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The distributed strategy of Collaborative Optimization (CO) is suitable for large-scale engineering systems. However, it is hard for
CO to converge when there is a high level coupled dimension. Furthermore, the discipline objectives cannot be considered in each
discipline optimization problem. In this paper, one large-scale systems control strategy, the interaction prediction method (IPM), is
introduced to enhance CO. IPM is utilized for controlling subsystems and coordinating the produce process in large-scale systems
originally. We combine the strategy of IPM with CO and propose the Interaction Prediction Optimization (IPO) method to solve
MDO problems. As a hierarchical strategy, there are a system level and a subsystem level in IPO. The interaction design variables
(including shared design variables and linking design variables) are operated at the system level and assigned to the subsystem
level as design parameters. Each discipline objective is considered and optimized at the subsystem level simultaneously. The values
of design variables are transported between system level and subsystem level. The compatibility constraints are replaced with the
enhanced compatibility constraints to reduce the dimension of design variables in compatibility constraints, Two examples are
presented to show the potential application of IPO for MDO.

1. Introduction

The Multidisciplinary Design Optimization (MDQO) has
received considerable attentions because of the increasing
system complexity and the discipline interactions. In a
multidisciplinary system, strong interactions between disci-
plines require taking advantage of the parallel design process
[1]. A coordination strategy is applied to drive the design
variables in different disciplines towards the optimum for
the original problem [2]. Generally, there are two kinds of
MDO coordination methods, nonhierarchical manner, and
hierarchical manner [3-5]. For the nonhierarchical manner,
using Multidisciplinary Feasible (MDF) approach, the Mul-
tidisciplinary Analysis (MDA) is performed multiple times
via the fixed-point iteration [6]. The MDA is necessary at
both each iteration and every point where the derivatives are
to be evaluated, if a gradient-based method is used. Thus
MDEF is expensive in realistic application [7]. Using the All-
at-Once (AAQO) approach, the feasibility can be guaranteed
when the optimization converges. The optimizer provides
analysis models with inputs and outputs, and analysis models

establish the discrepancies for the estimated inputs and
outputs. The computational burden to maintain the feasible is
relieved; however, the number of constrains for the discrep-
ancy of the interdisciplinary variables is increased [8]. The
Individual Discipline Feasible (IDF) method maintains the
discipline feasibility when the optimizer drives disciplines to
the multidisciplinary feasibility and optimality. Concurrent
and independent discipline analyses are available in IDFE
However, there will be a large number of optimization
variables when applying IDF [9]. The specific analysis vari-
ables that represent communication between disciplines are
treated as optimization variables [10]. Using the Concurrent
Subspace Optimization (CSSO) method, the design variables
are assigned to individual disciplines by the Global Sensi-
tivity Equation (GSE). Each discipline performs a separate
optimization by operating on its own discipline design
variables. The coordination problem is solved by GSE and the
optimum sensitivity derivatives with respect to parameters
[11]. However, no two disciplines are allowed to operate on
the same design variables in CSSO [12]. For the hierarchi-
cal manner, the Collaborative Optimization (CO) method
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FIGURE 1: The large-scale system control problems.

decomposes the optimization problem and eliminates the
need for disciplines by associating the design variables and
linking variables with the system-level design variables. The
system-level design variables may be shared between disci-
plines. These shared variables converge to common values by
a coordination problem ultimately [13-15]. However, if there
are many linking variables between disciplines, it is difficult
to apply CO. It is because the extreme number of linking
variables may make the consistence constraints failed [16].
The Bi-Level Integrated System Synthesis (BLISS) method
uses a gradient-guided method to improve the system design,
alternating between the discipline design variables and the
system level design variables. The system level optimization
problem deals with a small number of linking variables, while
the discipline optimization problems deal with a relative
larger number of discipline design variables [17]. However,
BLISS has the disadvantage that it needs expensive sensitivity
information for GSE and the optimum sensitivity analysis
[18,19].

Although many MDO methods have been proposed,
new strategies are also needed to allow designers to select
an appropriate method among various MDO methods. In
this paper, the Interaction Prediction Optimization (IPO)
is introduced based on the Interaction Prediction method
(IPM) strategy. There are the system level and the subsystem
level in IPO. At the system level, the discipline design
variables are fixed and treated as the design parameters, while
the interacting variables (including the shared variables and
linking variables) are operated as design variables. At the
subsystem level, the discipline design variables are operated
as design variables, while the interacting variables are treated
as the design parameters. The discipline objectives are opti-
mized at the subsystem level in parallel. The system controller
updates the interaction design variables for the subsystem
optimization problems.

This paper is organized as follows. In Section 2, the
theory of control and coordination in large-scale systems
is introduced and the IPM strategy is briefly reviewed. In

Section 3, the MDO problem is given. In Section 4, the IPO
strategy is discussed in detail, including the formulation
and the procedure. In Section 5, two examples are used to
illustrate the effectiveness of the proposed method, followed
by conclusions in Section 6.

2. Large-Scale Systems and the Interaction
Prediction Method

For the large-scale systems, the control process is not con-
ducted in a centralized manner because of the high com-
plexity and the dimensionality problem. The decomposition
methods can be used to solve the control problems as shown
in Figure 1. In this way, a large-scale system is decomposed
into several interconnected subsystems. The original control
problem is redefined as the system level control problem and
the subsystem level control problems. Each subsystem solves
its own control problem and the system level coordination
monitors and coordinates these subsystem problems.

As one of the large-scale system control method, IPM is
introduced here. Using IPM, the system is decomposed into
n subsystems denoted by D,,...,D,. As shown in Figure 2,
there are two levels such as the system level, which manages
the overall process using the control variables Y ;, and the
subsystem level, which manipulates the subsystem control
problem and outputs the subsystem control solutions f,, i =
1 ~ n. The control process is conducted until subsystem
control problems are solved and the compatibility conditions
between the subsystems are satisfied. The details of IPM are
given in [20].

3. MDO Problems

In MDO problems, each discipline possesses a certain degree
of autonomy but also depends on other disciplines through
the interacting variables. The outputs of one discipline may
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become inputs of other disciplines. The formulation of MDO
problem is given in

ooy, 17 (XX Y55 Y)
s.t. g (X5>X.-- Y Yf_}_) >0
B (X, X, Y, Y,) =0
Xy=Ty (XS’ Xi’Yj:') (1)

min max min max
XT<X <X X, =X, <X,

min max min max
e, s ey, =1y
ij=1,2..,n i#j,

where f(-) denotes the system objective; g(-) denotes inequal-
ity constraints; h(-) denotes equality constraints; X; denotes
a vector of shared design variables; X; denotes a vector of
discipline design variables of the ith discipline; Y ;; denotes
a vector of linking variables, which are inputs of the ith
discipline and outputs of the other disciplines j; Y;; denotes
a vector of linking variables, which are inputs of the other
disciplines j and outputs of the ith discipline; n denotes the
total number of the disciplines; Y;; = Y;;(X,, X;, Y ;;) denotes
the coupled information between the coupled disciplines.

4, The Interaction Prediction Optimization for
MDO Problems

Combining the control and coordination strategy of IPM and
the distributed design strategy of CO, the IPO method is
proposed to solve the MDO problem in (1). Like the archi-
tecture of CO, there are the system level and the subsystem
level in IPO. The system level minimizes the system objective
with the design parameters which are the solutions of the
discipline design variables X; from the subsystem level. Then
the system level determines the values of interaction variables

X,, Y;;, and Y;; for the disciplines at the system level. The
optimization problem at the system level is given in

Xy

Given ;

Find X% ij,., Yj;.

Jmin, =7 (K OK). ¥ (). v ()

R i 1]

n U

(8 (1), 4 (). %8 (1)) =0

Ji i i

st g (XC(X7) Y5 (X7 Y (X)) >0 (g

b gt o il Gt S S

I I
min max
Y, =Y,<Y,

Lhi=1,2,..,n i#],
where k presents the kth cycle in the optimization process.

The subsystem level tries to find the solutions of the
discipline design variables X;. In the discipline optimization
problems, interaction variables Xf, Y;, and Yﬁ. are the design
parameters. The discipline objectives are optimized in parallel
and simultaneously. The discipline optimization problems at
the subsystem level are given in

Given Xﬁ; Y?p Yﬁ
Find  XF
Jmin, = £ (KO0 YY)
oYY
s.t. g (Xt (XfY‘;Y:;)) %0
(3)
h; (Xf (Xf Y?i’ Yf})) =0
h= Y (W) <e
j=Lj#i

X;nin < Xfc < x?lax

hj=1,2...,n i#j,

where Y’f—} is the outputs of the discipline analysis, i’g. =
Yf‘f(Xf, X Y;); J; is the enhanced compatibility constraint;
and ¢ is a very small positive number. The framework of IPO
is given in Figure 3.

The procedure of IPO includes the following steps.

Step 1. Set initial values for design variables X!, X, Y?,-, and
Yo k=1

ij?

Step 2. Solve the system optimization problem in (2) at the
system level. The discipline design variables X{ are used as
design parameters. Obtain the kth cycle system solutions X,

Y;, and Yf} and then send them to the subsystem level.
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Step 3. Solve the discipline optimization problems in (3) at
the subsystem level. The distributed design strategy of IPO
allows discipline optimizations to be conducted in parallel
and simultaneously. The interaction design variables Xi‘, Y’;i,
and Yffj and the output of discipline analysis ?i} are used as
design parameters. The enhanced compatibility constraints
J; are used to diminish the discrepancy between Y:‘f and ?f.j.

during the discipline optimization process.

Step 4. Check the convergence. Calculate G = (Yf.jf - YE._‘ )2 +
(- e b a0 (@ -XY G < e the
values of the system objective and the discipline objectives

are stable, and go to Step 5; otherwise, set k = k + 1 and go to
Step 2.

Step 5. Stop the optimization process. Output the solutions
YE, Y5, X5, and XF.

-i?

The flowchart of IPO is given in Figure 4.

5. Examples

In this section, we use two examples to show the application
of the proposed method. The efficiency and accuracy of the
proposed method are compared with CO. The solutions from
MDF are considered as the correct results.

5.1. Mathematical Example. The mathematical problem is
provided as a simple test problem for testifying the proposed
method. The design optimization problem is given as

min  f = (y;, - 1}2 +xf+x§+(y21 ‘2)2 +x§

S.t. —ISJCISI, _lgngl, —5£x3£5 ()
4
=58 y2s5 55y, s5
Yiz =X =X+ 2Y5, Yoy =X3— Vi

where f is the system objective and x, ), X}, X5;, ¥5, and y,,
are design variables.

Here, this problem is modified into a MDO problem
including two disciplines shown in Figure 5. In the modified
problem, f, and f, are the discipline objectives, two coupled
variables y,, and y,, affect each other.

The optimization problems using IPO are provided in (5),
(6), and (7).

(1) System optimization problem at the system level is as
follows:

min f=(y12—1)2+xf+x;‘+(y21—2)2+x§
S.t. _5£y12£5, _5£y2|£5
design variables = [y, ¥, ]

design parameters = [x,, x,, x3] .

(2) Discipline optimization problem 1 at the subsystem
level is as follows:

. 2 2. 2
min  f; = (y;, - 1) +x] + x5

st. -1gx <1, -12x<1

Iy =(?lz‘y12)355> (6)
design variables = [x,, x,

design parameters = [ y,5, y3,] .

(3) Discipline optimization problem 2 at the subsystem
level is as follows:

. 2
min  f, =(yy -2) +x;
st =5sSx3<5, ¥y =X )
_ 2
L=n-yu) e (7)

design variables = [x;]

design parameters = [y, y5,] .

The optimization processes are conducted at two dif-
ferent initial points, (x;,%5, X5, Y12, ¥5,) = (0,0,0,0,0)
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and (x, x5, X3, ¥12» ¥21) = (-1,1,-1,1,-1). The solutions are
compared in Table 1. Here the compatibility constraints in
IPO and CO are J] < 0.001. n, is the number of function
calls at the system level; n; and », are the numbers of function
calls of discipline 1 and 2 at the subsystem, respectively. The
solutions of two methods have the same accuracy. However,
the numbers of function calls at both the system level and
the subsystem level using IPO are less than that using
CO. The reason is that the discipline objectives in IPO are
different to the discipline objectives in CO and the enhanced
compatibility constraints in IPO are simpler than the original
compatibility constraints in CO.

5.2. Speed Reducer Design. This problem is an artificial NASA
MDO test example in [7]. There are the power input discipline
and the power output discipline shown in Figure 6.

5
¥
1,2 132
G= (¥ - Y+ (0 - Y )
O =X - X?
X
No
TasLE 1: Optimization results of the mathematical example.
Point 1 Point 2
MDF cO PO MDF CO IPO
x, -0.3001 -0.3257 -0.2999 -0.3000 -0.2190 -0.2993
x, 02999 03682  0.2995 0.2998  0.2702  0.2990
x; 08998  0.7870  0.8989  0.8998  0.8706  0.9005
yiz 03999 03435 03996 03999 04431 0.3995
ya 04999 06110 04995 04998  0.5623  0.4989
f 3.6000 32212 3.6005 3.6000  3.2560  3.5977
H — 74 6l —_ 77 59
n, — 55 41 — 53 45
n, — 49 36 = 55 42

The optimization problem is defined as

min  f (speed reducer overall volume)
st. g, (bending stress of gear tooth) < 0

> (contact stress of gear tooth) < 0

g3, g, (transverse deflection of shafts 1,2) < 0
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Gs» e (stresses in shafts 1,2) < 0
g- ~ go (dimensional restrictions) < 0
10> 911 (demensional requirements for shafts 1,2) <0.

(8)

The optimization problems using IPO are provided in (9),
(10) and (11).

(1) System optimization problem at the system level is as
follows:

min  f = 0.7854x,x; (3.333x] + 14.933x, — 43.0934)
~ 1508, (xg +x3) +7.477 (xg + x3)

+0.7854 (x,;xé + xsxi)

o g 27 150 g= 397.5 ;
- ! (xlxgx.’-) - 2 (x,x%xﬁ) -
1.93x° 1.93x2
PTE....../ BN Q... BCFC
T (xx3xE (x3%3x3)

A1 A‘)
=—-1100<0 =—=-850<0
9s B, 96 B,

I

g7 = X3x3—40 <0 ggzﬁ—us{)
X2

-X

—14+5<0

X2

9o

26<x,£36 03<x,<10 17<x; <28
design variables = [x,, x,, x;

design parameters = [x,, x5, Xg, X;] .

9)

(2) Power input discipline optimization problem at the
subsystem level is as follows:

min  f, = —1.508x, x; + 7.477x; + 0.7854x,x;

1.93x; A,
st.  g; -1<0 gS:B——1100£0

B (323x5) 1

(10)
73<x, <83 29<x5<39
design variables = [x,, x]

design parameters = [x,, x5, x;] .
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TaBLE 2: Optimization results of reducer design example.

Point 1 Point 2
MDF CcO IPO MDF CcO PO
x,  3.600 3.478 3.600 3.600 3.495 3.472
x, 0.664 0.630 0.665 0.664 0.644 0.678
% 17 18 17 17 17 17

x, 7300 7.307 7.300 7300 7.300 7.300
x; 7715 7.781 7716 7.715 7.715 7.716
x, 3.351 3.361 3.353 3.351 3.347 3.353
x, 5.287 5.305 5.287 5.287 5.279 5.287
f 2874360 2851560 2875731 2872.068 2744.607 2889.013

H, = 308 245 = 375 251
n — 354 285 — 319 212
n, = 315 255 = 331 273

(3) Power input discipline optimization problem at the
subsystem level is as follows:

min  f, = —1.508x,x% + 7.477x3 + 0.7854x5x>

t 1.93x; 1<0 1_850<0
s.t. = —<-1< = e <
9 (2,%3%7) % B,

design variables = [xs, x;]

design parameters = [x;, x5, 3],

where A, = [(745x,/x,%,)° +169x 10°°, B, = 0.1x,

Ay = [(745%5/xy%3)* +157.5 x 10°]", and B, = 0.1x2.

This problem is solved at two initial points, (x,,x,,
X3, X4 X5, X, X7) = (2.65,0.63, 18, 6.80, 6.400, 3.00, 5.099)
and (xy, %5, X35 X5 X5 X, %7) = (3.50,0.70,17,7.30,7.715;
3.35,5.287). The results are shown in Table 2. In this example,
there are only shared design variables in both disciplines and
compatibility constraints are not needed in IPO. Thus the
optimization problems in IPO are simpler. Compared with
CO, IPO enjoys less number of the function calls and higher
efficiency than CO in this example.

6. Conclusions

In this paper, IPM which is applied in control and coor-
dination in large-scale systems is introduced for MDO
problems. Based on the strategy of IPM, IPO is given and
its mathematical foundation is presented. Compared with
CO method, there are two improvements in IPO. One is
that, using the original compatibility constraints in CO, the
solutions from the subsystem level are needed to be compared
with the target values of discipline design variables and
the interaction variables from the system level. If there are
a large number of variables, the compatibility constraints
will be more complex. It results in more function calls
and deteriorates the CO performance. However, using the
enhanced compatibility constraints in IPO, only the values



The Scientific World Journal

of coupled variables from the system level Y;; and from the

discipline analysis Y, ; are needed to be compared during the
discipline optimization process. The dimension of variables
in the enhanced compatibility constraints is reduced. Thus
the enhanced compatibility constraint is simpler than the
original compatibility constraint and easer to be applied in
the optimization process. The other is that multiple discipline
objectives are incorporated and converted to a single objec-
tive by an aggregate function in CO. Despite maintaining the
discipline autonomy, no discipline objectives are considered
at the subsystem level. In IPO, the system objective and the
discipline objectives are considered at the system level and
the subsystem level, respectively. Thus the framework of IPO
is more suitable for the practical engineering.
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