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For large scale systems, as a hierarchical multilevel decomposed design optimization method, analytical target cascading
coordinates the inconsistency between the assigned targets and response in each level by a weighted-sum formulation. To avoid
the problems associated with the weighting coefficients, single objective functions in the hierarchical design optimization are
formulated by a bounded target cascading method in this paper. In the BTC method, a single objective optimization problem is
formulated in the system level, and two kinds of coordination constraints are added: one is bound constraint for the design points
based on the response from each subsystem level and the other is linear equality constraint for the common variables based on
their sensitivities with respect to each subsystem. In each subsystem level, the deviation with target for design point is minimized
in the objective function, and the common variables are constrained by target bounds. Therefore, in the BTC method, the targets
are coordinated based on the optimization iteration information in the hierarchical design problem and the performance of the
subsystems, and BTCmethod will converge to the global optimum efficiently. Finally, comparisons of the results from BTCmethod
and the weighted-sum analytical target cascading method are presented and discussed.

1. Introduction

Themultidisciplinary design optimization (MDO) problems
have become very important in most engineering designs.
The key issue for MDO problems is how to coordinate
coupling disciplines, and various MDO frameworks have
been developed based on their problem formulations and
decomposition strategies. Martins and Lambe [1] provided a
general introduction for the various developed approaches
and summarized the merit of different MDO frameworks.
Tosserams et al. [2] discussed the general characteristics of
nested formulations and alternated formulations for MDO
problems. Originally, the MDO problem minimizes the cost
function subject to multiple disciplinary constraints but it
may be unpractical to solve the entire problem in one
optimization formulation; bilevel optimization formulations
have received considerable attention to solveMDOproblems,
such as collaborative optimization (CO), which has been
widely applied to the design of aerospace systems, and the
analytical and computational aspects of CO were presented
[3]. For large scale engineering problems, as a method to

propagate system targets and coordinate commonvariables of
subsystems through a hierarchical multilevel system formu-
lation, analytical target cascading (ATC) method [4–6] has
been developed and widely utilized to solve multidisciplinary
engineering problems [7–10]. In the ATC method, the all-
in-one (AIO) optimization formulation is decomposed into
a hierarchical structure with one system level and multiple
subsystems. In order to find the optimal solution of the
original MDO problem, it is essential to minimize the cost
function and reduce the inconsistency between the subsys-
tems simultaneously in ATC.

The cumulative constraint violations in the subsystems,
also known as the discrepancy functions, were firstly for-
mulated and minimized to maintain the consistency in the
MDO problems [11]. Besides, the differences between the
subsystem variables have been considered as the discrep-
ancy functions [12, 13]. The discrepancy functions were
then penalized in the objective functions for finding the
optimal solution and diminishing the inconsistency during
the optimization processes [14, 15]. The ATC method firstly
considered the weighted discrepancy functions of design
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variables in multiobjective formulations and chose weighting
coefficients to coordinate the optimal solutions of the original
MDO problems [16–19].

In the processes of solving the Analytical Target Cas-
cading, the system level assigned its optimal solution to the
subsystems as the design target points. In the subsystems,
the optimal solutions were found in terms of minimizing the
differences between the subsystem variables and the targets
subject to the local constraints. The local optimal solutions
were then updated back to the system level as the design
responses. The weighted discrepancy functions in terms of
the targets and the response points were diminished during
the optimization processes of ATC. However, the selection
of the weighting coefficients is crucial for decreasing the
discrepancy functions to zero and coordinating the inconsis-
tency between design points and assigned targets in each level
during the optimization processes. In other words, the proper
optimal solutions can only be obtained with an appropriate
choice of weighting coefficients. Many approaches have been
studied to determine the proper selection of weights [18–22].
Michalek and Papalambros [18] proposed a weights updating
method using the KKT first order necessary conditions
combined user-specified inconsistency tolerances. Tosserams
et al. [20] developed an augmented Lagrangian coordination
method with the alternating direction method of multipliers.
Kim et al. [21] formulated a Lagrangian dual coordination
method to update the weighting coefficients. Li et al. [22]
provided a diagonal quadratic approximation method by
linearizing the cross terms of the discrepancy functions. The
above methods took the discrepancy functions as equality
constraints and used different penalty terms to coordinate
those equality constraints. The convergence rate of these
methods becomes more slowly as the discrepancy becoming
smaller, and the penalty terms might lead to oscillate during
the iteration process.

In this paper, single objective functions in the hierarchical
design optimization are formulated to avoid the problems
associated with the weighting coefficients by a new bounded
target cascading (BTC) method. Instead of assigning the
point targets to the subsystems in ATC, the bounded targets
are introduced in the new method. The target bounds are
obtained from the optimal solutions in each level and uti-
lized to reduce the variable bounds during the optimization
processes. Furthermore, the bounds of responses are also
determined to avoid the weighted discrepancy functions
of the responses. If the common variables exist, they are
coordinated based on their sensitivities with respect to design
variables. With the aids of the target bounds, the optimal
solutions can be determined in the reduced variable bounds
while the consistency between the variables and the targets is
maintained.

In the next section, the well-known MDO algorithm and
the analytical target cascadingmethod are firstly reviewed. In
Section 3, the bounded target cascading method is proposed
to solve MDO problems to avoid the problems associated
with theweighting coefficients. Lastly, some numerical exam-
ples are solved by the BTC method and the comparisons of
the results from the proposed method and the ATC method
are also presented and discussed in Section 4.

2. MDO and Analytical Target Cascading

The original formulation of the MDO problem is given by

min: 𝑓 (x𝑚=1, z𝑚=1)
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(1)

where 𝑓 is the cost function; x𝑚
𝑖
stands for the 𝑖th subsystem

variables in the 𝑚th level coupling with one level below; z𝑚
𝑖

is the local variable; and𝑚 = 1 represents the variables in the
system level. In the 𝑖th subsystem,𝑋𝑚

𝑖
is the variable coupling

with one level above; y
𝑖
and Y

𝑖
denote the common variables

from one level below and one level above, respectively; g𝑚
𝑖

and h𝑚
𝑖
are the inequality and equality constraints, respec-

tively. The all-in-one formulation in (1) is often unpractical
in engineering problems; therefore, it is decomposed into
hierarchical optimization structures and solved by the MDO
algorithms. The main goal of MDO methods is to minimize
the cost function while the discrepancy between subsystems
is diminished simultaneously.

Kim et al. [4] developed analytical target cascading (ATC)
method to decompose the MDO problem into hierarchical
structures with a system level and several subsystems. The
system level is given as

min: 𝑓 (x𝑚,𝑘, z) + 󵄩󵄩󵄩󵄩󵄩w
𝑚,𝑘

𝑥
⋅ (x𝑚,𝑘 − x𝑚+1,𝑘−1)󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩w
𝑚,𝑘

𝑦
⋅ (y𝑚,𝑘 − y𝑚+1,𝑘−1)󵄩󵄩󵄩󵄩󵄩

2

w.r.t. x𝑚,𝑘, y𝑚,𝑘, z𝑚,𝑘

s.t. g𝑚 (x𝑚,𝑘, z𝑚,𝑘) ≤ 0

h𝑚 (x𝑚,𝑘, z𝑚,𝑘) = 0

x𝑚,𝑘 ≤ x𝑚,𝑘 ≤ x𝑚,𝑘

y𝑚,𝑘 ≤ y𝑚,𝑘 ≤ y𝑚,𝑘
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(2)

wherew𝑚,𝑘
𝑥

andw𝑚,𝑘
𝑦

are the weighting coefficients.When the
cost function is minimized, the weighted discrepancy terms
are diminished simultaneously to maintain the consistency
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in the 𝑖th subsystem. Furthermore, a general formulation for
each subsystem is defined as

min: 𝑤𝑚,𝑘
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(3)

where 𝑤𝑚,𝑘
𝑋,𝑖

, w𝑚,𝑘
𝑥

, w𝑚,𝑘
𝑌,𝑖

, and w𝑚,𝑘
𝑦

are the weighting coeffi-
cients. The discrepancy functions associated with the target
points from one level above are minimized while the func-
tions in terms of the responses from one level below are
minimized at the same time.

The discrepancy functions can be formulated by either
the 𝐿
2
-norm differences [4] between the variables and target

points or the squared 𝐿
2
-norm functions [6]. However, the

multiobjective formulations are very difficult for ATC to find
the proper solutions in theMDOproblems. Some researchers
[16, 17] recognized the importance of the weighting coeffi-
cients in the discrepancy functions for finding the optimal
solutions and diminishing the inconsistency simultaneously.
Kim et al. [21] noticed that the proper selection of weighting
coefficients is crucial for obtaining the reasonable optimal
solutions in ATC. There are two approaches to resolving the
problems associated with the weighting coefficients: one is to
find the proper choice of weights and the other is not to use
the weighted terms in the multiobjective formulations. Many
researches have been conducted to appropriately determine
the weighting coefficients, and the design problem will
converge to different Pareto solution with different weighting
coefficients. BTC tries to formulate the target cascading
problem into a single objective design framework, and the
optimization iteration information in each design level is
shared to make the design points converge to the global
optimum.

3. Bounded Target Cascading

In this Section, a new bounded target cascading (BTC)
method is proposed to solve theMDOproblem in (1) without
using the weighted multiobjective formulations. Instead of
assigning the point targets to the subsystems in ATC, the
bounded targets are introduced in the new method. The
target and response bounds are defined to avoid the weighted
discrepancy formulations. Furthermore, the common vari-
ables are coordinated based on sensitivity analysis.

3.1. Target Bounds in BTC for Subsystem. In the bounded
target cascading method, target bounds for the common
variables in the 𝑖th subsystem are defined as

󵄨󵄨󵄨󵄨󵄨𝑌
𝑚,𝑘

𝑖,𝑗
− 𝑌𝑚−1,𝑘
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑
𝑚,𝑘

𝑖,𝑗
(4)

which are centered at the target points 𝑌𝑚−1,𝑘
𝑖,𝑗

and ranged
by 𝑑𝑚,𝑘
𝑖,𝑗

. Instead of using the weighted term of 𝑤𝑚,𝑘
𝑌𝑖,𝑗

‖𝑌𝑚,𝑘
𝑖,𝑗

−

𝑌𝑚−1,𝑘
𝑖,𝑗

‖
2

in the multiobjective formulation, the target bounds
in (4) are given to bound the common variables. In order to
converge at the correct position of the common variables, the
ranges of the target bound 𝑑𝑚,𝑘

𝑖,𝑗
are defined by the difference

between the optimum in the previous iteration and the
current target points. Therefore, the target bound is defined
as
󵄨󵄨󵄨󵄨󵄨𝑌
𝑚,𝑘

𝑖,𝑗
− 𝑌𝑚−1,𝑘
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑
𝑚,𝑘

𝑖,𝑗
; 𝑑𝑚,𝑘

𝑖,𝑗
=
󵄨󵄨󵄨󵄨󵄨𝑌
𝑚,𝑘−1

𝑖,𝑗
− 𝑌𝑚−1,𝑘
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨 , (5)

where 𝑌𝑚,𝑘−1
𝑖,𝑗

denotes the previous optimal solution and
𝑌𝑚−1,𝑘
𝑖,𝑗

stands for the target in the 𝑘th iteration.
In the coordination processes, if the discrepancy between

design target and design point for any subsystem is less than
one percent of the design response, the target bounds for
common variables will be redefined using the bounds of the
subsystem, which is calculated by

[𝑌𝑚,𝑘
𝑖,𝑗
, 𝑌
𝑚,𝑘

𝑖,𝑗
] =
𝑛𝑚

⋂
𝑖=1

[𝑌𝑚−1,𝑘
𝑖,𝑗

− 𝑑𝑚,𝑘
𝑖,𝑗
, 𝑌𝑚−1,𝑘
𝑖,𝑗

+ 𝑑𝑚,𝑘
𝑖,𝑗
] . (6)

The design optimization problem in subsystem is to
minimize the deviations of subsystem performances and
common variables from assigned targets.The design problem
in subsystem converges with the two deviations are small
enough.

3.2. Target Bounds in BTC for System. In system level, the
weighted discrepancy function of the design responses is
replaced by the new response bound which is defined as

x𝑚,𝑘
𝑖

≤ x𝑚+1,𝑘−1
𝑖

for 𝛿𝑚,𝑘
𝑖

< 0,

x𝑚,𝑘
𝑖

≥ x𝑚+1,𝑘−1
𝑖

for 𝛿𝑚,𝑘
𝑖

> 0,

(7)

where 𝛿𝑚,𝑘
𝑖

= x𝑚+1,𝑘−1
𝑖

− x𝑚,𝑘−1
𝑖

is the difference between
the design response and optimal solution in the previous
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iteration. When the response is found to be smaller than the
optimal solution in the previous iteration, in order to fulfill
the feasibility and optimality conditions in the subsystem, the
new design point should be bounded above by the response.
Contrarily, the design point should be bounded below by
the response when the response is larger than the optimal
solution in the previous iteration.

If the common variables of the responses exist and then
constrained by their sensitivity relations with the design
variables.Therefore, approximated linear equations are estab-
lished by the first-order Taylor expansion, which is given by

x𝑚,𝑘
𝑖

≅ x𝑚+1,𝑘−1
𝑖

+ (y𝑚,𝑘
𝑖

− y𝑚+1,𝑘−1
𝑖

) ⋅
Δx𝑚,𝑘−1
𝑖

Δy𝑚,𝑘−1
𝑖

. (8)

If there are 𝑐
𝑗
common variables in subsystem 𝑖, the updating

information for common variables with the 𝑖th subsystem is
provided in system by

𝑥sub,𝑖 ≅ 𝑥
sub,𝑘−1
sub,𝑖 +

𝑐𝑖

∑
𝑗=1

(𝑦
sys
sub,𝑖𝑗 − 𝑦

sub,𝑘−1
sub,𝑖𝑗 ) ⋅

𝜕𝑥sub,𝑖

𝜕𝑦sub,𝑖𝑗
. (9)

In system level, for coordinating common variables between
subsystem 𝑖 and subsystem 𝑗, the target for common variable
will be calculated based on the updating information and
the sensitivity of system objective function to the subsystem
performance, which is given by

𝑦sys =
(𝜕𝑓sys/𝜕𝑥sub,𝑖) 𝑦

sub,𝑘
sub,𝑖 + (𝜕𝑓sys/𝜕𝑥sub,𝑗) 𝑦

sub,𝑘
sub,𝑗

𝜕𝑓sys/𝜕𝑥sub,𝑖 + 𝜕𝑓sys/𝜕𝑥sub,𝑗
. (10)

Therefore, in BTC method, instead of considering the
weighted discrepancy term of w𝑚,𝑘

𝑖
‖y𝑚,𝑘
𝑖

− y𝑚+1,𝑘−1
𝑖

‖
2

, the
common variable in system level is subject to the sensitivity
relation in (8)–(10).

3.3. Solution Process. The optimization process using the
proposed bounded target cascading method follows the
divide-and-conquer strategy. The system level minimizes the
cost function subject to the system-level constraints, the new
response bounds, and the sensitivity relations of common
variables, which is given by

min: 𝑓 (x𝑚,𝑘, z)

w.r.t. x𝑚,𝑘, y𝑚,𝑘, z

s.t. g𝑚 (x𝑚,𝑘, z) ≤ 0

h𝑚 (x𝑚,𝑘, z) = 0

x𝑚,𝑘 ≅ x𝑚+1,𝑘−1 + (y𝑚,𝑘
𝑖

− y𝑚+1,𝑘−1
𝑖

) ⋅
Δx𝑚,𝑘−1

Δy𝑚,𝑘−1
𝑖

y𝑚,𝑘 =
∑ (𝜕𝑓 (x𝑚,𝑘, z) /𝜕𝑥𝑚,𝑘

𝑖
) y𝑚,𝑘
𝑖

∑(𝜕𝑓 (x𝑚,𝑘, z) /𝜕𝑥𝑚,𝑘
𝑖
)

x𝑚,𝑘 ≤ x𝑚+1,𝑘−1 for 𝛿𝑚,𝑘 < 0

x𝑚,𝑘 ≥ x𝑚+1,𝑘−1 for 𝛿𝑚,𝑘 > 0

x𝑚,𝑘 ≤ x𝑚,𝑘 ≤ x𝑚,𝑘

y𝑚,𝑘 ≤ y𝑚,𝑘 ≤ y𝑚,𝑘

z ≤ z ≤ z.
(11)

The target bounds are then formulated based on the optimal
solution and assigned to the subsystems. In general, the sub-
system finds the local optimal solution subject to subsystem
constraints and new target bounds:

min: 󵄩󵄩󵄩󵄩󵄩𝑋
𝑚,𝑘

𝑖
− 𝑋𝑚−1,𝑘
𝑖

󵄩󵄩󵄩󵄩󵄩
2

w.r.t. 𝑋𝑚,𝑘
𝑖
, x𝑚,𝑘
𝑖
,Y𝑚,𝑘
𝑖
, y𝑚,𝑘
𝑖
, z
𝑖

s.t. g𝑚
𝑖
(𝑋𝑚,𝑘
𝑖
, x𝑚,𝑘
𝑖
,Y𝑚,𝑘
𝑖
, z
𝑖
) ≤ 0

h𝑚
𝑖
(𝑋𝑚,𝑘
𝑖
, x𝑚,𝑘
𝑖
,Y𝑚,𝑘
𝑖
, z
𝑖
) = 0

x𝑚,𝑘 ≅ x𝑚+1,𝑘−1 + (y𝑚,𝑘
𝑖

− y𝑚+1,𝑘−1
𝑖

) ⋅
Δx𝑚,𝑘−1

Δy𝑚,𝑘−1
𝑖

󵄨󵄨󵄨󵄨󵄨𝑌
𝑚,𝑘

𝑖,𝑗
− 𝑌𝑚−1,𝑘
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑
𝑚,𝑘

𝑖,𝑗

x𝑚,𝑘
𝑖

≤ x𝑚+1,𝑘−1
𝑖

for 𝛿𝑚+1,𝑘
𝑖

< 0

x𝑚,𝑘
𝑖

≥ x𝑚+1,𝑘−1
𝑖

for 𝛿𝑚+1,𝑘
𝑖

> 0

𝑋𝑚,𝑘
𝑖

≤ 𝑋𝑚,𝑘
𝑖

≤ 𝑋
𝑚,𝑘

𝑖

x𝑚,𝑘
𝑖

≤ x𝑚,𝑘
𝑖

≤ x𝑚,𝑘
𝑖

Y𝑚,𝑘
𝑖

≤ Y𝑚,𝑘
𝑖

≤ Y𝑚,𝑘
𝑖

y𝑚,𝑘
𝑖

≤ y𝑚,𝑘
𝑖

≤ y𝑚,𝑘
𝑖

z
𝑖
≤ z
𝑖
≤ z
𝑖
.

(12)

The local optimal solutions are then updated back to the
system level as the information of the response bounds. For
the subsystems at the bottom of the hierarchy structure, (12)
is simplified as

min: 󵄩󵄩󵄩󵄩󵄩𝑋
𝑚,𝑘

𝑖
− 𝑋𝑚−1,𝑘
𝑖

󵄩󵄩󵄩󵄩󵄩
2

w.r.t. 𝑋𝑚,𝑘
𝑖
,Y𝑚,𝑘
𝑖
, z
𝑖

s.t. g𝑚
𝑖
(𝑋𝑚,𝑘
𝑖
,Y𝑚,𝑘
𝑖
, z
𝑖
) ≤ 0

h𝑚
𝑖
(𝑋𝑚,𝑘
𝑖
,Y𝑚,𝑘
𝑖
, z
𝑖
) = 0

󵄨󵄨󵄨󵄨󵄨𝑌
𝑚,𝑘

𝑖𝑗
− 𝑌𝑚−1,𝑘
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑
𝑚,𝑘

𝑖𝑗
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𝑋𝑚,𝑘
𝑖

≤ 𝑋𝑚,𝑘
𝑖

≤ 𝑋
𝑚,𝑘

𝑖

Y𝑚,𝑘
𝑖

≤ Y𝑚,𝑘
𝑖

≤ Y𝑚,𝑘
𝑖

z
𝑖
≤ z
𝑖
≤ z
𝑖
.

(13)

The iteration process of BTC method continues until
the convergence criterion is satisfied. In this paper, the
convergence criterion is defined by the absolute difference
between the current and the previous design points to be
smaller than the acceptable limit. In the next Section, some
numerical examples solved by the proposed BTC method
and the ATC method with various settings of the weighting
coefficients are presented and discussed.

3.4. Convergence of BTC. The convergence properties of
ATC have been discussed by [16], which proved that ATC
process converges to the optimal point that satisfies the
necessary optimality conditions of the original design prob-
lem. BTC solves decomposed MDO problems using the
same coordinate principle with ATC in the targets cascading
process, that is, hierarchical overlapping coordination, which
is achieved by the exchange of information between different
decompositions. The properties of BTC are presented as the
following.

3.4.1. The Upper or Lower Bound for Design Point in System
Level. In the system level for general ATC, the consistency
constraints 𝑐𝑚,𝑘

𝑖
= ‖x𝑚+1,𝑘

𝑖
− x𝑚,𝑘
𝑖
‖ are penalized in the

objective function using various penalty functions, which
minimizes the deviation of design points with response from
subsystems. However, these methods may lead to the opti-
mization problem converge to a local optimum or converge
earlier. Lower bounds or upper bounds based on the response
from subsystems are defined to consider the performance
of each subsystem and provide more flexibility for system
problem.

3.4.2. The Linear Approximation for Coordinating Common
Variable in System Level. The sensitivity of each subsystem
to common variables is calculated to coordinate common
variable between subsystems in the system level.The gradient
calculation is the key issue to guarantee the accuracy of
this approximation. In this paper, pseudo finite difference
Δx𝑚,𝑘−1
𝑖

/Δy𝑚,𝑘−1
𝑖

and reduced gradient method is introduced
to calculate the gradient.

Suppose the equality relation between the design variable,
𝑥sub,𝑖, and a common variable, 𝑦sub,𝑖𝑗, exist:

ℎ (𝑥sub,𝑖, 𝑦sub,𝑖𝑗) = 0. (14)

The partial derivative of the equality constraint with respect
to common variables is

𝜕ℎ(𝑥sub,𝑖, 𝑦sub,𝑖𝑗)

𝜕𝑦sub,𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦sub,𝑘sub,𝑖𝑗

+
𝜕ℎ(𝑥sub,𝑖, 𝑦sub,𝑖𝑗)

𝜕𝑥sub,𝑖

𝜕𝑥sub,𝑖

𝜕𝑦sub,𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥sub,𝑘sub,𝑖

= 0,

(15)

where 𝑥sub,𝑘sub,𝑖 and 𝑦
sub,𝑘
sub,𝑖𝑗 are the design points at 𝑘th iteration,

and the sensitivity relation between the design variable and
common variable is derived as

𝜕𝑥sub,𝑖

𝜕𝑦sub,𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

= −
𝜕ℎ(𝑥sub,𝑖, 𝑦sub,𝑖𝑗)/𝜕𝑦sub,𝑖𝑗

𝜕ℎ(𝑥sub,𝑖, 𝑦sub,𝑖𝑗)/𝜕𝑥sub,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

. (16)

If the equality relation is not available, surrogate models
will be formulated by simulation, and for high dimensionality
engineering problem, the efficiency of simulation is the most
considerable problem.

3.4.3. Interval Convergence for Common Variables in Subsys-
tems. During the optimization iteration in subsystems, the
deviation between targets and response should be decreased:

󵄨󵄨󵄨󵄨󵄨𝑌
𝑚,𝑘

𝑖,𝑗
− 𝑌𝑚−1,𝑘
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑟
󵄨󵄨󵄨󵄨󵄨𝑌
𝑚,𝑘−1

𝑖,𝑗
− 𝑌𝑚−1,𝑘
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨

≤ ⋅ ⋅ ⋅ ≤ 𝑟
󵄨󵄨󵄨󵄨󵄨𝑌
𝑚,0

𝑖,𝑗
− 𝑌𝑚−1,1
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨 ,

(17)

where 0 ≤ 𝑟 ≤ 1, in this paper, 𝑟 = 1. The convergence
property of subsystem will change with different 𝑟.

4. Numerical Examples

In this Section, two mathematical problems are decomposed
into hierarchical structures and solved by the proposed
bounded target cascading method and the analytical target
cascading method with various settings of the weighting
coefficients.

4.1. Convex Quadratic Programming Problem. Theundecom-
posed convex minimization problem is stated as in

min: 𝑥2
1
+ 𝑥2
2

s.t. 𝑔
1
= 𝑥−2
3
+ 𝑥2
4
− 𝑥2
5
≤ 0

𝑔
2
= 𝑥2
5
+ 𝑥−2
6
− 𝑥2
7
≤ 0

ℎ
1
= 𝑥2
1
− 𝑥2
3
− 𝑥−2
4
− 𝑥2
5
= 0

ℎ
2
= 𝑥2
2
− 𝑥2
5
− 𝑥2
6
− 𝑥2
7
= 0

𝑥
1
, . . . , 𝑥

7
≥ 0.

(18)

Using the analytical target cascading method, the convex
problem is decomposed into the structure with two levels,
constraints 𝑔

1
and ℎ

1
in subsystem 1 and constraints 𝑔

2
and

ℎ
2
in subsystem 2. For general ATC, The system level is
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formulated as (19), while the first and the second subsystems
are given by (20) and (21), respectively:

min
𝑥1 ,𝑥2,𝑥3

: 𝑥2
1
+ 𝑥2
2
+ 𝑤
1
(𝑥
1
− 𝑥
𝑘−1,sub1
1

)
2

+ 𝑤
2
(𝑥
2
− 𝑥
𝑘−1,sub2
2

)
2

+ 𝑤
3
(𝑥
5
− 𝑥
𝑘−1,sub1
5

)
2

+ 𝑤
4
(𝑥
5
− 𝑥
𝑘−1,sub2
5

)
2

s.t. 0 ≤ 𝑥
1
, 𝑥
2
, 𝑥
5
,

(19)

min
𝑥1 ,𝑥3

: 𝑤
1
(𝑥
1
− 𝑥
𝑘,sys
1

)
2

+ 𝑤
3
(𝑥
5
− 𝑥
𝑘,sys
5

)
2

s.t. ℎ
1
= 𝑥2
1
− 𝑥2
3
− 𝑥−2
4
− 𝑥2
5
= 0

𝑔
1
= 𝑥−2
3
+ 𝑥2
4
− 𝑥2
5
≤ 0

0 ≤ 𝑥
1
, 𝑥
3
, 𝑥
4
, 𝑥
5
,

(20)

min
𝑥2 ,𝑥3

: 𝑤
2
(𝑥
2
− 𝑥
𝑘,sys
2

)
2

+ 𝑤
4
(𝑥
5
− 𝑥
𝑘,sys
5

)
2

s.t. ℎ
2
= 𝑥2
2
− 𝑥2
5
− 𝑥2
6
− 𝑥2
7
= 0

𝑔
2
= 𝑥2
5
+ 𝑥−2
6
− 𝑥2
7
≤ 0

0 ≤ 𝑥
2
, 𝑥
5
, 𝑥
6
, 𝑥
7
,

(21)

where 𝑥𝑘−1,sub1
1

and 𝑥𝑘−1,sub1
5

are the responses from the first
subsystem in the (𝑘 − 1)th iteration; 𝑥𝑘−1,sub2

2
and 𝑥𝑘−1,sub2

5
are

the ones from the second subsystem;𝑥𝑘,sys
1

,𝑥𝑘,sys
2

, and𝑥𝑘,sys
5

are
the optimal solutions of the system level in the 𝑘th iteration as
well as the targets for the both subsystems. The initial points
x𝑘=0,sys and x𝑘=0,sub𝑖 follow x𝑘=0 = [1 1 1]𝑇 as well as the
initial parameters x𝑘=1,sub𝑖 . In the formulation of ATC, the
proper selection of the weighting coefficients 𝑤

1
, 𝑤
2
, 𝑤
3
, and

𝑤
4
is crucial for obtaining the correct optimal solution.
In the proposed bounded target cascading method, the

discrepancy terms of common variables are displaced by the
sensitivity relations in the subsystemswhile the ones of design
variables are displaced by the response bounds.Therefore, the
system level is

min: 𝑓sys = 𝑥
2

1
+ 𝑥2
2

s.t. 𝑥
𝑖
= 𝑥
𝑘−1,sub𝑖
𝑖

+ (𝑦
𝑖
− 𝑥
𝑘−1,sub𝑖
5

)
𝑑𝑥
1
(𝑥
𝑘−1,sub𝑖
𝑖

)

𝑑𝑥
5

𝑦sys =
(𝜕𝑓sys/𝜕𝑥sub,1) 𝑦1 + (𝜕𝑓sys/𝜕𝑥sub,2) 𝑦2

𝜕𝑓sys/𝜕𝑥sub,1 + 𝜕𝑓sys/𝜕𝑥sub,2

𝑥
𝑖
≤ 𝑥
𝑘−1,sub𝑖
𝑖

for 𝛿
𝑖
= 𝑥
𝑘−1,sub1
𝑖

− 𝑥𝑘−1
𝑖

< 0

𝑥
𝑖
≥ 𝑥
𝑘−1,sub𝑖
𝑖

for 𝛿
𝑖
> 0

0 ≤ 𝑥
1
, 𝑥
2
, 𝑥
5
, 𝑦
𝑖
, 𝑖 = 1, 2.

(22)

In the first iteration, the sensitivity relations are omitted
because no common variations have been made in 𝑥

𝑘,sub𝑖
𝑖

.

When the response 𝑥
𝑘−1,sub𝑖
𝑖

is smaller than the previous
design 𝑥

𝑘−1,sys
𝑖

, that is, 𝛿
𝑖
< 0, the new design should be

smaller than or equal to the response. On the other hand,
𝑥
𝑖
≥ 𝑥
𝑘−1,sub𝑖
𝑖

is considered when 𝛿
𝑖
> 0. In the special

case of 𝑥𝑘−1,sys
𝑖

= 𝑥
𝑘−1,sub𝑖
𝑖

, the direction of the response
bound is determined based on the most recent nonzero 𝛿

𝑖
.

Furthermore, the 𝑖th subsystem is reformulated as

min: (𝑥
1
− 𝑥
𝑘,sys
1

)
2

s.t. 󵄨󵄨󵄨󵄨󵄨𝑥5 − 𝑦
𝑘,sys󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑sub,1; 𝑑sub,1 =

󵄨󵄨󵄨󵄨󵄨𝑥
𝑘−1,sub
5

− 𝑦𝑘,sys
󵄨󵄨󵄨󵄨󵄨

ℎ
1
= 𝑥2
1
− 𝑥2
3
− 𝑥−2
4
− 𝑥2
5
= 0

𝑔
1
= 𝑥−2
3
+ 𝑥2
4
− 𝑥2
5
≤ 0

0 ≤ 𝑥
1
, 𝑥
2
, 𝑥
3
,

min: (𝑥
2
− 𝑥
𝑘,sys
2

)
2

s.t. 󵄨󵄨󵄨󵄨󵄨𝑥5 − 𝑦
𝑘,sys󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑sub,2; 𝑑sub,2 =

󵄨󵄨󵄨󵄨󵄨𝑥
𝑘−1,sub
5

− 𝑦𝑘,sys
󵄨󵄨󵄨󵄨󵄨

ℎ
2
= 𝑥2
2
− 𝑥2
5
− 𝑥2
6
− 𝑥2
7
= 0

𝑔
2
= 𝑥2
5
+ 𝑥−2
6
− 𝑥2
7
≤ 0

0 ≤ 𝑥
1
, 𝑥
2
, 𝑥
3

(23)

while the common variable is constrained by a target bound
centered at the 𝑥𝑘,sys

5
and ranged by the difference between

the current target points and the previous optimal solution.
When the current target point agrees with the previous
optimal solution, the difference term 𝑑sub,𝑖 equals zero, and
the common variable will be located at the target point 𝑥𝑘,sys

3
.

In the proposed BTC method, the weighted discrepancy
terms in the multiobjective formulations have been avoided
and displaced by the bounds associated with the targets and
responses. The optimization process follows the divide-and-
conquer strategy while target bounds are assigned to the
subsystems, and the response bounds are updated back to
the system level. The iteration stops when the termination
criterion, the absolute difference between x𝑘 and x𝑘−1 ≤ 10−3,
is satisfied. The detailed iteration process of the system level
is shown in Figure 1. The system-level optimal solutions of
[𝑥∗
1
, 𝑥∗
2
, 𝑥∗
5
] = [2.1529, 2.0725, 1.0707] are determined inside

the updated bounds of responses illustrated by the solid and
dash lines, respectively. Figure 2 demonstrates the iteration
processes in the subsystems. The optimal solutions of 𝑥∗

5
=

1.0707 are found inside the updated target bounds, shown by
the solid lines.

Moreover, the problem has been solved by the ATC
using various settings of weighting coefficients. Two constant
weights 𝑤 = 1 or 150 and two increasing weights, 𝑤𝑘=0 = 1;
𝑤𝑘 = 2𝑤𝑘−1 or 5𝑤𝑘−1 for 𝑘 ≥ 1 are considered. Table 1 lists
the results with the starting point of [3 2.2 1]𝑇. BTC uses
only 12 iterations (Iter.) and 7569 function evaluations (FE)
to find the reasonable solutions while ATC requires more
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Figure 1: System-level iteration process of solving example 1 by BTC.
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Figure 2: Iteration processes of solving example 1 by BTC in the (a) first and (b) second subsystems.
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Table 1: Results for example 1.

Methods x∗ Iter. FE Error
AIO [2.1491, 2.0759, 1.0746] — — —
BTC [2.1529, 2.0725, 1.0707] 12 7659 0.85%
ATCa Cannot converge
ATCb Cannot converge
ATCc [2.183, 2.0415, 1.0419] 15 2265 7.8%
ATCd [2.1177, 2.1053, 1.1055] 309 34863 7.2%
a
𝑤 = 1.

b
𝑤 = 150.

c
𝑤
𝑘=0

= 1; 𝑤
𝑘

= 2
𝑘−1 for 𝑘 ≥ 1.

d
𝑤
𝑘=0

= 1; 𝑤
𝑘

= 5𝑤
𝑘−1 for 𝑘 ≥ 1.

min: x21 + x22 + (x3 − )
2
+ (x6 − x6 )

2

+ wy,1(y − )
2
+ wy,2(y − )

2

s. t. x1 = (x23 + x−24 + x25)
1/2

, x2 = (x26 + x27 + x25)
1/2

g1 =
x−23 + x24

x25
− 1, g2 =

x−26 + x25
x27

− 1

x3, x4, x5, x6, x7, y ≥ 0

min: (x3 − )
2
+ wy,1( − )

2

s. t. x3 = (x28 + x−29 + x−210 + )
1/2

g3 =
x28 + x−29 − 1

g4 =
x210 + x−28 − 1

x3, x8, x9, x10, ≥ 0

min: (x6 − )
2
+ wy,2( − )

2

s. t. x6 = (x212 + x213 + x214 + )
1/2

g5 =
y212 + x−212

x213
− 1

g6 =
+ x212

x214
− 1

x6, x12, x13, x14, ≥ 0

( , ) ( , ) ( , ) ( , )

wsub,1 wsub,2xsub
3

sub

ysub
sub,1 ysub

sub,2

wsub,1 wsub,2ysub,1

y2sub ,1

y2sub ,1

y2sub ,1

ysub ,1

y2sub ,2

ysub ,2

ysub ,2

ysys

ysysysysysub
sub,1 ysub

sub,2 x
sys
6x

sys
3x

sub
3 x

sub
6

ysysx
sys
3 x

sys
6

y2sub ,2

Figure 3: Design problem in general ATC method.

to converge. The accuracy of the solutions is evaluated by
the absolute difference with the results by all-in-one (AIO)
methods, denoted as Error. The results show the BTC has
0.85%Error but the ATCproduces Errors withmore than 7%.

4.2. Nonconvex Geometric Programming Problem. The sec-
ond example is a nonconvex geometric problem, which was
used in [5, 18, 19, 21, 22], and the original programming
problem is shown in (24).

min: 𝑥2
1
+ 𝑥2
2

s.t. 𝑔
1
= (𝑥−2
3
+ 𝑥2
4
) × 𝑥−2
5
− 1 ≤ 0

𝑔
2
= (𝑥−2
6
+ 𝑥2
5
) × 𝑥−2
7
− 1 ≤ 0

𝑔
3
= (𝑥2
8
+ 𝑥−2
9
) × 𝑥−2
11
− 1 ≤ 0

𝑔
4
= (𝑥2
10
+ 𝑥−2
8
) × 𝑥−2
11
− 1 ≤ 0

𝑔
5
= (𝑥2
11
+ 𝑥−2
12
) × 𝑥−2
13
− 1 ≤ 0

𝑔
6
= (𝑥2
11
+ 𝑥2
12
) × 𝑥−2
14
− 1 ≤ 0

ℎ
1
= 𝑥
1
− (𝑥2
3
+ 𝑥−2
4
+ 𝑥2
5
)
1/2

= 0

ℎ
2
= 𝑥
2
− (𝑥2
6
+ 𝑥2
7
+ 𝑥2
5
)
1/2

= 0

ℎ
3
= 𝑥
3
− (𝑥2
8
+ 𝑥−2
9
+ 𝑥−2
10
+ 𝑥2
11
)
1/2

= 0

ℎ
4
= 𝑥
6
− (𝑥2
12
+ 𝑥2
13
+ 𝑥2
14
+ 𝑥2
11
)
1/2

= 0

𝑥
1
, 𝑥
2
, . . . , 𝑥

14
≥ 0.

(24)

The geometric problem is decomposed into the structure
two levels, with constraints 𝑔

1
, 𝑔
2
, ℎ
1
, and ℎ

2
in the system

level, constraints𝑔
3
,𝑔
4
, andℎ

3
in subsystem 1, and constraints

𝑔
5
, 𝑔
6
, and ℎ

4
in subsystem 2. The formulations for system

level and subsystem level of the decomposed design problem
in general ATC method and the proposed BTC method are
provided in Figures 3 and 4.

The BTC method converges with 15 iterations and 7632
function evaluations. The optimal solution and comparisons
with other methods are shown in Table 2. Figure 5 presents
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s. t. x1 = (x23 + x−24 + x25)
1/2

, x2 = (x26 + x27 + x25)
1/2

g1 =
x−23 + x24

x25
− 1,g2 =

x−26 + x25
x27

− 1

x3, x4, x5, x6, x7, y1, y2, y ≥ 0

s. t. x3 = (x28 + x−29 + x−210 , )
1/2

g3 =
x28 + x−29 − 1, g4 =

x210 + x−28 − 1

x3, x8, x9, x10, ≥ 0

s. t. x6 = (x212 + x213 + x214, )
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Figure 4: Design problem in BTC method.
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Figure 6: Iteration processes of solving example 2 by BTC in the (a) first and (b) second subsystems.

Table 2: Results for example 2.

Solution AIO BTC LATC [21]
m = 100 m = 10

𝑥
1

2.84 2.82 2.84 2.84
𝑥
2

3.09 3.10 3.07 3.09
𝑥
3

2.36 2.34 2.36 2.36
𝑥
4

0.76 0.76 0.76 0.76
𝑥
5

0.87 0.87 0.87 0.87
𝑥
6

2.81 2.82 2.80 2.81
𝑥
7

0.94 0.94 0.94 0.94
𝑥
8

0.97 0.97 0.97 0.97
𝑥
9

0.87 0.88 0.86 0.87
𝑥
10

0.80 0.80 0.79 0.80
𝑥
11

1.30 1.31 1.29 1.30
𝑥
12

0.84 0.84 0.84 0.84
𝑥
13

1.76 1.77 1.75 1.76
𝑥
14

1.55 1.56 2.84 1.55
Iter. — 15 101 556
FE — 7632 8124 136162
Function value 17.61 17.57 17.49 17.61
Error — 0.56% 0.49% 0.15%

the iteration process of solving the problem using the pro-
posed BTC in the system level. On the other hand, Figure 6
demonstrates the iteration processes in the subsystems using
the BTC. Similarly, the optimal common variables are found
inside the target bounds, illustrated by the solid lines.

The comparisons of computational cost between the BTC
method and methods proposed in [4, 18, 20–22] is shown
in Figure 7, including the quadratic penalty method (QP),
the quadratic penalty method with block coordinate descent
method (QP-BCD), the augmented Lagrangianmethod (AL),
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Figure 7: Computational cost versus solution accuracy.

the augmented Lagrangian method with BCD (AL-BCD),
the augmented Lagrangianwith alternating directionmethod
of multipliers (ALAD), and truncated diagonal quadratic
approximation method (TDQA).

5. Conclusions

MDO problems have been decomposed into hierarchical
structures with one system level and multiple subsystems.
The main task in the decomposed multidisciplinary design
optimization algorithm is to minimize the cost function and
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diminish the discrepancy between subsystems simultane-
ously. The well-known method, analytical target cascading,
formulates the multiobjective formulations in terms of the
weighted discrepancy functions in order to maintain the
consistency between subsystems. However, the choice of
the weighting coefficients is very problem dependent and
improper selections of the weighting coefficients will lead to
incorrect solutions.

In this paper, a new bounded target cascading method is
proposed to solve the MDO to avoid the problems associated
with the weighting coefficients. Instead of the point targets
assigned for design variables in the analytical target cascading
method, bounded targets are introduced in the new method.
The target bounds are obtained from the optimal solutions in
each level. Furthermore, the response bounds are established
based on the optimal solutions from the subsystems and
utilized to replace the weighted discrepancy functions of
responses in the analytical target cascading method. If the
common variables exist, they are coordinated based on their
sensitivities with respect to design variables. The numerical
examples validate that the single-objective bounded target
cascading can efficiently and accurately find the optimal
solutions.

How to efficiently formulate a hybrid framework of
hierarchical ATC and nonhierarchical ATC for large scale
MDO problems is the further work.

Nomenclature

𝑓: Cost function
x
𝑖
: Variables in the 𝑖th subsystem coupling

with the below level
y
𝑖
: Variables from one level below

coordinated in the 𝑖th subsystem; the
component 𝑦

𝑖,𝑝𝑞
is the common variable

between subsystems 𝑝 and 𝑞
𝑋
𝑖
: Variable in the 𝑖th subsystem coupling

with the above level
Y
𝑖
: Common variables in the 𝑖th subsystem;

the component 𝑌
𝑖𝑗
is shared with the 𝑗th

subsystem
z
𝑖
: Local variables in the 𝑖th subsystem

g
𝑖
: Inequality constraints in the 𝑖th

subsystem
h
𝑖
: Equality constraints in the 𝑖th

subsystem
𝑛
𝑚
: Number of subsystems in the𝑚th level

𝑤
𝑋
,w
𝑥
,w
𝑌
,w
𝑦
: Weighting coefficients in analytical
target cascading.

d: Target bounds for common variables
𝛿: Response bounds for coupling variables.

Superscripts

𝑚: Index of level
𝑘: Design point in the 𝑘th iteration
sys: System
sub: Subsystem.

Subscripts

𝑖, 𝑗: Index of subsystem in the𝑚th level;
𝑖, 𝑗 = 1, . . . , 𝑛

𝑚

𝑝, 𝑞: Index of subsystem in the (𝑚 + 1)th
level; 𝑝, 𝑞 = 1, . . . , 𝑛

𝑚+1
.
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