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A Simulation Method to Estimate
Two Types of Time-Varying
Failure Rate of Dynamic
Systems
The failure rate of dynamic systems with random parameters is time-varying even for lin-
ear systems excited by a stationary random input. In this paper, we propose a simulation-
based method to estimate two types (type I and type II) of time-varying failure rate of
dynamic systems. The input stochastic processes are discretized in time and the trajecto-
ries of the output stochastic process are calculated. The time of interest is partitioned
into a series of time intervals and the saddlepoint approximation (SPA) is employed to
estimate the probability of failure in each interval. Type I follows the commonly used def-
inition of failure rate. It is estimated at discrete time intervals using SPA and the correla-
tion information from a properly selected time-dependent copula function. Type II is a
proposed new concept of time-varying failure rate. It provides a way to predict the failure
rate considering a virtual “good-as-old” repair action of repairable dynamic systems.
The effectiveness of the proposed method is illustrated with a vehicle vibration example.
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1 Introduction

The failure rate quantifies the probability of failure over a small
time interval dt after time t under the condition that the system did
not fail before time t. In reliability engineering, it is common to
derive the failure rate from the cumulative distribution function
(CDF) [1–4]. Sufficient data samples are needed to estimate the
CDF accurately with statistical methods, especially for a small
probability of failure. For example, about 234,000 data samples
are needed to estimate a 0.00171 probability of failure with 10%
error under 95% confidence. Estimation of the CDF using physics
of failure (POF) has attracted more attention for structural systems
by considering the time-dependent properties. The time horizon is
partitioned into many time intervals for discrete CDF estimation
and then a continuous CDF is fitted. Accordingly, discrete and
continuous time-varying failure rates could be derived from the
discrete and continuous CDFs, respectively.

To estimate a time-varying failure rate, time-dependent reliabil-
ity analysis must be conducted over the planning horizon. Many
methods have been proposed for time-dependent reliability analy-
sis of structural systems. Because of the independent non-negative
increments of the Gamma process, a combination of Gamma pro-
cess and statistics of live load models is used in Ref. [5]. A distri-
bution of extreme values approach is employed in Ref. [6] to
transform the time-dependent reliability problem to a time-
independent reliability problem. An equivalent time-invariant
composite limit state is defined and used in Ref. [7] for time-
dependent reliability analysis. The composite limit state method is

further studied for time-dependent reliability analysis based on
total probability theorem [8]. Also, a time-dependent reliability
analysis is performed in Ref. [9] using a nested kriging based pre-
diction model where time-independent reliability methods such as
the first order reliability method (FORM) [10] and the saddlepoint
approximation method (SPA) [11] can be used. The out-crossing
rate method has been widely used for time-dependent reliability
problems and many advanced methods have been proposed
[12–15] under the assumption of independent out-crossings fol-
lowing the Poisson distribution, which may result in a poor accu-
racy. A parallel system reliability formulation, the so-called PHI2
method, using the out-crossing rate is proposed in Ref. [16]. A
Monte Carlo based set theory method, similar with the PHI2
method, is reported in Ref. [17]. Studies reveal that the PHI2
based method shows relatively poor accuracy when dealing with
nonmonotonic problems [6,18]. In order to avoid the calculation
of out-crossing rate, a time-dependent reliability analysis method
based on stochastic process discretization is presented in
Ref. [19].

Most of time-dependent reliability analysis methods provide
only the reliability over a specific time interval. Design under
uncertainty considering maintenance and lifecycle cost requires
however, the reliability at all times within the planning horizon.
Singh et al. [20] proposes such a method by estimating the failure
rate of random dynamic systems using importance sampling.
Their method is suitable for low dimensional limit state functions.
Wang et al. [21] also presents a method to estimate the failure rate
at all times within the planning horizon using an improved subset
simulation with splitting by partitioning the original high dimen-
sional random process into a series of correlated, short duration,
low dimensional random processes. However in estimating the
time-varying failure rate, the high computational effort is still a
challenge.
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Copula functions have been widely used for modeling the cor-
relation of random variables and time series in economic field
[22,23]. Because of their great capacity to represent correlation,
Copulas have been recently introduced in the structural safety
field. Noh et al. [24] uses Gaussian Copula to describe the correla-
tion of input random variables for reliability-based design optimi-
zation and further identifies the joint CDFs from provided data
using a copula function [25]. In order to express the multidimen-
sional correlation, the vine-copula has been also introduced in
structural reliability analysis [26]. Tang et al. [27] studies the
effect of different copula models on the structural system reliabil-
ity results.

The above studies have played an important role in fostering
applications of Copula functions for time-independent problems
in the structural safety field. For dynamic systems, the correlation
of performance between adjacent time intervals can be established
accounting therefore, for time. In order to address the time-
dependent probability of failure or failure rate, of dynamic
systems, a simulation-based method is proposed in this article to
estimate two types of time-varying failure rate.

A simulation approach is used because the failed samples still
remain in the operating queue, resulting in correlated failures in
time. The input stochastic processes are discretized using a small
time step into a set of high-dimensional random variables and the
trajectories of the output stochastic process are calculated accu-
rately with simulation. The planning horizon is then partitioned
into a series of time intervals and the saddlepoint approximations
(SPA) method is used to calculate the probability of failure in
each time interval. With the same trajectories used in SPA, a
time-dependent copula is built to provide the correlation between
the maximum response in each time interval and the maximum
responses up to that time interval. A discrete mean time-varying
failure rate in each time interval is calculated using an estimated
probability of failure from the SPA and the correlation informa-
tion from the estimated time-dependent copula. A continuous
mean time-varying failure rate is also derived from the fitted CDF
from the discrete cumulative probabilities of failure based on a
validated Weibull distribution. This time-varying failure rate,
called Type I failure rate, is calculated using the classical
definition.

During simulation, we assume that after failure, performance is
restored to the state just before failure occurred (good-as-old
repair assumption). In order to compare the failure evolution of
the repaired and nonrepaired samples, we propose the concept of
time-varying failure rate for repaired samples, called type II fail-
ure rate, derive its expression and compare it with type I. Type II

provides a new way to predict the failure rate by essentially build-
ing a relationship between the system failure rate and the capacity
for maintenance of repairable dynamic systems.

The contributions of this article are: (1) a new time-varying
failure rate (type I) estimation method is proposed for dynamic
systems; (2) a time-dependent copula function approach is pro-
posed to establish the failure correlation as time progresses with-
out additional computational effort; and (3) a new concept of
time-varying failure rate (type II) is presented for repaired sam-
ples and its expression is derived.

The reminder of the paper is organized as follows. Section 2
reviews the SPA method and the method to construct a time-
dependent copula function. We use both methods in the proposed
time-varying failure rate approach. Section 3 provides details on
the proposed approach and Sec. 4 uses a vehicle vibration exam-
ple to illustrate its effectiveness. Finally, Sec. 5 summarizes and
concludes.

2 Saddlepoint Approximation and Copula Function

2.1 Saddlepoint Approximation. The SPA is an attractive
method to perform structural reliability analysis because of its
high computational accuracy in approximating the tails of a distri-
bution and its comparable efficiency with FORM [11,28]. If Y is a
random variable with probability density function (PDF) fYðyÞ, the
moment generating function (MGF) of Y is given by

MðnÞ ¼ E½enY � ¼
ð1
�1

enyfYðyÞdy (1)

where E½�� denotes expectation. The cumulative generating func-
tion (CGF) KðnÞ is

KðnÞ ¼ log ½MðnÞ� (2)

where log ½�� is the natural logarithm. The inverse Fourier trans-
form is used to obtain fYðyÞ from KðnÞ as

fY yð Þ ¼
1

2pi

ði1

�i1
exp K nð Þ � ny½ �dn (3)

Analytical forms of the CGF are only available for certain dis-
tributions [29]. If there is no analytical form, an approximation
can be obtained using samples. It has been shown that an accurate
approximation of the CGF can be obtained using the following
four cumulants [30]

k1 ¼
s1

Ns

k2 ¼
Nss2 � s2

1

Ns Ns � 1ð Þ

k3 ¼
2s3

1 � 3Nss1s2 þ N2
s s3

Ns Ns � 1ð Þ Ns � 2ð Þ

k4 ¼
�6s4

1 þ 12Nss
2
1s2 � 3Ns Ns � 1ð Þs2

2 � 4Ns Ns þ 1ð Þs1s3 þ N2
s Ns þ 1ð Þs4

Ns Ns � 1ð Þ Ns � 2ð Þ Ns � 3ð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(4)

where sr ¼
PNs

j¼1ðyjÞrðr ¼ 1; 2; 3; 4Þ and yjðj ¼ 1;…;NsÞ is the
output of the performance function. NsðNs � 4Þ is the sample size.

Using the above four cumulants, the CGF is approximated as

K nð Þ ¼ k1nþ
1

2
k2n

2 þ 1

3!
k3n

3 þ 1

4!
k4n

4 (5)

If the derivative of KðnÞ with respect to n is set equal to y as

K0ðnÞ ¼ y (6)

the solution to Eq. (6) is the saddlepoint nsp, which is also the
extreme point of KðnÞ � ny in Eq. (3).
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Daniels [31] uses a power series expansion to evaluate the inte-
gral in Eq. (3) resulting in the following expression of the PDF of Y

fY yð Þ ¼
1

2pK} nsp

� �
" #1

2

e K nspð Þ�nspy½ � (7)

The saddlepoint approximation approach can also be used to
approximate the CDF FYðyÞ. A reasonable and widely used for-
mula is provided by Lugannini and Rice [32]

FY yð Þ ¼ Pr Y � yf g ¼ U wð Þ þ / wð Þ 1

w
� 1

v

� �
(8)

where Uð�Þ and /ð�Þ are the CDF and PDF of a standard normal
distribution, and w and v can be expressed by

w ¼ sgnðnspÞf2½nspy� KðnspÞ�g1=2
(9)

and

v ¼ nsp½K00ðnspÞ�1=2
(10)

where sgn ¼ 1; 0; or� 1 depending on whether nsp is positive,
zero, or negative. K00ð�Þ is the second derivative of Kð�Þ and
K00ð�Þ � 0 is always satisfied. More details on SPA are provided in
Refs. [33,34].

2.2 Copula Function. The copula function is a general tool
to represent statistical dependence for multivariate distributions
[35]. According to Sklar’s theorem [36], the n-dimensional copula
function C uniquely defines the joint CDF Fðx1; x2;…; xnÞ as a
function of the marginal CDFs F1ðx1Þ;F2ðx2Þ;…;FnðxnÞ as

Fðx1; x2;…; xnÞ ¼ CðF1ðx1Þ;F2ðx2Þ;…;FnðxnÞÞ (11)

if the marginal CDFs are continuous functions. Note that
FiðxiÞ ¼ PrfXi � xig; i ¼ 1; 2;…; n, represent probabilities. The
notation Prf�g is used to denote probability. In this paper, the
Clayton copula is used extensively. Its CDF is defined as

Cðu; vjhÞ ¼ ð�1þ u�h þ v�hÞ�1=h
(12)

where u and v are the marginal distribution functions, and h is the
Clayton parameter. For more information on different copula
functions, such as Clayton, Gumbel, Frank, Gaussian, Ali-
Mikhail-Haq (AMH), Farlie–Gumbel–Morgenstern (FGM), Arch
12 and Arch 14, please refer to Refs. [22–27,37].

First, a copula function is selected among existing copula func-
tions to ensure we describe the statistical dependence of a multi-
variate distribution properly. Subsequently, the parameters of the
copula functions are estimated to guarantee the accuracy of the
statistical dependence representation. Many methods have been
developed for parameter estimation, including the likelihood
approach, the inference for the margins method, the semiparamet-
ric estimation method, the nonparametric estimation method, and
the Bayesian copula approach [38,39].

The semiparametric estimation method uses an empirical CDF
which is built from samples [40]. In this paper, we construct cop-
ula functions to describe the dependence of maximum response
among different time intervals. As such, they are time-dependent
copulas.

3 Proposed Method

3.1 Overview. We estimate the time-varying failure rate of a
dynamic (rigid-body or vibratory) system whose equations of

motion are discretized in time and expressed in a state-space
form. The discretized equations are time integrated using for
example, a Runge–Kutta method or Newmark-beta method [41]
and are expressed as

Xðtþ DtÞ ¼ hðXðtÞ;Z;MðtÞ; tÞ (13)

where Xðtþ DtÞ 2 <c is the vector of uncertain states xsðtþ DtÞ,
s ¼ 1; 2;…; c at time tþ Dt, Dt is the integration time step and
hð�Þ indicates a function of the arguments. Z 2 <q is the time-
independent vector of random variables (e.g., system parameters
such as vehicle suspension stiffness Zs, and excitation parameters
Ze), and MðtÞ ¼MðZ; tÞ is the time-dependent vector of excita-
tion random processes (e.g., road elevation at a vehicle tire loca-
tion through time). The trajectories X ¼ fXðtÞ ; t 2 ½0;T�g of all
states are calculated at discrete times ti ¼ iDt; i ¼
0; 1; 2;…;N1; t0 ¼ 0; tN1

¼ T over the planning horizon ½0;T�.
Figure 1 shows a schematic of the time-varying failure rate esti-
mation process.

The computational effort to calculate the system states
Xðtþ DtÞ at time tþ Dt as a function of the known system states
XðtÞ at time t, is considered one function evaluation. The states
XðtÞ are in turn a function of the states Xðt� DtÞ. In order to calcu-
late XðtÞ, all previous states over the time interval ½0; t� should be
obtained. Thus, treating the number of sample functions (or trajec-
tories) as the computational efficiency index, instead of the number
of function evaluations, is preferable for dynamic systems.

To address the time-varying failure rate estimation for dynamic
systems, we propose a simulation-based method using the SPA
and a copula function (SPA/Copula). The planning horizon ½0; T�
is partitioned into a series of N time intervals ½0; T1�;
½T1; T2�;…; ½Tn�1;Tn�;…; ½TN�1; TN � using a time step DT ¼
Tn � Tn�1 which is a multiple of Dt so that DT ¼ kDt where the
integer k can be between 20 and 250. The SPA estimates the CDF
of maximum response in each time interval and copula functions
estimate the dependence of maximum response among all time
intervals.

Without loss of generality, we define the time-dependent per-
formance function as LðtÞ ¼ gðXðtÞ; tÞ. A series of N failure
regions are then formed and defined by the following events:

Eint
n ¼ max

t2½Tn�1 ;Tn�
gðXðtÞ; tÞ � St

n o
ðn ¼ 1;…;N; T0 ¼ 0Þ (14)

where g : <p ! < is a function mapping XðtÞ to a response g and
St is a predetermined threshold. If gðXðtÞ; tÞ � St;9t 2 ½Tn�1;Tn�,
the system is considered failed while if gðXðtÞ; tÞ < St;
8t 2 ½Tn�1;Tn�, the system operates safely. The superscript “int”
(first three letters of interval) in Eq. (14) indicates time interval.
The equation maxt2½Tn�1 ;Tn � gðXðtÞ; tÞ � St ¼ 0 defines the time-
dependent limit state surface. Since the event Eint

n is time-
dependent, time-dependent reliability methods should be used to
calculate the probability PrfEint

n g. Time series is first used to char-
acterize the input random processes, and the SPA using the first
four cumulants, is subsequently employed to estimate the CDF of
maximum response within each time interval in order to calculate
PrfEint

n g.
Because the event Eint

n depends on events Eint
ni
ðni ¼ 1;…;

n� 1Þ, we define N conditional failure events

Fig. 1 Schematic of the time-varying failure rate estimation
process
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Eint
cn ¼ max

t2½Tn�1;Tn �
gðXðtÞ; tÞ � St j �En�1

n o
ðn ¼ 1;…;N; T0 ¼ 0Þ

(15)

where

�En�1 ¼ max
t2½0;Tn�1�

gðXðtÞ; tÞ < St

n o
ðn ¼ 1;…;N; T0 ¼ 0Þ (16)

is the safe event over the time interval ½0; Tn�1�. The subscript “c”
in Eint

cn (Eq. (15)) stands for “conditional,” while the subscript “n”
is the time interval counter.

The mean time-varying failure rate over the time interval
½Tn�1; Tn� is provided by

k Tn�1; Tnð Þ ¼
Pr Eint

cn

� �
Tn � Tn�1

(17)

If Tn � Tn�1 is sufficiently small, kðTn�1;TnÞ is the instantane-
ous failure rate at time instant Tn�1.

Using the conditional probability definition, PrfEint
cng is equal to

PrfEint
n

�En�1g=Prf �En�1g and Eq. (17) can be rewritten as

k Tn�1;Tnð Þ ¼
Pr Eint

n
�En�1

� �
Pr �En�1f g Tn � Tn�1ð Þ (18)

where Prf �En�1g is calculated recursively using the copula func-
tion as

Prf �En�1g ¼ 1� PrfEn�1gðn ¼ 2;…;N; PrfE0g ¼ 0Þ (19)

where

PrfEn�1g ¼ ½PrfEn�2g þ PrfEint
n�1g � CðPrfEint

n�1g;PrfEn�2gÞ�
(20)

Note that PrfEint
n

�En�1g is expressed in terms of PrðEint
n Þ and

Prf �En�1g as

PrfEint
n

�En�1g ¼ CðPrðEint
n Þ; Prð �En�1ÞÞ (21)

Equations (18)–(21) are used sequentially for all time intervals.
For each cycle (new time interval), the SPA estimates the CDF of
maximum response to calculate PrfEint

n g, and a copula function
provides the dependence between Eint

n and �En�1. We can then cal-
culate a discrete mean time-varying failure rate for each time
interval.

Based on the statistics of maximum response, we use a vali-
dated Weibull distribution to fit the discrete cumulative probabil-
ities of failure with a continuous CDF and thus obtain a
continuous time-varying failure rate. This failure rate is calculated
using the common definition as the conditional probability of fail-
ure over a small time interval dt after time t under the condition
that the system did not fail before time t. We call this definition
type I failure rate.

The copula CðPrfEint
n�1g;PrfEn�2gÞ in Eq. (20) represents the

probability that samples failed in both time intervals ½0;Tn�2� and
½Tn�2; Tn�1�. It appears because the failed samples still remain in
the operating queue during the simulation. The copula can be
viewed as an index describing the failure correlation as time pro-
gresses. This is similar to the failed items still remaining in the
operating queue after engineering maintenance. During simula-
tion, we assume that after failure, performance is restored to the
state just before failure occurred (good-as-old repair assumption).
In order to compare the failure evolution of the repaired and non-
repaired samples, we propose the concept of time-varying failure
rate for repaired samples. A discrete mean time-varying failure
rate over the time interval ½Tn�1; Tn� is defined as

kr Tn�1;Tnð Þ ¼
C Pr Eint

n

� �
;Pr En�1f g

� �
Pr En�1f g Tn � Tn�1ð Þ (22)

which we call type II failure rate. It provides a new way to predict
the failure rate by essentially building a relationship between the
system failure rate and the capacity for maintenance of repairable
dynamic systems. Also, the calculation of type II failure rate does
not require additional computational effort.

Section 3.2 provides step-by-step details of the proposed
approach.

3.2 Procedure. The proposed method consists of two stages.
In the first stage, we calculate the probabilities of failure over a
series of time intervals. The second stage builds the time-
dependent copula function and estimates the type I and type II
failure rates. Figure 2 summarizes all steps of the proposed
method. Details are provided below.

Stage 1: Estimation of probabilities of failure PrfEint
n g over the

N time intervals ½Tn�1;Tn�ðn ¼ 1;…;N; T0 ¼ 0Þ.
In this stage, we calculate the probability PrfEint

n g over the time
interval ½Tn�1; Tn�ðn ¼ 1;…;N; T0 ¼ 0Þ using the SPA. PrfEint

n g
is used in Eqs. (20) and (21). The process consists of the following
six steps.

Step 1: Construct the time-dependent performance function
LðtÞ ¼ gðXðtÞ; tÞ.

Step 2: Characterize each input stochastic process.
We use time series model to characterize a stochastic process.

Many time series models are available including autoregressive
(AR), moving average, autoregressive moving average, and autor-
egressive integrated moving average models [42–44]. In this
work, we use AR models.

An input stochastic process XðtÞ is represented as a collection
of random variables XðtiÞ at the discrete times
ti ¼ iDt; i ¼ 0; 1; 2;…;N1; t0 ¼ 0; tN1

¼ T. The time step Dt is
much smaller than DT ¼ Tn � Tn�1 resulting in N1 � N. For an
AR(p) model of order p, the discretized sample function (trajec-
tory) is represented as

xðtiÞ � l ¼ u1ðxðti�1Þ � lÞ þ u2ðxðti�2Þ � lÞ þ � � �
þ upðxðti�pÞ � lÞ þ ei (23)

where xðtiÞ is the value of the sample function at time ti, l is the
temporal mean of the stochastic process XðtÞ, ei � Nð0; r2

eÞ is
Gaussian white noise, and u1;u2;…;up are feedback parameters
to be estimated. For the AR(2) model, the variance r2

e can be
determined by

r2
e ¼ cð0Þð1� u1q1 � u2q2 � � � � � upqpÞ (24)

where cð0Þ is the variance of the stochastic process and qi ði ¼
1; 2;…; pÞ is the value of the autocorrelation function at time lag
s ¼ iDt. More details are provided in Ref. [43].

Step 3: Partition time of interest [0, T].
The time of interest ½0;T� is partitioned into a series of N time

intervals ½Tn�1; Tn�; n ¼ 1; 2;…;N using a time step DT ¼
Tn � Tn�1 which is a multiple of Dt.

Step 4: Calculate K trajectories of the limit state function over
each time interval ½Tn�1; Tn�.

We generate K sample trajectories of the limit state function
LðtÞ ¼ gðXðtÞ; tÞ by solving the discretized dynamic equations of
motion Xðtþ DtÞ ¼ hðXðtÞ;Z;MðtÞ; tÞ, Tn�1 � t � Tn, K times
using the Dt time step. Each trajectory ljðtÞ; j ¼ 1;…;K is repre-
sented by NP ¼ ðTn � Tn�1=DtÞ þ 1 values ljðtiÞ at time instants
ti ¼ Tn�1 þ ði� 1ÞDt; i ¼ 1;…;NP.

Step 5: Calculate extreme values over each time interval
½Tn�1; Tn�.

For the nth time interval, the extreme value rj
n of the jth trajec-

tory from step 4, is
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rj
n ¼ max

i¼1;…;NP
ðljðtiÞÞ; j ¼ 1;…;K; n ¼ 1;…;N (25)

The set of the K extreme values is represented as

rn ¼ fr1
n � � � rK

n g (26)

Step 6: Calculate PrfEint
n g over each time interval ½Tn�1; Tn� with

SPA.
The failure threshold St replaces y in Eq. (6) resulting in

K0ðnÞ ¼ St (27)

Equations (8)–(10) are then used to calculate PrfEint
n g.

Stage 2: Estimation of type I and type II failure rates over the
planning horizon ½0;T�.

In this stage, we build time-dependent copula functions using
the same K trajectories from step 4 of stage 1, and use them
sequentially to estimate type I and type II failure rates throughout
the planning horizon using Eqs. (18)–(22). The process consists of
the following two steps.

Step 1: Construct time-dependent copula functions.
In this step, we characterize the dependence of extreme values

between time intervals ½Tn�1; Tn� and ½0; Tn�1�. Note that in stage
1, we do not account for the dependence of extreme values of the
performance function LðtÞ among different time intervals.

We only consider the correlation of the extreme values between
time intervals ½0;Tn�1� and ½Tn�1;Tn�. This captures the correlation
between the two time intervals by simply changing the number n.
A suitable copula is selected among commonly used bivariate
copulas such as Clayton, Gumbel, Frank, Gaussian, Ali-Mikhail-
Haq (AMH), Farlie–Gumbel–Morgenstern (FGM), Arch 12, or
Arch 14 and a Bayesian approach where the normalized weights

are calculated as in Ref. [37]. The Clayton copula, one of the
bivariate Archimedean copulas, is selected for the vehicle vibra-
tion example (Fig. 5 in Sec. 4).

In order to distinguish time intervals ½0; Tn�1� and ½Tn�1; Tn�, we
use subscripts Rðn� 1Þ and n to represent the time intervals
½0;Tn�1� and ½Tn�1; Tn�. Therefore, rj

Rðn�1Þ and rRðn�1Þ represent
the jth extreme value and the set of K extreme values over the
time interval ½0;Tn�1�. Similarly for the time interval ½Tn�1; Tn�, rj

n
is the jth extreme value and rn is the set of K extreme values.

A semiparametric estimation method is used to determine the
copula-based model parameters based on rRðn�1Þ and rn in two
steps. The first step estimates the marginal distribution functions
using a nonparametric estimation method. The marginal distribu-
tion function of extreme values URðn�1Þ over the time interval
½0;Tn�1� is empirically estimated as [45]

U
_

R n�1ð Þ rj

R n�1ð Þ

� 	
¼ 1

K þ 1

XK

i

I ri
R n�1ð Þ � rj

R n�1ð Þ

� 	
(28)

where

Iðri
Rðn�1Þ � rj

Rðn�1ÞÞ ¼ 1 if ri
Rðn�1Þ � rj

Rðn�1Þ

Iðri
Rðn�1Þ � rj

Rðn�1ÞÞ ¼ 0 if ri
Rðn�1Þ > rj

Rðn�1Þ

8<
: (29)

Similarly, the marginal distribution function of extreme values
Un over the time interval ½Tn�1;Tn� is estimated as

U
_

n rj
n

� �
¼ 1

K þ 1

XK

i

I ri
n � rj

n

� �
(30)

Fig. 2 Flowchart of the proposed method
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where

Iðri
n � rj

nÞ ¼ 1 if ri
n � rj

n

Iðri
n � rj

nÞ ¼ 0 if ri
n > rj

n

(
(31)

The second step estimates the copula parameter ĥn�1 using the
maximum likelihood method. Given the nonparametric estimators
U
_

Rðn�1Þ and U
_

n, the copula parameter ĥn�1 is estimated as [46]

ĥn�1 ¼ arg max
hn�1

XK

j¼1

log cðUðjÞRðn�1Þ;U
ðjÞ
n ; hn�1Þ (32)

For the vehicle vibration example of Sec. 4, the Clayton copula
is employed to describe the correlation as [25]

C UPðn�1Þ;Unjhn�1

� 	
¼ UPðn�1Þ

� 	�hn�1þðUnÞ�hn�1�1

� ��1=hn�1

(33)

where hn�1 > 0. Its corresponding density is provided by

c UPðn�1Þ;Un; hn�1

� 	
¼ ðhn�1 þ 1Þ UPðn�1ÞUn

� 	�ðhn�1þ1Þ

� UPðn�1Þ
� 	�hn�1 þ ðUnÞ�hn�1 � 1

� ��1=hn�1�2

(34)

Each copula parameter ĥn�1ðn ¼ 2;…;NÞ is estimated by
repeating this procedure for time intervals ½0;Tn�1� and
½Tn�1; Tn�ðn ¼ 2;…;NÞ.

Step 2: Estimate type I and type II time-varying failure rates
over the planning horizon ½0; T�.

The discretized time-varying failure rate over the planning hori-
zon ½0; T� is determined from type I failure rates
kðTn�1;TnÞ; n ¼ 1; 2;…;N. The failure rate kðTn�1; TnÞ over
each time interval ½Tn�1; Tn� is calculated using Eqs. (18)–(21).
PrfEint

cng is calculated from the joint probability PrfEint
n

�En�1g
using the established copula function from step 1 of stage 2, the
PrfEint

n g from stage 1, and the safe event probability Prf �En�1g
calculated using Eq. (19). Finally, Eq. (17) provides the failure
rate kðTn�1;TnÞ.

For dynamic systems, the extreme values of performance are
usually Weibull distributed. The parameters of Weibull distribu-
tion are estimated by fitting the discrete cumulative probabilities of
failure using least squares regression. A continuous time-varying
failure rate is then derived from the estimated Weibull distribution.

Finally, the discretized time-varying failure rate for repaired
samples over the planning horizon ½0;T�, is determined from type
II failure rates krðTn�1; TnÞ; n ¼ 1; 2;…;N. The latter are calcu-
lated in Eq. (22), using the established copula function from step
1 of stage 2, PrfEint

n g from stage 1, and the failure event probabil-
ity PrfEn�1g from Eq. (20).

4 A Vehicle Vibration Example

The vehicle vibration example of Fig. 3 is used to illustrate the
proposed method. The vehicle travels over a stochastic terrain
with a speed of 20 mile per hour (mph). There are two random
variables representing the random parameters of the system and a
random process MðtÞ representing the road excitation. The two
random variables are the damping coefficient bs and the stiffness
ks. Both are normally distributed as bs � Nð7000; 14002ÞN=m=s
and ks � Nð40; 000; 40002Þ N=m, respectively. The sprung mass
ms, unsprung mass mu, tire stiffness kt, and tire damping bt are
deterministic parameters with ms ¼ 100 kg, mu ¼ 100 kg,
kt ¼ 40	 104 N=m, and bt ¼ 4	 103 N=m=s.

We use the state-space approach to determine the vertical accel-
eration response Sðd;X; tÞ ¼ €xsðtÞ of the sprung mass in g’s.

Failure occurs if the magnitude of the vertical acceleration
exceeds a threshold, jSðd;X; tÞj � St where St ¼ 3:5.

A third-order autoregressive time-series model AR(3) repre-
sents the stochastic road elevation process MðtÞ as

mðtiÞ ¼ 1:2456mðti�1Þ � 0:2976mðti�2Þ � 0:1954mðti�3Þ

þ eið0; 0:51322Þ

where eið0; 0:51322Þ is a Gaussian white noise with a standard
deviation of 0.5132. The coefficients 1:2456, �0:2976, and
�0:1954 are the three estimated feedback parameters.

The equations of motion

mu€xu þ ðbt þ bsÞ _xu � bs _xs þ ðkt þ ksÞxu � ksxs ¼ ktmþ bt _m

and

ms€xs þ bsð _xs � _xuÞ þ ksðxs � xuÞ ¼ 0

are transformed to a state-space form and the Runge–Kutta
method is used to integrate them in time. The time step is Dt ¼
0:01 s. The same time step is used for the discretization of the sto-
chastic road elevation.

The planning horizon is T ¼ 300s resulting in T=Dt ¼
300=0:01 ¼ 30; 000 random variables. The time interval is DT ¼
Tn � Tn�1 ¼ 2s resulting in ðDT=DtÞ ¼ ð2=0:01Þ ¼ 200 random
variables per time interval. We use 1000 trajectories to estimate
the probabilities of failure for each time interval ½Tn�1;Tn� ðn ¼
1;…; 150; T0 ¼ 0Þ using SPA.

Figure 4 shows the cumulative probability of failure by inte-
grating the probabilities of failure over each time interval without/
with considering the correlation among them based on Monte
Carlo simulation (MCS) with 1,000,000 samples. We observe that
the cumulative probability of failure from MCS without consider-
ing correlation is greater than that with correlation. The reason is
that an item could fail several times during the planning horizon
but the population of items is fixed if the correlation is not consid-
ered, leading to an increase of probability of failure. The

Fig. 3 Vehicle vibration model
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difference with and without correlation varies depending on the
correlation. Therefore, the correlation can be used as an index to
illustrate failure dependence for dynamic systems as time
progresses.

Because there are 150 time intervals, ðT=DTÞ � 1 ¼
ð300=2Þ � 1 ¼ 149 copula functions must be estimated to repre-
sent the time-dependent correlation. A data pair is defined by

rRðn�1Þ and rn. Figure 5 shows the scatter diagram for data pairs

rR1 and r2 (first pair), and rR149 and r150 (last pair), respectively.
To select the proper copula among Clayton, Gumbel, Frank,
Gaussian, Ali-Mikhail-Haq (AMH), Farlie–Gumbel– Morgenstern
(FGM), Arch 12, and Arch 14, a Bayesian approach is used based
on 1000 simulated trajectories. We find that the Clayton copula is
suitable for this example. Figure 6 shows the estimated relative
weights of the Bayesian approach for data pairs rR1 and r2, and
rR149 and r150 verifying the selection of Clayton copula.

After selecting the Clayton copula, we use the same 1000 tra-
jectories to build the time-dependent copula functions among dif-
ferent data pairs and to subsequently estimate the time-varying
failure rate. Figure 7 shows the Clayton copula parameter for all
data pairs showing an increasing trend as time progresses which
indicates that the extreme values over the time interval ½Tn�1; Tn�
are not only correlated with those over the previous time interval
½Tn�2; Tn�1� but also with those over the time intervals
½0;T1�; ½T1;T2�;…; ½Tn�3;Tn�2�. This is in contrast to an intuitive
expectation that the extreme values over the time interval
½Tn�1; Tn� are correlated only with those over the previous time
interval ½Tn�2; Tn�1�.

Figure 8 shows the cumulative probability of failure from
Eq. (20) using the probabilities of failure PrðEint

n Þ and the time-
dependent Clayton copula function. Four different runs are per-
formed to illustrate its variability. The figure also shows the aver-
age cumulative probability of failure of the four runs. The
estimated cumulative probability of failure from MCS with
1,000,000 trajectories is used as a reference for accuracy

Fig. 5 Scatter diagram for first (rR1 and r2) (a) and last (rR149

and r150) (b) data pairs

Fig. 6 Copula weights results for first (r1 and r2) (a) and last
(rR149 and rR150) (b) data pairs

Fig. 4 Estimated cumulative probability of failure from MCS
with/without considering correlation
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comparison. To obtain a smooth estimation of the failure rate, we
use a Weibull distribution to fit the cumulative probabilities of
failure calculated from Eq. (20). We observe that the cumulative
probability of failure from Weibull distribution and the average
cumulative probability of failure from SPA are very close to the
MCS estimate.

To test the suitability of the Weibull distribution, Fig. 9 shows
the Kolmogorov–Smirnov goodness of fit. The Weibull CDF is
transformed to a linear model and the ln½1=ð1� FðtÞÞ� is plotted
against lnt where FðtÞ is the cumulative probability of failure
using the conditional probabilities and the time-dependent copula

function. We see that the Weibull distribution is a good fit. The
goodness of fit indices sum of squares due to error, R-square,
adjusted R-square, and root mean squared error are equal to
0.01009, 0.9999, 0.9999, and 0.008229, respectively, indicating
that the Weibull distribution is suitable for the lifetime of the
dynamic system. The two Weibull parameters are a ¼ 0:8828 and
b ¼ 775:9.

Figure 10 and Table 1 show the relative error (RE) of the cumu-
lative probability of failure from SPA/Copula and Weibull distri-
bution methods with respect to MCS. The relative error decreases,
reaching an asymptotic value of approximately 1%.

Figure 11 shows the corresponding mean failure rate for each
time interval ½Tn�1;Tn� from four individual runs using Eqs.
(17)–(21). It also shows the average curve of the four individual
runs. The solid curve shows the smooth time-varying failure rate
from the estimated CDF of Weibull distribution. The estimated
mean time-varying failure rate from MCS with 1,000,000 trajecto-
ries is used as a reference for accuracy comparison. We observe
that the estimated time-varying failure rate oscillates around the
reference provided by MCS with 1,000,000 trajectories.

Figure 12 and Table 2 show the relative error (RE) of type I
failure rate using the SPA/Copula and Weibull distribution meth-
ods with respect to MCS. The relative error from Weibull distribu-
tion is less than approximately 10%, which is deemed acceptable.

Figure 13 shows the estimated type II failure rate over each
time interval ½Tn�1; Tn� from four individual runs using Eq. (22). It
also provides the average of the four individual runs. Type II

Table 1 RE of cumulative probability of failure

RE of cumulative probability of failure (%)

Time (s) Run 1 Run 2 Run 3 Run 4 Average Weibull

2 100.1 49.76 22.97 32.23 10.26 41.61
4 39.85 59.38 0.93 23.36 10.95 25.02
6 18.84 32.55 7.95 26.57 8.08 18.42
8 15.45 33.60 2.43 35.62 11.05 14.56
10 1.52 17.51 2.79 30.67 10.36 10.51
12 5.70 15.28 0.43 29.73 9.93 8.92
14 5.19 4.35 0.72 34.19 8.16 7.08
16 1.45 0.11 0.47 29.21 7.76 6.25
… … … … … … …
288 5.14 3.75 0.01 4.18 1.42 1.46
290 4.95 3.62 0.13 4.48 1.49 1.37
292 4.83 4.13 0.44 4.32 1.15 1.31
294 4.72 4.12 0.30 3.96 1.06 1.22
296 4.45 3.98 0.46 3.54 0.89 1.15
298 4.03 4.05 0.33 3.30 0.74 1.08
300 3.91 4.11 0.31 3.20 0.67 1.03

Fig. 10 RE of cumulative probability of failure. RE means rela-
tive error.

Fig. 9 Kolmogorov–Smirnov goodness of fit

Fig. 8 Estimated cumulative probability of failure

Fig. 7 Parameters of time-dependent Clayton copula functions
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failure rate from MCS with 1,000,000 trajectories is used as a ref-
erence for accuracy comparison. The estimated time-varying fail-
ure rate oscillates around the MCS reference with 1,000,000
trajectories. Type II failure rate is similar with that of type I. The

Weibull distribution is also used to fit the SPA/Copula average
failure rate results.

Figure 14 shows the relative error of type II failure rate using
SPA/Copula with MCS. The relative error of average and Weibull
distribution is around 20%, which is greater than that of type I
failure rate. The reason is that the denominator PrfEn�1g in
Eq. (21) is much smaller than Prf �En�1g and more samples are
needed to improve the computational accuracy.

Comparison of type I and type II failure rates in Figs. 11 and 13
show that type II failure rate is larger. This means that the repaired
samples have a greater risk of failure after a good-as-old mainte-
nance is performed.

5 Summary and Conclusions

We propose a simulation-based method to estimate type I and
type II failure rates of dynamic systems in this paper. The trajecto-
ries of the output random process are simulated at discrete times.
The time of interest is partitioned into a series of time intervals in
order to study the time-dependent failure correlation. The SPA is
used to estimate accurately the small probabilities of failure over
each time interval using a small number of simulated trajectories
(1000 trajectories for probability of failure 0.0017). A time-
dependent copula function to describe the failure correlation, is
built with the same trajectories. Using a time-dependent copula
function, we propose methods for two types of time-varying fail-
ure rate (type I and type II). Type I failure rate is based on the
commonly used definition of failure rate, while type II is a new
concept to describe the failure evolution of repaired samples con-
sidering a good-as-old virtual maintenance. A vehicle vibration

Fig. 13 Estimated type II failure rate kr(t)

Fig. 14 RE of type II failure rate kr(t)

Table 2 RE of type I failure rate k(t)

RE of the type I failure rate k(t) (%)

Time (s) Run 1 Run 2 Run 3 Run 4 Average Weibull

2 100.1 49.76 22.97 32.23 10.26 25.16
4 15.45 68.26 22.89 15.23 30.46 10.52
6 22.37 19.95 25.40 32.94 2.49 5.82
8 5.35 36.89 33.75 62.97 32.06 3.21
10 51.74 43.73 4.19 11.95 6.04 4.75
12 27.63 3.72 11.92 25.02 2.70 0.80
14 2.10 61.78 7.74 61.43 2.55 3.95
16 51.33 33.59 9.46 7.84 4.84 2.28
… … … … … … …
288 43.15 35.92 15.89 139.1 40.56 13.89
290 31.44 21.06 7.40 67.61 16.16 2.79
292 20.41 118.0 126.0 29.87 43.57 16.20
294 17.18 3.420 30.33 72.82 15.77 11.93
296 50.68 26.22 34.44 82.17 35.27 14.18
298 82.44 19.31 26.94 45.39 30.05 11.32
300 20.77 18.89 3.64 16.52 13.13 9.85

Fig. 12 RE of type I failure rate k(t). RE means relative error.

Fig. 11 Estimated type I failure rate k(t)
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example demonstrates that the proposed approach is computation-
ally efficient and accurate for both type I and type II failure rate
estimation of dynamic systems.

Future research will concentrate on improving the accuracy of
type II failure rate and on using the concept of type II failure rate
in maintenance scheduling.
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