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Abstract
In the general analytical target cascading method, a weighted-sum formulation is commonly employed to coordinate the
inconsistency between design points and assigned targets at each level while minimizing the cost. The determination of
weighting coefficients is problem dependent. Improper selections of the weighting coefficients may result in incorrect
solutions. To avoid using the weighting coefficients, a genetic algorithm optimization method is developed for the hier-
archical design problem by using the Pareto set coordination method. The Pareto sets are obtained from the optimal
solutions at each level while each subsystem chooses one solution based on the detailed information. Instead of setting
point-valued targets and weighting coefficients, Pareto sets are computed and updated at multiple levels until targets are
satisfied. Therefore, the genetic algorithm optimizer with Pareto set coordination for analytical target cascading can
avoid choosing weighting coefficients. By doing so, the proposed method explores completed feasible solutions at each
level and improves the convergence process. The results for the proposed method and the weighted-sum analytical tar-
get cascading are compared to illustrate the performance of the proposed method.
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Introduction

Design of an engineering system is often a challenging
task due to its complexity. Originally, an engineering
system design problem minimizes the cost subject to
multiple disciplinary constraints, but it may be unprac-
tical to solve the entire problem in one optimization
formulation. One of the most important optimization
algorithms, analytical target cascading (ATC) method
(Allison, 2004; Kim et al., 2002, 2003a), has been devel-
oped and widely used to solve complex engineering
design problems (Kim et al., 2003b; Kokkolaras et al.,
2002, 2004; Li et al., 2008b). In the ATC method, the
all-in-one (AIO) optimization formulation is decom-
posed into a hierarchical multilevel structure with one
system level and multiple subsystem levels. For the sys-
tem or each subsystem design problem, a multi-
objective optimization problem is formulated. The pur-
pose of using the multi-objective optimization model is
to minimize the cost and meanwhile to reduce the
inconsistency between different subsystems.

The deviations between the subsystem variables and
the assigned targets (Balling and Sobieszczanski-Sobieski,
1995, 1996) have been considered as discrepancy

functions. The discrepancy functions were then penalized
in the objective functions (Demiguel and Murray, 2000;
Gu et al., 2006) to find the optimal solution and mean-
while diminish the inconsistency during the optimization
process. The ATC method considers the weighted discre-
pancy functions of design variables (Allison et al., 2005;
Michelena et al., 2003) in the formulation of multi-
objective optimization models. The weighting coefficients
are then used to coordinate the targets and response in
the solution process.

In the solution process of the general ATC, the sys-
tem level assigns design targets to subsystems. In sub-
systems, the optimal solutions are identified by
minimizing deviations between the subsystem variables
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and the targets subjected to the local constraints. The
local optimal solutions are then updated back to the
system level as design responses. The weighted discre-
pancy functions by considering the deviation of targets
and the response points are minimized during the opti-
mization processes of ATC. The selection of the weight-
ing coefficients is vital for decreasing the discrepancy
functions and coordinating the inconsistency between
design points and assigned targets at each level during
the optimization process. In other words, the correct
optimal solutions can be obtained only when weighting
coefficients are properly selected. Many approaches
(Kim et al., 2006; Li et al., 2008a; Michalek and
Papalambros, 2005a, 2005b; Tosserams et al., 2006)
have been developed for the determination of proper
weighting coefficients. Michalek and Papalambros
(2005a) proposed a weighting coefficient updating
method using the Karush–Kuhn–Tucker (KKT) first-
order necessary conditions combined with user-
specified inconsistency tolerances. Tosserams et al.
(2006) developed an augmented Lagrangian coordina-
tion method with the alternating direction method of
Lagrangian multipliers. Kim et al.(2006) formulated a
Lagrangian dual coordination method to update the
weighting coefficients. Li et al. (2008a) provided a diag-
onal quadratic approximation method by linearizing
the cross terms of the discrepancy functions. Methods
presented in Tosserams et al. (2006), Kim et al. (2006),
and Li et al. (2008a) took the discrepancy functions as
equality constraints and used different penalty terms to
coordinate those equality constraints. The convergence
rate of these methods becomes slow when the discre-
pancy tends to be small, and the penalty terms might
oscillate during the iteration process.

Genetic algorithm (GA) can search different regions
of a solution space to make it possible to find a diverse
set of solutions for difficult optimization problems with
nonconvex, discontinuous, and multi-modal objective
functions with the selection, crossover, and mutation
operations (Gen and Cheng, 2000; Viennet et al., 1996),
and GA has been widely used to solve multi-objective
optimization problems (Deb et al., 2002; Yousefi and
Yusuff, 2013; Zhang et al., 2013). For an engineer or
designer, reducing the design space to only the Pareto
set allows the engineer to focus on important trade-offs
without considering the full range of all possible para-
meters. Also, Pareto set can provide maximal informa-
tion for the decision makers in the multi-objective
optimization design process. Therefore, Pareto set solu-
tion is the pursuit for decision maker in the compli-
cated engineering problems (Bradner and Davis, 2013;
Kubica and Woźniak, 2012; Pardalos et al., 2012).

In this work, a GA optimization method with
Pareto set coordination is formulated for the hierarchi-
cal design problem. The Pareto set coordination

process is introduced to avoid setting point-valued tar-
gets and weighting coefficients to the subsystems.
During the optimization process, Pareto sets using GA
optimizer are obtained at each level and propagated to
provide detailed performance ability of each subsystem.
The multi-objective optimization problem is solved at
the system level first. From the system-level optimiza-
tion model, Pareto sets are obtained. The Pareto sets
are then propagated to subsystems as targets. At the
subsystem level, each subsystem formulates a multi-
objective optimization problem based on the targets
and Pareto solutions from system level and uses GA
optimizer to solve this problem, and the optimal solu-
tion is sent back to the system level as responses. Based
on the responses from the subsystem level, a new multi-
objective design model is formulated at the system
level. After that, solutions from the new design model
are used to update the Pareto sets, which are later used
as the new targets for the subsystems. The iteration
continues until all the subsystems achieve their targets.

The remainder of this article is given as follows. In sec-
tion ‘‘General ATC,’’ the general ATC is briefly reviewed.
In section ‘‘Pareto set coordination method,’’ the Pareto
set coordination method is introduced using GA optimi-
zer, and the solution process is presented with a numeri-
cal example. Following that, in section ‘‘Reliability-based
design optimization of a cylindrical gear reducer,’’ a speed
reducer design optimization problem is studied to demon-
strate the performance of the proposed method.

General ATC

A generalized AIO model for complex engineering
problem is given in equation (1). In this model, a large-
scale system design is formulated and solved with fully
integrated multidisciplinary analysis. This framework is
usually not practical. To reduce the complexity, it may
be demanding to decompose an engineering system into
multiple manageable subsystems hierarchically or non-
hierarchically. ATC is developed for the design optimi-
zation of hierarchical multilevel systems. Therefore, by
using the ATC method, the model presented in equa-
tion (1) is decomposed into n subsystems, and each sub-
system is decomposed into some components. The
multilevel structure is shown in Figure 1

min: fsys

s:t: gsys(x, z) � 0

hsys(x, z)= 0

gsub, i(xi, ysub, i, ui) � 0

hsub, i(xi, ysub, i, ui)= 0

fsys = fsys(x, z)

i=1, 2, . . . , n

ð1Þ
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Form Figure 1, we can see that ATC is a multidisci-
plinary optimization (MDO) method for multilevel
hierarchically decomposed engineering system. A two-
level structure is presented for illustration. The top level
is the system level and the lower level is the subsystem
level. The design objective at the system level is to mini-
mize the system performance and the deviation of the
subsystem response with targets. The objective function
in subsystem level is to achieve the targets assigned by
system as far as possible. Both the design optimization
models of system level and subsystem level are multi-
objective. In the general ATC method, a weighted-sum
formulation is usually used to coordinate the inconsis-
tency between design points and assigned targets at
each level while minimizing the cost. The design models
at system level and subsystem level are given in equa-
tions (2) and (3), respectively

min: fsys +
Xn

i= 1

wx, i(xsub, i � xsub
sub, i)

2

+
Xn

i= 1

wy, i(ysub, i � ysub
sub, i)

2

s:t: gsys(x, z) � 0

hsys(x, z)= 0

fsys = fsys(x, z)

i=1, 2, . . . , n

ð2Þ

min: wx, i(xsub, i � x
sys
sub, i)

2 +wy, i(ysub, i � y
sys
sub, i)

2

s:t: gsub, i(xsub, i, ysub, i, ui) � 0

hsub, i(xsub, i, ysub, i, ui)= 0

ð3Þ

In the weighted-sum formulation, the weighting
coefficients are determined for each objective function.
However, the selection of the weighting coefficients is
problem dependent, and improper selections of the
weighting coefficients may lead to, unfortunately, slow

convergence, oscillation, or even incorrect solutions.
Pareto set can explore all the feasible solutions in
design space and provide better understanding to the
performance of system. In the hierarchical interactive
structure, Pareto set makes more information be propa-
gated between system level and subsystem level, which
also avoids setting weighting coefficients. Therefore,
the Pareto set coordination procedure with the help of
GA is provided in section ‘‘Pareto set coordination
method.’’

Pareto set coordination method

Given a multi-objective optimization problem

min : f(x)= ½f1(x), f2(x), . . . , fn(x)�
s:t: h(x)=0, g(x)=0

ð4Þ

the feasible domain D is defined as

D= x h(x)=0, g(x)=0jf g ð5Þ

A point x0 in the feasible domain D is a Pareto opti-
mal if and only if there is no another x in D such that
fi(x) � fi(x0) for all i= f1, 2, . . . , ng and fi(x)\fi(x0)
for at least one i.

An important task for multi-objective optimization
is to identify Pareto set points. The question is how to
judge a point in the Pareto set. To solve this problem,
the fitness function is employed as

G(xi)= 1�max
i6¼j

min (f i
1 � f

j
1 , f i

2 � f
j

2 , . . . , f i
n � f j

n)
� �� �

ð6Þ

The objectives in equation (6) should be scaled to a
range [0 1], given in equation (7)

fi(x)=
fi(x)� fi, min(x)

fi, max(x)� fi, min(x)
ð7Þ

Pareto set at system level

For a design problem at system level, to coordinate two
subsystems and one common variable, the objective
function is given by

Fsys = fsys +w1(x1 � xsub
1 )2 +w2(x2 � xsub

2 )2

+w3(y1 � ysub
1 )2 +w4(y1 � ysub

2 )2
ð8Þ

We assume that there are m solutions at the system
level, and the deviation function is defined as
d

sys, j
sub, i =(xi � xsub

sub, i)
2, j=1, 2, . . . ,m, the Pareto set at the

system level of the kth iteration is denoted as matrix dsys, k

System

Subsystem Subsystem Subsystem

Component Component

Figure 1. The hierarchically decomposed structure.
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dsys, k =

d
sys, 1
sub, 1 d

sys, 1
sub, 2 d

sys, 1
y1 d

sys, 1
y2

d
sys, 2
sub, 1 d

sys, 2
sub, 2 d

sys, 2
y1 d

sys, 2
y2

..

. ..
. ..

. ..
.

d
sys,m
sub, 1 d

sys,m
sub, 2 d

sys,m
y1 d

sys,m
y2

2
66664

3
77775

Pareto set at subsystem level

For design problems at the subsystem level, the objec-
tive function is

Fsub =wi(xi � x
sys
i )2 +wy(yi � y

sys
i )2 ð9Þ

If there are l solution at the ith subsystem level, and
the deviation function is defined as d

sub, j
sub, i =(xi�x

sys
sub, i)

2,
j=1,2, . . . , l, the Pareto set in the ith subsystem of the
kth iteration is denoted as matrix d

sub,k
sub, i

d
sub, k
sub, i =

d
sub, 1
sub, i d

sub, 1
y, i

d
sub, 2
sub, i d

sub, 2
y, i

..

. ..
.

d
sub, l
sub, i d

sub, l
y, i

2
66664

3
77775

Solution process

The multi-objective optimization models at the system
level and subsystem levels are presented in equations
(10) and (11)

min: fsys

min: (xsub, i � xsub
sub, i)

2

min: (ysub, i � ysub
sub, i)

2

s:t: gsys(x, z) � 0

hsys(x, z)= 0

fsys = fsys(x, z)

i= 1, 2, . . . , n

ð10Þ

min: (xsub, i � x
sys
sub, i)

2

min : (ysub, i � y
sys
sub, i)

2

s:t: gsub, i(xsub, i, ysub, i, ui) � 0

hsub, i(xsub, i, ysub, i, ui)= 0

ð11Þ

Numerical procedure

Figure 2 shows the numerical procedure of the pro-
posed method.

The procedure of Pareto set pursuing in multilevel
multi-objective design optimization problem is illu-
strated as follows. A well-known ATC problem is taken
from the literature (Kim et al., 2006) to facilitate the

explanation of the procedures. The AIO formulation of
this geometric problem is expressed by equation (12)

min: x2
1 + x2

2

s:t: g1 =(x�2
3 + x2

4)3 x�2
5 � 1 � 0

g2 =(x�2
6 + x2

5)3 x�2
7 � 1 � 0

g3 =(x2
8 + x�2

9 )3 x�2
11 � 1 � 0

g4 =(x2
10 + x�2

8 )3 x�2
11 � 1 � 0

g5 =(x2
11 + x�2

12 )3 x�2
13 � 1 � 0

g6 =(x2
11 + x2

12)3 x�2
14 � 1 � 0

h1 = x1 � (x2
3 + x�2

4 + x2
5)

1=2 = 0

h2 = x2 � (x2
6 + x2

7 + x2
5)

1=2 = 0

h3 = x3 � (x2
8 + x�2

9 + x�2
10 + x2

11)
1=2 = 0

h4 = x6 � (x2
12 + x2

13 + x2
14 + x2

11)
1=2 = 0

x1, x2, . . . , x14 � 0

ð12Þ

The geometric problem is decomposed into two-level
structure, with constraints g1, g2, h1, and h2 in the sys-
tem level; constraints g3, g4, and h3 in subsystem 1;
while constraints g5, g6, and h4 in subsystem 2, which
are shown in equations (13), (14), and (15), respectively

2
,

2
,

System level

Multi-objective optimization problem

Minimize: 

Minimize: ( )

Minimize: ( )

subject to system constraints

sys

sub
i sub i

sub
i sub i

f

x x−

−y y

GA  multi-objective optimizer

Multiple trade off solutions

Subsystem level design problem

Choose one solution

2
,

2
,

Subsystem level

Multi-objective optimization problem

Minimize: ( )

Minimize: ( )

subject to subsystem constraints

sys
i sub i

sys
i sub i

x x−

−y y

GA  multi-objective optimizer

Multiple trade off solutions

System level design problem

Choose one solution

Figure 2. Solution process in system and subsystem.
GA: genetic algorithm.
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min : ½x2
1 + x2

2, (x3 � xsub
3 )2, (x6 � xsub

6 )2

(x11 � xsub, 1
11 )2, (x11 � xsub, 2

11 )2�
s:t: g1 =(x�2

3 + x2
4)3 x�2

5 � 1 � 0

g2 =(x�2
6 + x2

5)3 x�2
7 � 1 � 0

h1 = x1 � (x2
3 + x�2

4 + x2
5)

1=2 = 0

h2 = x2 � (x2
6 + x2

7 + x2
5)

1=2 = 0

x1, x2, . . . , x7, x11 � 0

ð13Þ

min : ½(x3 � x
sys
3 )2, (x11 � x

sys
11 )

2�
s:t: g3 =(x2

8 + x�2
9 )3 x�2

11 � 1 � 0

g4 =(x2
10 + x�2

8 )3 x�2
11 � 1 � 0

h3 = x3 � (x2
8 + x�2

9 + x�2
10 + x2

11)
1=2 = 0

x3, x8, x9, x10, x11 � 0

ð14Þ

min : ½(x6 � x
sys
3 )2, (x11 � x

sys
11 )

2�
s:t: g5 =(x2

11 + x�2
12 )3 x�2

13 � 1 � 0

g6 =(x2
11 + x2

12)3 x�2
14 � 1 � 0

h4 = x6 � (x2
12 + x2

13 + x2
14 + x2

11)
1=2 = 0

x6, x11, x12, x13, x14 � 0

ð15Þ

Step 1. Initial random sampling in the system level
design problem

First, generate 50 sampling points in system level satis-
fying the constraints and calculate the fitness for each
sampling point. Second, crossover and mutation

operations are used to the sampling points to get the
optimal design points and assign the optimal design
points as targets to subsystems. The optimal solution
set is shown in Figure 3.

From Figure 3, we can find that system’s perfor-
mance is not monotonic with the change of deviation
with the response from subsystems. Based on the opti-
mal solution set, designer can choose one point as tar-
get set to subsystems.

Step 2. Optimization design in subsystem level

Based on the targets from system level, generate sam-
pling points satisfying constraints in subsystems and
calculate the fitness function value of subsystems. Then,
using crossover and mutation operations, the optimal
design points in subsystems can be obtained and propa-
gated to system level as response. The solution set of
subsystems are presented in Figure 4.

Step 3. Repeat Step 1 and Step 2 until the deviation
between targets and response can be accepted.

Reliability-based design optimization of a
cylindrical gear reducer

The design optimization of a two-stage helical cylindri-
cal gear reducer is employed to demonstrate the pro-
posed method. The design objective is to minimize the
speed reducer weight under the satisfaction of
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Figure 3. The optimal solution set in system level.
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reliability constraints. The design variables are teeth
module, number of pinion teeth, face width, and helix
angle both in high-speed level and low-speed level. The
transmission ratio is also taken as design variable. The
information of design variables is listed in Table 1.

In the target cascading process of the proposed
method, the sensitivity of the system to each subsystem
can also be calculated. The sensitivity provides informa-
tion for the reliability allocation and system reliability
design. The Pareto set targets are propagated though
the multilevel system, which provides more choices and
degree of flexibility to designers.

1. Weight of the speed reducer

min : f x1, x2, x3, x4, x5, x6, x7, x8, x9ð Þ

=
p

4
3 x7

x3x1

cos x5

� �2

+
x3x1x9

cos x5

� �2
" #

+

p

4
3 x8

x4x2

cos x6

� �2

+
x4x2i

cos x6 3 x9

� �2
" # ð16Þ

where i is the total transmission ratio.

2. Design constraints

g1 = 17� x1 � 0, g2 = 17� x2 � 0

g3 = 7:58 3
p

1808
� x5 � 0

g4 = x5 � 14:168 3
p

1808
� 0

g5 = 7:58 3
p

1808
� x6 � 0

g6 = x6 � 14:168 3
p

1808
� 0

g7 = 1:18i� x2
12 � 0, g8 = x2

12 � 1:62i � 0

g9 = 0:98� fd12 � 0, g10 =fd12 � 1:77 � 0

g11 = 0:7� fd34 � 0, g12 =fd34 � 1:15 � 0

g13 = 2� x3 � 0, g14 = 2� x4 � 0

g15 = 1� eb12 � 0, g16 = 1� eb34 � 0

g17 = d2 +
2 3 1ð Þx3

cos x5

+ 20� d3 + d4ð Þ � 0

g18 = 2:30274� uRH2 � 0

g19 = 2:30274� uRH4 � 0

g20 = 2:30274� uRF1 � 0

g21 = 2:30274� uRF2 � 0

g22 = 2:30274� uRF3 � 0

g23 = 2:30274� uRF4 � 0

ð17Þ

where uRH = sHS�sH

(s2
sHS

+ s2
sH

)1=2 and uRF =
s

FS�sF

(s2
sFS

+ s2
sF

)1=2.

herein, sH and sHS denote the mean value of contact
fatigue stress and contact fatigue strength, respectively;
SsH

and SsHS
denote the standard deviation of contact

fatigue stress and contact fatigue strength, respectively;
sF and sFS denote the mean value of bending stress
and bending strength, respectively; and SsF

and SsFS
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Figure 4. Optimal solution set in subsystems.

Table 1. The design variables of the speed reducer.

Design variables Description

Physical meaning Sign

z1 Number of pinion teeth in high-
speed level

x1

z3 Number of pinion teeth in low-
speed level

x2

mn12 Teeth module in high-speed level x3

mn34 Teeth module in low-speed level x4

b12 Helix angle in high-speed level x5

b34 Helix angle in low-speed level x6

b1 (mm) Face width in high-speed level x7

b2 (mm) Face width in low-speed level x8

i12 Transmission ratio x9
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denote the standard deviation of bending stress and
bending strength, respectively.

The design optimization model is decomposed into
two hierarchical structures as shown in Figure 5. The
system design problem is considered as the top level
and two subsystems as the lower level. The transmission
ratio is the common variable of the two subsystems.

Transmission ratio is a common variable between
the two subsystems, and different transmission ratio
will give different design point as presented in Figure 6.
One optimal solution from Pareto set using Pareto set

coordination with GA optimizer is shown in Table 2,
and the solutions from AIO and general ATC with dif-
ferent weights are also provided in Table 2 for
comparison.

The results illustrate that the general ATC method
with different weights can lead to different solutions,
and improper weighting coefficient may need large
number of function evaluations (FE) to converge.
Pareto set coordination method with GA optimizer
only needs 4676 times for FE and can provide more
detailed information such as the optimal results with
different weighting coefficients for each design problem
in the hierarchical structure, which is better for the
information propagation.

Conclusion

Design optimization model of a complex engineering
system is usually decomposed into hierarchical struc-
tures with one system level and multiple subsystem lev-
els. The main task in the decomposed design
optimization algorithm is to minimize the cost and
diminish the discrepancy between subsystems simulta-
neously. In order to maintain the consistency between
subsystems, the most commonly used ATC method for-
mulates the multi-objective model in terms of the
weighted discrepancy functions. The choice of the
weighting coefficients of ATC method is problem
dependent, and improper selections of the weighting
coefficients may lead to incorrect solutions.

, ,
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, , , ,
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, ,
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In this article, Pareto set coordination method with
GA optimizer is proposed to solve the multi-objective
design optimization problem. The method avoids set-
ting weighting coefficients for each objective, which is
required in the general ATC method. Pareto sets are
obtained from the optimal solutions at each level, and
each level can choose one solution from the Pareto set
as targets. The Pareto set from each subsystem can pro-
vide more information to the system and let the system
better understand the performance of a subsystem. The
example of gear reducer design confirms that the Pareto
set coordination method can efficiently and accurately
find the optimal solutions.
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Appendix 1

Notation

fsys cost function in the system level
gsub, i inequality constraints in the ith subsystem
hsub, i equality constraints in the ith subsystem
n number of subsystems
wx,wy weighting coefficients in analytical target

cascading
xi variables in the ith subsystem coupling with

one level below
yi common variables in the ith subsystem cou-

pling with other subsystem at the same level
zi local variables in the system level

Superscript

k design point in the kth iteration
sub subsystem level
sys system level

Subscript

sub subsystem level
sys system level
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