lower percentage of acceptance, but
also a smaller mean of Bayes factors, indicating the confidence of
accepting model IIIb is lower than accepting model IIIa.
� Discussion. Summarized from our study, the Bayes factor

approach has several advantages:

(1) The Bayes factor, as a quantitative validation metric,
focuses on model acceptance rather than model rejection.
As illustrated in the two test sets, even when only one ex-
perimental data point is available, the metric still has the
capability to identify the predictive model whose outputs
are closer to the experimental population.

(2) Widening the uncertainty bounds of predictions does not
improve the validation metric as shown in test set 2.

(3) By incorporating the analyst’s belief (prior) on the alterna-
tive hypothesis, the Bayes factor can be used to quantify
the adequacy (confidence level) of accepting the null hy-
pothesis (predictive model is correct) and assess the associ-
ated type I and type II errors in making a model accepting
or rejecting decision.

(4) To deal with the correlation among multiple responses, the
Bayes factor approach can be further extended to multivari-
ate cases by replacing the marginal prior distribution in Eq.
(1) to a joint distribution for multiple responses [21,41,42].

(5) As observed from the test sets, adding more physical data
drives the distribution of log(B0) (confidence level) toward
the right direction depending on whether the model is cor-
rect or not, which is a desired feature of validation metrics.

Despite its advantages, the Bayes factor approach has several
disadvantages as listed here:

(1) The Bayes factor is sensitive to the prior knowledge of the
alternative hypothesis [32,47] when there is a lack of physi-
cal observations.

(2) Since the metric is also rooted in hypothesis testing, it is
not applicable for comparing deterministic quantities, i.e.,
when the asymptotic limit of uncertainty goes to zero in the
system.

(3) Since the Bayes factors at different validation sites repre-
sent the different degrees (confidence levels) of accepting a
predictive model in a statistical sense [47], there is no direct
physical meaning when multiplying the values of the Bayes
factors at multiple locations for assessing the global accu-
racy of a predictive model.

3.2.3 Frequentist’s Metric. The error (distance) between the
means of predictions and observations is measured in the fre-
quentist’s metric as opposed to answering a yes or no question
about accepting or rejecting a model. To study the impact of the
amount of available experimental data, the variation of the esti-
mated errors between means are investigated and compared to
their true values.
� Observations from test set 1. In test set 1, the true prediction

errors at x¼ 6.0 are 0 and 0.093 for model I and model II, respec-
tively. The 95% confidence bounds of estimated errors obtained
from the 1000 randomly generated experiments versus the amount

Table 4 Mean value of the product of Bayes factor at multiple
locations among 1000 sets of experimental data in test set 1

re ¼ 0:08 re ¼ 0:2

Model I Model II Model I Model II

N¼ 1 1.46 2.0� 10�19 1.48 0.01
N¼ 5 5.34 5.0� 10�131 5.50 1.2� 10�14

N¼ 15 116.46 0.0 138.1 9.7� 10�59

Fig. 7 Impact from the amount of physical observations at x 5 6.0
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of physical observations are plotted in Fig. 8 for two different
magnitudes of experimental measurement error. It is observed that
adding more experimental data can reduce the variation of the
estimated errors. Also noted from Fig. 8, model I has a smaller
error magnitude compared to model II because model I’s error
magnitudes are closer to zero. Comparing Fig. 8(a) to Fig. 8(b), it
is noted that a larger measurement uncertainty results in a larger
variation of the estimated error. By introducing the associated
confidence bounds of the estimated error (see Eq. (4)), the fre-
quentist’s metric is capable of quantifying the variation of the esti-
mated error due to the lack of sufficient experimental data.

To measure the global predictive capability, the average abso-
lute error metric (see Eq. (5)) is derived as a global metric by inte-
grating the absolute error metric at multiple validation sites
(x¼ 0.0, 1.0,…, 8.0). The mean values of the global metric for the
1000 sets of physical observations are listed in Table 5 with N¼ 5
and 15 observations at each site. Results show adding more uncer-
tainty into the measurement error, i.e., increasing re, increases the
average error for both models. Results also indicate that model I,
the accurate predictive model, always has a smaller average abso-
lute error metric than model II.
� Observations from test set 2. Since the means of predictions

from model IIIa and model IIIb are extremely close to the mean
of the physical observations (see Fig. 3), the estimated errors of
these two predictive model are almost identical at x¼ 6.0.
Because the frequentist’s metric only measures the distance
between the means of computational and physical data, the magni-
tude of the model parameter uncertainty does not have any impact
on the metric value.

Discussion. Several advantages of the frequentist’s metric are
summarized as follows:

(1) The uniqueness of the frequentist’s metric is that the agree-
ment between the physical observations and model predic-

tions is objectively quantified by the distance between the
means of these two sets of data.

(2) The frequentist’s metric allows for integrating the metric
(distance) at multiple sites into a global metric to provide a
global assessment of model accuracy (nevertheless, this is
only done in a limited sense based on the discrepancy of
means).

(3) Without specifying a null hypothesis, the frequentist’s met-
ric completely separates out the criterion of accepting/
rejecting a model from the metric itself.

(4) The adequacy of measurement is quantified by the confi-
dence level associated with estimating the mean of the
physical observations as shown in Eq. (4).

(5) It is noted from Eq. (4), by increasing the amount of experi-
mental data (increasing N), the uncertainty bound of the
estimated mean of physical observations will shrink.

(6) When uncertainty is absent, the metric is reduced to a deter-
ministic metric, measuring the distance between two scalar
values.

Three disadvantages of the metrics are noteworthy:

(1) Since the metric can only measure the discrepancy of
means, comparing the means will be insufficient to validate
a predictive model as in test set 2. The metric also cannot
discern model predictability when the tested system has
non-negligible random variability.

(2) With multiple responses, the correlations among the
responses cannot be accounted for by only examining the
central tendency of data. Therefore, this metric is inapplica-
ble to the multivariate scenario.

(3) Equation (4) requires at least two physical observations to
compute the estimated error and the associated confidence
bounds. When only one experimental data point is avail-
able, the metric cannot be used.

3.2.4 Area Metric. In our study, the statistical performance of
the metric is examined by comparing the distributions of the met-
ric obtained from running 1000 sets of physical observations fol-
lowing the given measurement error in the test problems.
� Observations from test set 1. Since model I is an exact and

correct predictive model, the true area difference between the dis-
tributions of predictions and observations at the validation site

Fig. 8 95% confidence bounds of estimated error versus the number of physical observations at x 5 6.0 in test set 1

Table 5 Mean of average absolute error metric in test set 1

re ¼ 0:08 re ¼ 0:20

N¼ 5 N¼ 15 N¼ 5 N¼ 15

Model I 0.0283 0.0166 0.0714 0.0415
Model II 0.3520 0.3504 0.3586 0.3533
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x¼ 6.0 is expected to be zero. Alternatively, for model II (an
incorrect predictive model), the true area difference at x¼ 6.0
should be 0.0936 when the standard deviation of measurement
error is re ¼ 0:08. The distribution of the resulting area metric
from running 1000 data sets of physical observations with several
different sizes of physical experiments are plotted in Fig. 9(a). It
is observed that even after increasing the number of physical
observations from N¼ 5 to N¼ 15, the area difference between
model I and physical observations is greater than zero. The area
metric will never approach 0 (overestimate the true discrepancy),
even for model I, because the empirical CDF will never be exactly
the same as the true CDF. Therefore, there will always be a posi-
tive difference between the two CDF curves. The area metrics for
model II are distributed around the true value but with large
deviations.

If the amount of physical observations is not sufficient, the use
of empirical distributions for the physical observations may result
in underestimation or overestimation of the area metric. The
potential risk resulting from underestimating or overestimating
the area metric is examined by evaluating the chance (percentage)
of the area metric for model I to be greater than the area metric
for model II with the same experimental data set. In the case of
smaller measurement error of re ¼ 0:08, the resulting percentages
are 30.8%, 9.9%, and 1.1% corresponding to N¼ 1, 5, and 15,
respectively. If the magnitude of re is 0.2, the resulting probabil-
ities increase to 42.0%, 30.8%, and 19.6%, respectively. Compar-
ing Fig. 9(a) to Fig. 9(b), it is also noted that the larger
measurement error, the more the area metric deviates from the
true value. In conclusion, when there is a lack of sufficient physi-
cal observations or large measurement uncertainty, there exists a

Fig. 9 Distributions of area metrics at validation site x 5 6.0 in test set 1

Fig. 10 Distributions of global metrics (u-pooling metrics) in test set 1

071005-10 / Vol. 133, JULY 2011 Transactions of the ASME

Downloaded 12 Oct 2012 to 142.244.211.62. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



high risk of underestimation or overestimation of the true area
metric.

Despite the above problem, an advantageous characteristic of the
area metric is that it can pool all the sparse physical observations at
multiple validation sites into a global area metric, the so-called u-
pooling metric [8,43]. Figure 10 plots the distributions of the global
metric for the predictive models. The physical observation data was
collected at multiple validation sites (x¼ 0.0, 1.0, …, 8.0) with
N¼ 1 and 5 observations at each site. As with the previously dis-
cussed area metric, the u-pooling metric also contains a risk of
underestimation or overestimation. The distributions can be seen in
Fig. 10 to be moving toward the true values as the number of physi-
cal observations increases, while the range of variation becomes
smaller.

The potential risk of identifying model I as a worse model than
model II is examined by computing the percentages when the
u-pooling metric of model I is larger than that of model II. In the
case of smaller measurement error of re ¼ 0:08, the risk is only
1.0% and 0.0% corresponding to the physical sample sizes N¼ 1
and 5, respectively, while the risk is 3.6% and 0.0% for the case
re ¼ 0:20. It is interesting to note that the results from using the
u-pooling metric over a prediction domain are less influenced by
the sample size compared to using the area metric at given settings
of controllable variables. This is because the u-pooling method
pools all the physical observations at multiple validation sites into
one metric. The method provides more evidence to evaluate the
model accuracy and therefore lowers the risk due to the lack of
sufficient data uncertainty.
� Observations from test set 2. A similar study is performed on

test set 2. The results at validation site x¼ 6.0 are provided in
Fig. 11. It is noted that the distribution of the area metric of the
predictive model IIIa, which has a smaller uncertainty of the
model parameter, is closer to zero compared to model IIIb. This
indicates that the area metric can differentiate between models
containing greater and lesser amounts of uncertainty.
� Discussion. The area metric possesses several desirable fea-

tures for validation metrics as described in Sec. 2.1. These advan-
tages are listed as follows:

(1) The method directly uses the area between the distributions
of predictions and physical observations as an objective
metric to quantify the agreement. Therefore, widening the
distribution of a predictive model will not increase the
chance of accepting an incorrect model, because a wider
distribution will most likely lead to a greater discrepancy.

(2) The area metric generalizes to a deterministic comparison
when uncertainty goes to zero and degenerates the compari-
son of two stochastic quantities to a comparison between two
scalar values from predictions and physical observations.

(3) One distinctive advantage of the method is its capability of
integrating sparse physical observations at multiple valida-
tion sites to assess the global predictive capability over a
specified domain of interest.

Nevertheless, a few disadvantages of the area metric are noted
as follows:

(1) When there is a lack of sufficient experimental data, using
the empirical distribution derived from physical observa-
tions may lead to underestimation or overestimation. Thus,
the existing area metric does not provide a confidence level
of the metric due to the lack of sufficient data.

(2) The existing area metric only compares marginal distribu-
tions; therefore, it is better suited for single response or
uncorrelated multiple responses. One possible extension for
multiple correlated responses is to compare the joint CDFs
from physical observations and model predictions, a topic
worth further investigation.

4 Summary of Observations and Remarks

Based on the desired features of model validation metrics pre-
sented in Sec. 2.1 and the observations from the tests in Sec. 3,
the main characteristics of each validation metric tested are sum-
marized and compared in Table 6. These findings are expected to
provide a general guideline for selecting a proper validation met-
ric or a combination of several metrics for practical applications
when measuring the accuracy of a predictive model is the end
goal.

In summary, both classical hypothesis testing and Bayes factor
belong to the category of hypothesis testing methods. The null hy-
pothesis is usually defined as the predictive model is accurate, but
the alternative hypothesis is often difficult to determine. In classi-
cal hypothesis testing, since the alternative hypothesis is defined
as any model different from the predictive model, type II error
cannot be assessed. Using Bayes factor, a prior validity probabil-
ity for all possible alternative populations where the experimental
data might be from is provided by analysts. The method allows us
to compute the type I and type II errors in a Bayesian framework.
Additionally, if the analysts/designers have some knowledge
about the possible alternatives, the Bayes factor method is an
effective method to incorporate such information. If the analysts
do not have prior knowledge, then Bayes factor can be misleading
because it is sensitive to the prior. Overall, hypothesis testing will
only answer a yes or no question when assessing whether the pre-
dictive model is accurate or not at certain validation sites. The
method cannot provide insight into how accurate a predictive
model is compared to the true physical system. Although Bayes
factor can provide an assessment of the global predictive capabil-
ity by multiplying Bayes factor values at multiple locations, the
product does not have a clear physical meaning.

Instead of making a yes or no conclusion, the frequentist’s met-
ric and the area metric quantify the agreement of predictions and
observations by measuring the distance between the means or the
entire distributions of the two sets of populations. We refer to
these validation metrics as distance-based methods. Distance-
based metrics have an intuitive physical meaning that allows ana-
lysts to integrate the results at multiple validation sites into a
global metric to assess the global predictive capability of a model
over a region of interest, which is critical for using predictive
models in engineering design and optimization [10–13]. These
metrics can be used in model selection by comparing the accuracy
of different models based on the distance measurement. The dis-
tance measurement can also be useful for quantifying the model
error to update the model prediction when ignoring the systematic

Fig. 11 Distributions of area metrics at validation site x 5 6.0
for test set 2
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uncertainty that exists in the experimental input conditions and/or
response measurements. Further, the criterion of accepting a
model or not is completely separated out from the metric itself
and should be determined by the allowable error based on practi-
cal needs.

In practice, when only the central trend is being evaluated, the
frequentist’s method is sufficient. When there is a lack of suffi-
cient experimental data, the associated adequacy (confidence
level) of the frequentist’s metric is quantified by the confidence
bound, and the confidence bound will narrow when more experi-
mental data is added. Since the area metric measures the discrep-
ancy of the distributions from the predictive model and
experiments, the metric is extremely useful when the dispersion or
variance of a response is of importance in validation. On the other
hand, the area metric is unable to quantify the uncertainty due to a
lack of sufficient data, for which the analyst needs to consider the
potential risk of overestimation and underestimation as observed
in the test problems.

Additionally, as observed from test set 1, a larger measurement
error would result in either a lower chance to reject the inaccurate
model when using hypothesis testing-based metrics or a greater
variation when using the distance-based metrics. Therefore, the
measurement error should be eliminated as much as possible
before conducting model validation.

5 Closure

Model validation metrics are important to select the best model
from several different candidates and to facilitate the model
updating process in a practical validation application. In this pa-
per, by combining the selected views from the literature and our
own views, we highlight a set of desired features that model vali-
dation metrics should possess. Four popular stochastic validation
metrics have been reviewed and examined against the desired fea-
tures using carefully designed numerical examples. A summary of
comparison is provided in Sec. 4 and the findings can be used as a
general guideline for choosing the appropriate validation metric
or metrics given by the application.

We believe the hypothesis testing-based validation metric is
only suitable for reaching a Boolean conclusion (yes or no) in
model validation, whereas the distance-based method is not only
feasible for model selection but can also be used to quantify the
model error to update the model prediction in practical validation
activities. Global predictive capability of a model can be easily
obtained by integrating the values of distance-based metrics at
multiple validation sites. However, due to a lack of sufficient data,
the distance-based metrics may underestimate or overestimate the
real discrepancy. To avoid this, the confidence bound of the dis-
tance-based metrics needs to be quantified.

It should be noted that the focus of this paper is on examining
the metrics for assessing the agreement (accuracy) between a

predictive model and physical observations, but not on the best
metric for assessing model validity. In other words, our emphasis
is on validating the prediction for a particular quantity of interest
rather than on validating the model itself. Beyond accuracy, other
important aspects, such as whether a model captures the general
trend of performance, may be more important to consider in cer-
tain applications. The subject of “model validity” is broader and
deeper than what is currently covered in this paper. Additionally,
this work is focused on the probabilistic (stochastic) representa-
tion of uncertainty and does not intend to compare the existing
metrics that introduce other types of uncertainty representations,
e.g., a mixture of probabilistic and interval representations for
modeling both aleatory and epistemic uncertainties. Besides, this
work is focused on using a metric as a measure of the accuracy of
a predictive model compared to physical observations, and not on
how to set the bound of an accuracy requirement in model accep-
tance. In this later task, it is important to take into account the
affordable and achievable experimental resolution uncertainty as
it sets a lower bound. In addition, one should keep in mind that a
validation effort should not be constrained by the available data,
i.e., better observational data may need to be sought to achieve
better validation in some applications. Finally, it should be noted
that the systematic uncertainty that exists in the experimental
input conditions and/or response measurements is not considered
in the current study.
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Nomenclature
CDF ¼ cumulative density function
PDF ¼ probability density function

ymðxÞ ¼ predictive model
ye

l ðxiÞ ¼ the lth repetitive physical observation at validation sam-
ple site xi

H0 ¼ null hypothesis
H1 ¼ alterative hypothesis

f m
xi
ð�Þ ¼ PDF of predictions at validation sample site xi

Fm
xi
ð�Þ ¼ CDF of predictions at validation sample site xi

lm
xi
¼ mean of predictions at validation sample site xi

rm
xi
¼ standard deviation of predictions at validation sample

site xi

f e
xi
ð�Þ ¼ PDF of physical observations at validation sample site xi

Fe
xi
ð�Þ ¼ CDF of physical observations at validation sample site xi

le
xi
¼ mean of physical observations at validation sample site xi

re
xi
¼ standard deviation of physical observations at validation

sample site xi

Table 6 Summary of the main characteristics of the validation metrics

Classical hypothesis Bayes factor Frequentist’s metric Area metric

Quantitative measure Yes Yes Yes Yes
Objective measure Yes No Yes Yes
Excludes any belief and criterion of
accepting model

No No Yes Yes

Includes all uncertainty sources Yes Yes No Yes
Feasible for multivariate case Yes Yes No No, but can

be extended
Generalizes deterministic comparisons No No Yes Yes
Considers confidence level associated
with amount of experimental data

Yes Yes Yes No

Model not improved by widening the
distribution of model parameter

Yes, if experimental data
is more than one; otherwise No

Yes No Yes

Assesses global predictive capability No Yes, but needs
improvement

Yes Yes
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�yeðxiÞ ¼ estimated mean of repetitive physical observations at val-
idation sample site xi

ee ¼ measurement error
re ¼ standard deviation of measurement error
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