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Corrosion Reliability Analysis
Considering the Coupled Effect
of Mechanical Stresses
Corrosion is one of the most critical failure mechanisms for engineering structures and
systems, as corrosion damages grow with the increase of service time, thus diminish system
reliability gradually. Despite tremendous efforts, effectively carrying out reliability analysis
considering the complicated coupling effects for corrosion remains to be a grand challenge.
There is a substantial need to develop sophisticated corrosion reliability models and effec-
tive reliability analysis approaches considering corrosion damage growth under coupled
effects such as mechanical stresses. This paper presents a physics-of-failure model for pit-
ting corrosion with the coupled effect of corrosion environment and mechanical stresses.
With the developed model, corrosion damage growth can be projected and corrosion reli-
ability can be analyzed. To carry out corrosion reliability analysis, the developed pitting
corrosion model can be formulated as time-dependent limit state functions considering pit to
crack transition, crack growth, and fracture failure mechanics. A newly developedmaximum
confidence enhancement (MCE)-based sequential sampling approach is then employed to
improve the efficiency of corrosion reliability analysis with the time-dependent limit state
functions. A case study is presented to illustrate the efficacy of the developed physics-
of-failure model for corrosion considering the coupled mechanical stress effects, and the
new corrosion reliability analysis methodology. [DOI: 10.1115/1.4032003]

Keywords: pitting corrosion, reliability, physics-of-failure, adaptive sampling

1 Introduction
For engineering systems, especially metallic structures, corro-

sion has been recognized as one of the most important degradation
mechanisms that affect the long-term reliability and integrity [1].
Different corrosion environments could cause several kinds of
defects on structures, such as pitting corrosion, uniform corrosion,
hydrogen embrittlement, and crevice corrosion [2–4]. Corrosion
damages may result in catastrophic system hazards in health man-
agement and long-term safety services in many industries. For
example, in oil industries, metallic pipes are commonly made
from steel and iron, and the corrosion damages could lead to oil
leaks in pipelines, and further unplanned maintenance and plant
unavailability. In nuclear energy industry, the alloy structure used
in nuclear reactors may corrode in radioactive, high-temperature,
and high-pressure environments. For aircrafts, the corrosion pits
on the surface and corrosion fatigue cracks that are hidden inside
the fuselage joints serve as one of the main causes for failures of
aged aircrafts. With the growth of the pit due to corrosion, it can
transform to a crack, leading to fatigue failures when subjected
to stress loads and becomes very critical for structure safety service.
Thus, the development of effective reliability prediction technolo-
gies for pitting corrosion damages is essential for facilitating main-
tenance decision-making and successful prevention of catastrophic
structural failures.

Tremendous research efforts have been undertaken in the past
decade to model the corrosion process and develop corrosion reli-
ability analysis methods [5–9]. To analyze the corrosion reliability,
the pitting corrosion damage is usually extrapolated to future times
using various empirical models based on experimental data, in
which the models used generally present the relationship between

the pitting depth and the corrosion time. Representative corrosion
models include the power function model, the Paik linear model
[10], and the Melchers nonlinear multistage model [11]. Qin et al.
[12] compared these corrosion models and proposed a probabilistic
corrosion model based on the Weibull function for hull structure
analysis. Melchers [13] assumed that the maximum depth of pitting
corrosion follows the extreme value distribution, and further pro-
posed a model to present the carbon steel corrosion depth in immer-
sion environment. In addition, the average corrosion depth has also
been used as a key parameter for some corrosion assessment mod-
els. The study conducted by Shao et al. [14] focused on the corro-
sion failure of buried pipelines considering the combined effects of
external loads and corrosion, in which the longitudinal and circum-
ferential force characteristics were taken into account in the failure
model. The study results showed that the internal pressure, residual
stress, wall thickness, yield strength, and the environmental condi-
tion are all important factors contributing to pipeline corrosion
failures. Despite the deterministic corrosion models reported in
the literature, some scholars have also considered corrosion as a
random process, and consequently stochastic-process-based ap-
proaches, such as the Markov chains, have been used for the mod-
eling of pitting corrosion [15–18]. In the study conducted by Provan
and Rodriguez, a nonhomogenous Markov process has been em-
ployed to model pitting growth [17]. Valor [18] also proposed a
stochastic corrosion model in which the pit initiation was consid-
ered as a Weibull process and the pit growth was modeled by a
nonhomogenous Markov process. Zhang et al. [19] used the same
stochastic models to investigate the pitting corrosion susceptibility
of pure Mg and Mg alloys.

Besides the empirical models based on experimental data,
another type of method for corrosion reliability analysis is based
on physics-of-failures, in which the corrosion damage is descripted
by electrochemical and mechanical processes [20–26]. The physics-
of-failure is an approach that utilizes knowledge of the relationships

1Corresponding author.
Manuscript received March 4, 2015; final manuscript received November 7, 2015;

published online July 1, 2016. Assoc. Editor: Sankaran Mahadevan.

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems
Part B: Mechanical Engineering

SEPTEMBER 2016, Vol. 2 / 031001-1
Copyright © 2016 by ASME

Downloaded From: http://risk.asmedigitalcollection.asme.org/ on 10/05/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1115/1.4032003
http://dx.doi.org/10.1115/1.4032003
http://dx.doi.org/10.1115/1.4032003


between requirements and the physical characteristics of the prod-
uct, including the reaction of product elements andmaterials to loads
(stressors) and interaction under loads. Hoeppner and Arriscorreta
[2] developed a seven-stage conceptual model for corrosion fatigue,
in which the electrochemical effects in pit formation and the role of
pitting in fatigue and corrosion-induced fatigue crack nucleation
behavior were considered. Shi and Mahadevan [22] developed a
computational implementation approach based on the seven-stage
conceptual model for corrosion fatigue life prediction. Other than
the seven-stage model, Harlow and Wei [21] proposed a three-stage
probabilistic model, in which the crack initiation, surface cracks
grow through a crack, and the crack fracturewere considered as three
distinct stages for corrosion failures. Although the operating stage
loading conditions have been considered in the studies aforemen-
tioned, all the models developed in the literature have been focused
on structures with cyclic loadings and the initial preloaded stress
effect has not been studied in the pit-growth phase. However, stress
corrosion crack (SCC) is another important failure mode, especially
for structures with static loads. Although Wu [23] proposed a
probabilistic-mechanistic approach focused on modeling SCC
propagation of Alloy 600 SG tubeswith uncertainties; the pit-growth
process considering the stress effects was omitted in the model.
Considering the pitting growth to fatigue crack, a transition model
for pitting to corrosion fatigue crack nucleation was first proposed
by Kondo [24], and further discussed by Chen and Wei [26].
Although this physics-of-failure-based transition model combined
the stress effect for reliability analysis at the transition process from
pitting to a crack nucleation, the stress effect at the pitting growth
stage has not been taken into account in themodel, which would lead
to substantial error in estimating the corrosion reliability. Because of
the complexity of underlying physics for corrosion coupled with
stress effects, existing corrosion models have been mainly focused
on the corrosion process itself while the mechanical stress impacts to
the pit growth have been largely ignored. There is a significant need
in corrosion research for the development of a better understanding
of corrosion mechanisms, while considering the coupling effects of
mechanical stresses and further high-fidelity modeling techniques
for the prediction of pitting corrosion reliability.

Despite the modeling of corrosion process, effective reliability
analysis approaches based on corrosion models also play an impor-
tant role for corrosion reliability assessment. In the structure
reliability analysis literature, the Monte Carlo simulation (MCS)
method has been commonly used as a reliability analysis tool to
estimate reliability by evaluating a large number of simulation sam-
ples. If sufficient simulations are used, a relatively accurate reliabil-
ity estimation result can be obtained with a high level of confidence.
However, this method is inefficient for many engineering problems,
where computationally expensive performance functions are in-
volved [27]. To improve the performance of reliability analysis,
various methods, including both analytical- and simulation-based
approaches, have been developed. Some representatives include
the most probable point (MPP)-based methods [28–32], dimension
reduction method (DRM) [33–35], polynomial chaos expansion
(PCE) [36–38], and Kriging-based methods [39]. The MPP-based
approaches such as the first- or second-order reliability method
(FORM/SORM) are to locate the MPP in the U-space and approxi-
mate reliability by calculating the reliability index, which is the
distance between MPP and the origin in the U-space. However,
the MPP-based methods may encounter convergence problems in
some cases as reported in the literature [32], and the accuracy might
also be sacrificed due to the high nonlinearity of the limit states. The
DRM uses an additive decomposition of a response that can sim-
plify a single multidimensional integration for reliability analysis to
multiple one-dimensional integrations, and then estimates reliability
based on statistical moments of system responses. Recently, the
eigenvector DRM has been proposed to enhance the numerical
efficiency and stability of the DRM method by incorporating the
eigenvector sampling and stepwise moving least-squares tech-
niques. The DRM is shown to be a sensitivity-free method for

reliability analysis; however, the estimation error could be signifi-
cant for limit state functions with high nonlinearity. The PCE
method, which constructs a stochastic response surface approxima-
tion with multidimensional polynomials over a sample space of
random variables, is one of the methods that could provide more
accurate reliability estimations by incorporating more uncertainty
samples. While the accuracy of reliability estimation using PCE
can be improved by increasing the order of stochastic polynomial
terms, the computational cost could be highly prohibited due to the
curse of dimensionality: Efficiency of PCE is diminished and com-
putational cost is substantially increased as the number of random
variables rises. Other than analytical approaches, surrogate models
such as Kriging have also been used widely in reliability analysis
and design applications [40–43]. Although this approach takes the
advantage of direct MCS for reliability analysis, validation of the
Kriging model is still a quite challenging task. In a recent study,
an MCE-based sequential sampling approach has been developed
for reliability analysis using Kriging surrogate models [44,45]. This
approach defines a new measure, referred to as the cumulative con-
fidence level (CCL), to quantify the accuracy of reliability estima-
tion when MCS is used based upon the developed surrogate models.
Due to the new adaptive sampling scheme developed in the ap-
proach, accurate reliability estimation can be obtained using the
MCE-based sampling approach in an efficient manner.

This paper presents a new physics-of-failure-based pitting cor-
rosion reliability model, which considering the coupled effect of
corrosion environment and mechanical stresses at the pit-growth
stage; thus corrosion damage growth can be projected and corrosion
reliability can be analyzed using the developed model. To carry
out corrosion reliability analysis, the developed pitting corrosion
model can be used to formulate time-dependent limit state functions
considering pit to crack transition, crack growth, and fracture failure
mechanics. The new MCE-based sequential sampling approach is
employed for corrosion reliability analysis with the time-dependent
limit state functions to improve the computational efficiency. The
rest of this paper is organized as follows: Section 2 briefly reviews
the related work in corrosion reliability analysis, focusing on pitting
corrosion process modeling and the corrosion reliability analysis
using FORM. Section 3 details the developed physics-of-failure
model for pitting corrosion damage process, and Sec. 4 presents
the MCE-based sequential sampling approach for efficient structure
pitting corrosion reliability analysis. One case study is used to dem-
onstrate the efficacy of the developed reliability analysis approach
in Sec. 5.

2 Related Work on Pitting Corrosion Reliability
Analysis

This section provides a brief review of existing pitting corrosion
model and corrosion reliability analysis approach that have been
commonly used in the literature, which will be used later in the case
study presented in Sec. 5 for the comparison purpose. Section 2.1
discusses the mechanistic model for pitting growth in pitting
corrosion modeling, whereas Sec. 2.2 introduces the FORM for
corrosion reliability analysis.

2.1 Mechanistic Model for Pit Growth. Pitting corrosion is a
localized form of corrosion that occurs when a corrosive medium
attacks a metal at specific points causing small holes or pits to be
formed. This happens when a protective coating or oxide film is per-
forated, due to mechanical damage or chemical degradation. The
degradation process of pitting corrosion considering the pit growth
and crack development from a corrosion pit with a cyclic load, re-
ferred to as corrosion-induced fatigue, has been studied in the liter-
ature [46–48]. Generally, the pitting corrosion development with a
cyclic load can be illustrated by a four-stage process: pit nucleation,
pit growth, pit to crack, and crack propagation, as shown in Fig. 1.

Pit nucleation is the first stage in the corrosion damage process,
which is highly related to the electrochemical process during
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corrosion. The pit nucleation is a complex process, where the pit
initial size and nucleation time largely depend on factors such as
loads, materials, corrosion environment, and electrolytes. Due to the
complexity, it has been assumed to follow a random process in
engineering practice, and accordingly, the initial size of pit has
generally been considered as a random variable following a certain
statistical distribution, whereas the distribution parameters can usu-
ally be obtained with experiment data.

After the nucleation of a pit, the corrosion process enters into the
pit-growth stage. A simplified model for pit growth has been devel-
oped by Harlow and Wei [21,26]. This developed model assumed
that a pit of hemispherical shape grows at a constant volumetric rate
in accordance with Faraday’s law from an initial radius size, and
accordingly, the rate of pit growth is provided as

dV
dt

¼ Mi0
zFρ

exp
�
−ΔH

RT

�
ð1Þ

where V is the hemispherical pit volume, V ¼ 2πa3=3, a is the pit
size;M is the molecular weight of the material; i0 is the pitting cur-
rent coefficient; z is the valence; F is the Faraday’s constant; ρ is the
material density;ΔH is the activation energy; R is the gas constant;
and T is the absolute temperature.

Based on the model developed by Harlow and Wei, and the pit
growth rate provided in Eq. (1), the pit growing depth at a given
time, t, can be obtained as

aðtÞ ¼
�

3Mi0
2πzFρ

exp

�
−ΔH

RT

�
� tþ a30

�1
3 ð2Þ

where a0 is the initial pit size. However, the activation energy in this
model represented the corrosion chemical activation and not con-
sidered the stress effect.

With the growth of a pit, a transition from pitting to fatigue crack
growth is expected to occur. For corrosion fatigue modeling, this
transition will be realized when the effective stress intensity factor
for the pit, Kpit, exceeds a certain threshold, Kth, expressed as

Kpit ≥ Kth ð3Þ
where Kth is the threshold of stress intensity factor of crack propa-
gation and Kpit is the stress intensity factor for the surface of the pit,
which can be obtained as

Kpit ¼
1.12ktΔσ

ffiffiffiffiffiffi
πa

p
Φ

ð4Þ

where Φ is shape factor and kt is the stress concentration factor of
the pit hole. After a pit is transformed to a crack, the crack propa-
gation stage of the corrosion failure process will begin and the crack
size can be modeled based on Paris’ law as

da
dt

¼ CðΔKÞm ð5Þ

The crack size development process can be employed from
Eq. (1) to Eq. (5), which can be used as a performance response
parameter for reliability analysis. Most of the existing corrosion
fatigue models consider pitting growth stage without the applied
stress. It means that the stress effect has been ignored at the pitting

growth stage, which could lead to significant error in corrosion reli-
ability assessment.

2.2 Corrosion Reliability Analysis Using FORM. Consider
a performance model GðXÞ under the existence of uncertainties,
where the system fails if GðXÞ < 0. If the joint probability density
function of random variables X is fX , the statistical description of a
probabilistic performance fails is then completely characterized by
the cumulative density function as

Pf ¼ PrðG < 0Þ ¼
Z
G<0

fXðXÞdX ð6Þ

In practice, the integration boundary GðXÞ ¼ 0 and the high di-
mensionality make it difficult or even impossible to obtain an ana-
lytical solution to the probability integration in Eq. (6). Simulation
and approximation methods are therefore used for reliability
analysis. FORM solves the probability integral by simplifying
the performance function GðXÞ using the first-order Taylor series
expansion at the MPP. First, transform the original variables X
in X-space into standard normal variables U in U-space, and the
performance function is expressed as GðUÞ. Then the reliability in-
dex β is obtained by an optimization problem�

min
U

β ¼ kUk
s:t: GðUÞ ¼ 0

ð7Þ

The probability in Eq. (6) is then computed analytically by the
following equation:

Pf ¼ PrðG < 0Þ ≅ Φð−βÞ ð8Þ
In summary, current literature for the modeling of the corrosion

process has been mainly focused on the relationship between
corrosion parameters such as the pit depth and the corrosion envi-
ronment, while the coupled effect of corrosion environment and
mechanical stresses has been largely ignored at the pit-growth stage.
In addition to the corrosion process modeling, the FORM has been
commonly used as the reliability analysis approach based on a given
corrosion model in literature. Although FORM method could pro-
vide a relatively good computational efficiency, it would result in
large reliability estimation errors, especially when the limit state
function is highly nonlinear, since FORM approximates the limit
state with a linear function at the MPP. To tackle these challenges,
a new physics-of-failure model for pitting corrosion considering
the coupled effect of static stress at the pitting growth stage will be
presented in Sec. 4, whereas a new MCE-based adaptive sampling
approach will be introduced in Sec. 5 for corrosion reliability analy-
sis based on the developed model to improve the efficiency and
accuracy.

3 Physics-of-Failure Model for Pitting Corrosion
With Coupled Stresses

Based on the electrochemical theory, the electrical current on an
electrode depends on the electrode potential. A general representa-
tion of the polarization of an electrode is described in the Butler–
Volmer equation

Fig. 1 Pitting corrosion growth and transit to crack process
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J ¼ j0 exp

�
zFðφ − φeqÞ

RT

�
ð9Þ

where J is the electrode current density, A=m2; j0 is the exchange
current density, A=m2; φ is the electrode potential, V; and φeq is the
equilibrium potential, V. When the stress is applied on the metal
materials with elastic deformation, the equilibrium potential will
be varied according to Gutman’s theory [47,48]

Δφeq ¼ −ΔPVm

zF
ð10Þ

where ΔP is the spherical part of macroscopic stress tensor excess
pressure (Pa) and Vm is the molar volume of the metal. The current
density with the stress effects will be changed as

J ¼ j0 exp
�
zFðφ − φeq −ΔφeqÞ

RT

�

¼ j0 exp

�
zFðφ − φeqÞ

RT

�
exp

�
ΔPVm

RT

�
ð11Þ

The coefficient, expðΔPVm=RTÞ, is used to depict the variance
of corrosion current with stress effects compared without stress
situation.

In this paper, the effects of stress applied are considered based
on Eq. (1), then the corrosion current for a pit with the stressΔP can
be obtained by

I0 ¼ i0 exp
�
−ΔH

RT

�
exp

�
VmΔP
RT

�
ð12Þ

where I0 is the pitting current; Vm is the molar volume of the
material; and ΔP is the bulk component of stress tensor. Thus, tak-
ing into account the stress effect in the pit growth, Eq. (1) will be
changed as

dV
dt

¼ Mi0
zFρ

exp
�
−ΔH

RT

�
exp

�
VmΔP
RT

�
ð13Þ

Accordingly, the pit-growing depth at the time t, as shown in
Eq. (2), can be changed to take into account the coupled effects
of stress load and corrosion environment as

aðtÞ ¼
�

3Mi0
2πzFρ

exp
�
−ΔH

RT

�
exp

�
VmΔP
RT

�
� tþ a30

�1
3 ð14Þ

As the pit depth grows, the stress intensity factor at the pit tip
will increase correspondingly, and when it reaches beyond the
threshold value of SCC, the pit will transform into a crack and
the SCC will thus occur. From the fracture mechanics theory,
the thresholds of SCC and the fracture toughness are both material
properties, and the relationship between these two thresholds can be
expressed by the following equation as [46]:

KISCC ¼ KIC

�
1 − η

ρzF
αMσs

�
1=2

ð15Þ

where KISCC is the threshold stress intensity factor of SCC, means
the minimum stress required for SCC propagation; KIC is the frac-
ture toughness of the material; η is the anodic polarization potential;
α is the coefficient constant; and σs is the yield stress.

Similarly, the criteria of a pit transforming into a crack can
be obtained based on the thresholds of SCC and the fracture
toughness as

Kpit ≥ KISCC ð16Þ

As introduced earlier in Eq. (4), the stress intensity factor for the
surface of the pit can be calculated based on the pit shape and stress.

By letting the threshold of stress intensity factor for SCC as shown
in Eq. (12) equal to Eq. (4), the critical size of a pit at the transition
to a crack can be calculated as

aci ¼
1

π

�
KICΦ

1.12ktΔσ

�
2
�
1 − η

ρzF
αMσs

�
ð17Þ

After the transition from a pit to a crack, the corrosion damage
process will turn into the crack propagation stage. Unlike corrosion
fatigue crack, which is usually caused by the combination of cyclic
load and a corrosive environment, the stress corrosion cracking is
generally induced by a static tensile or torsional load to open and
sustain the crack. The stress intensity factor at the crack propagation
stage is generally a function of the total stress and the crack length.
Figure 2 shows a typical crack propagation curve with a threshold
stress intensity factor. As shown in the figure, failure due to SCC
does not occur until the stress intensity factor reaches KISCC for a
particular material–environment–stress combination. Similarly, the
corrosion fatigue failure usually occurs once the stress intensity fac-
tor reaches beyond the threshold value KIC.

Following studies reported in Refs. [49–51], in this study, it is
also assumed that the empirical model, as shown below, can be used
for SCC propagation, which is similar to the fatigue crack propa-
gation modeled by Paris’ law

da
dt

¼ CðKI − KISCCÞm ð18Þ

where C and m are the model constants of crack propagation.
Note that the developed pit-growth model takes into account the
coupled effects of corrosion environment and the mechanical
stresses at the pit-growth stage of the corrosion damage process.
Figure 3 shows two typical pit-growth curves under the same cor-
rosion environment with and without considering the mechanical
stress effect, respectively. It can be clearly observed that the coupled
stress effect imposes a big impact on the pit-growth process leading
to a large growth rate and shorter time until the pit reaches the criti-
cal size.

Following the terminology of structure reliability methods and
stress–strength interference theory, corrosion failure can generally
be defined as the stress intensity factor exceeds the fracture tough-
ness based on fracture mechanics. Accordingly, for corrosion
reliability analysis, the corresponding time-dependent limit state
function can be written as

Fig. 2 SCC propagation curve
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Gðx; tÞ ¼ KIC − βσ
ffiffiffiffiffiffiffiffiffiffiffi
πaðtÞ

p
¼

8>>>><
>>>>:

KIC − βσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
�

3Mi0
2πzFρ

exp
�
−ΔH

RT

�
exp

�VmΔP
RT

�
� tþ a30

�1
3

s
ðPit stageÞ

KIC − βσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
�
aci þ

R
t
tci
CðKI − KISCCÞmdt

�r
ðCrack stageÞ

ð19Þ

where β is the shape parameter for the crake; σ is the static stress
load; aðtÞ is the pit depth in pitting growth stage or the crack size
in crack propagation stage at a given time t. Based on the time-
dependent limit state function expressed in Eq. (19), Gðx; tÞ > 0
denotes the safe state, whereas Gðx; tÞ < 0 represents the corrosion
failure state. By taking into account the model input uncertainties,
Fig. 4 shows the histograms for the limit state function under
the same corrosion environment with and without considering the
coupled mechanical stress effects, respectively. It is clearly seen
from the figure that ignoring the coupled stress effect, an overesti-
mated reliability value will be very much likely obtained, as indi-
cated in the figure that more samples for the limit state function
will be larger than zero for the case without considering the coupled
stress effect.

As the mechanical stress effect being considered in the devel-
oped new pitting corrosion model, an efficient reliability analysis
approach is then required to conduct corrosion reliability analysis.
In the next section, a new MCE-based adaptive sampling approach
will be introduced and employed for corrosion reliability analysis.

4 MCE-Based Adaptive Sampling Approach for
Corrosion Reliability Analysis

For corrosion reliability analysis, the performance function
Gðx; tÞ as shown in Eq. (19) will be used and accordingly the prob-
ability of corrosion failure can be defined as

Pf ¼ PðGðx; tÞ ≤ 0Þ ¼
Z

· · ·
Z
Gðx;tÞ≤0

fxðx; tÞdx ð20Þ

where the vector x represents random input variables with a joint
probability density function fxðxÞ, and t denotes time. The reliabil-
ity R ¼ 1 − Pf. It is extremely difficult to evaluate Pf directly using

Eq. (20), as it requires numerical evaluation of multidimensional
integrations over the failure region. This section introduces a newly
developed MCE-based sequential sampling approach [44], which
will be employed later for efficient corrosion reliability analysis.

The MCE approach constructs surrogate models for system per-
formances and updates these models based on a sequential sampling
rule, so that accurate reliability estimations can be achieved using
the MCS in an efficient manner. Let Ωf ¼ fxjGðx; tÞ > 0g denotes
the failure region of a failure event for a given time t, thus the prob-
ability of failure can be computes in the MCS as

Pf ¼ Prðx ∈ ΩfÞ ¼
Z
Ωf

IfðxÞfXðxÞdx ¼ E½IfðxÞ� ð21Þ

where Prð·Þ represents a probability measure; E½·� denotes the ex-
pectation operator; and IfðxÞ is an indicator function and defined as

IfðxÞ ¼
�
1; x ∈ Ωf

0; otherwise
ð22Þ

According to Eq. (21), the probability of failure can be calcu-
lated using sampling methods such as MCS, although in general
direct sampling is computationally prohibited due to a large number
of function evaluations required. To reduce the computational cost
of calculating the probability of failure using MCS, the Kriging
technique [34,35] can be employed to develop a surrogate model,
in which a performance function, Gðx; tÞ, is assumed to be gener-
ated by the surrogate model as

Gðx; tÞ ¼ fTðx; tÞαþ Sðx; tÞ ð23Þ
where fTðx; tÞ ¼ ½f1ðx; tÞ; : : : ; fbðx; tÞ� is a basis function; α ¼
½α1; : : : ;αb� is a regression coefficient vector; and Sðx; tÞ is a
Gaussian stochastic process at a given time t with zero mean and
certain covariance matrix. The covariance function between two
input xi and xj is expressed as

Fig. 3 Comparison of pit growth with and without
mechanical stresses

Fig. 4 Comparison of limit state functions with and
without coupled stresses
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Covði;jÞ ¼ σ2Rði;jÞ ð24Þ
whereR represents a correlation matrix. The (i; j) entry of matrixR
is descripted as

Rði;jÞ ¼ Corrðxi;xjÞ ¼ exp

�
−Xk

p¼1

apjxpi − xpj jbp
	

ð25Þ

where Corr is a correlation function; ap and bp are parameters of the
GP model; and k is the number of the input variables x. With train-
ing observations, the response and predicted mean square error for
any given new point x 0 can be estimated by maximizing likelihood
function [47] and expressed as

Ĝðx 0Þ ¼ μþ rTR−1ðG −AμÞ ð26Þ

êðx 0Þ ¼ σ2

�
1 − rTR−1rþ ð1 −ATR−1rÞ2

ATR−1A

	
ð27Þ

where r is the correlation vector between x 0 and the observed
samples.

In MCS, N random samples Xm ¼ ½xm;1; :; xm;i;:;xm;N � are gen-
erated according to the randomness of input in the sample space,
then the reliability is calculated by

R ¼ 1 − Pf ¼ 1 − 1

N

XN
i¼1

Ifðxm;iÞ ð28Þ

For the ith of MCS samples, Xm, xm;i can be bluntly classified
as failure or safe. Due to the uncertainty of the GP model, the prob-
ability of correct classification for xm;i can be obtained as

POCi ¼ Φ

� jĜðxm;iÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
êðxm;iÞ

p �
ð29Þ

where j · j is the absolute operator. Thus, the confidence of reliabil-
ity approximation using MCS based on the GP model is obtained as

CR ¼ E½POC� ¼ 1

N

XN
i¼1

POCi ð30Þ

The GP model should be updated by adding new samples if the
confidence of reliability approximation is less than a confidence
target. A new sample should be selected within MCS samples by
maximizing the criterion defined as

CSðxm;iÞ ¼ ð1 − POCiÞ × fXðxm;iÞ ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
êðxm;iÞ

q
ð31Þ

where POCi is the probability of correct classification for xm;i and
fXðxm;iÞ is the probability density function value at xm;i; and
êðxm;iÞ is the estimated mean square error. The updating process
is employed and the reliability approximation is updated iteratively
until the confidence of reliability approximation meets the confi-
dence target.

Table 1 summarizes the procedure of the developed MCE-based
adaptive sampling approach. To employ the MCE-based adaptive
sampling method, starting from an initial sample set D, an initial
Kriging model M can be built and the MCS can be employed with
M using N samples Xm, then the reliability R and the CCL of reli-
ability estimation CCLðM;XmÞ can be calculated using Eqs. (28)
and (29), respectively. The estimated improvements EIðXmÞ are
computed for all the samplesXm, and the sample x� with the largest
estimated CCL improvement, MaxðEIðXmÞÞ, will be selected as a
new sample to update the Kriging model M. This updating process
is repeated until the termination rule is satisfied. Then the updated
model M will be used for reliability estimation. The Kriging model
is considered to be a valid one if the CCL is greater than a confi-
dence level target, CCLT.

Figure 5 shows the flowchart of employing the MCE-based
adaptive sampling approach for corrosion reliability analysis using
the developed corrosion model. As shown in the figure, the left-
hand side shaded box details the MCE-based adaptive sampling
approach, whereas the right-hand side shaded box explains the pro-
cedure of using the developed corrosion model for evaluating the
performance function. For a given sample point x, the MCE-based
adaptive sampling approach on the right-hand side shaded box will
execute the evaluation of the limit state function Gðx;TÞ on the
right-hand side shaded box at the given corrosion time T. Based
on the developed corrosion model, the critical pit size will be com-
puted based on the input sample x, and the pit or crack size will
continuously grow until the time t has reached beyond the defined
corrosion time T. After the limit state function G is evaluated, the
sample point, hx;Gðx;TÞi, will be used to update the Kriging
model. This process will be repeated until the target accuracy per-
formance of the Kriging model is satisfied, and then the corrosion
reliability will be calculated based on the developed Kriging model
using the MCS method.

With the developed new corrosion model, and the MCE-based
adaptive sampling method, the corrosion reliability can be estimated
in an efficient manner. In the following section, a case study will be
employed to demonstrate the efficacy of the proposed approach.
The proposed approach will be compared with existing corrosion
model without considering mechanical stress effects and the
FORM.

5 Case Study for Corrosion Reliability Analysis
A case study is employed in this section to demonstrate the

proposed physics-of-failure-based corrosion model and reliability
analysis approach. The case study structure is idealized as an infin-
ite plate with a pitting corrosion defect, while the pit corrosion
occurs on the surface of the structure material, and the corrosive
environment is assumed to be known. The structure material con-
sidered in this case study is the aluminum alloy, since it has been
widely used in aerospace structures, energy engineering, and marine
engineering applications. The uncertainties involved in material
properties as well as the corrosion model parameters are considered
and modeled with Gaussian random variables. The random and
deterministic parameters used in this case study are listed in Tables 2
and 3, respectively [22,26]. As shown in Table 2, seven different
random variables are employed in this case study, as specified by
the mean values and standard deviations, where the standard devi-
ations for all random variables have been taken as 5% of the given
mean values. To demonstrate the proposed corrosion model at the
pit-growth stage, considering the coupled effects of corrosion envi-
ronment and the mechanical stresses, the corrosion time has been
assumed to begin right after the pit nucleation, and without losing
the generosity, the random pit nucleation has not considered in this
example.

Table 1 Procedure of the MCE-based sequential sampling
scheme

Steps Procedure

Step 1 Identify initial date set D; initialize the confidence target
CCLT; generate N samples Xm according to the input
randomness

Step 2 Develop a Kriging model M using existing data set D
Step 3 Compute the reliability R and confidence level CCLðM;XmÞ
Step 4 Compare CCLðM;XmÞ with CCLT:

If CCLðM;XmÞ > CCLT, stop
Otherwise, go to Step 5

Step 5 Compute EIðXmÞ and obtain x� that has MaxðEIðXmÞÞ.
Evaluate Gðx�Þ and update D by adding new data
(x�;Gðx�Þ); go to Step 2
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The structure reliability of pitting corrosion damage is calculated
using MCS, FORM, and MCE-based adaptive sampling method.
The MCS is used with a large number of samples (N ¼ 100,000)
as the benchmark solution to check the accuracy of the other two
methods. The efficiency of the new MCE-based adaptive sampling
approach is compared with the FORM based on the total times of
the evaluations for the limit state function during the reliability
analysis process.

First, the analysis of the limit state function and the corrosion
failure probability assessment are conducted with three different ap-
proaches. Figure 4 in Sec. 3 shows the histograms of the limit state
function value distribution at the corrosion time of 200 days with
and without considering the coupled mechanical stress effects, re-
spectively. From the figure, it is clear that ignoring the coupled
stress effect, an underestimated failure probability value will be very
much likely obtained, and the developed pit-growth model that
considers the coupled stress effect can effectively overcome this

deficiency of the existing model. Figure 6 provides 100 random
realizations of the pit-growth curve over time considering the ran-
dom inputs as shown in Table 2. It is clear from the figure that the
random inputs yield a large deviation for the pit-growth curve over
time. With the random variables shown in Table 2, the corrosion
reliability analysis is then carried out with different corrosion times
using three different approaches as mentioned earlier, and the
analysis results are summarized in Tables 4 and 5. From the results
comparison in Table 4, the probability of failure estimations with
MCE-based adaptive sampling method turn out to be more accurate
consistent, as indicated by the percentage errors, than those ob-
tained by FORM, compared with the results obtained by MCS with
a sample size of 105. The comparison of the probability of failure
estimations and the absolute percentage errors obtained using the
MCE-based adaptive sampling method, the FORM method com-
pared with the MCS results are also shown in Figs. 7 and 8, respec-
tively. It is clear from the figures that the MCE-based adaptive

Table 2 Random variables for case study

Random
variables Unit Mean STD (Mean%)

a0 m 1.98 × 106 10%
I0 c/s 6.5 × 106 10%
KIC MPa=m2 35 10%
σs MPa 470 10%
Δσ MPa 90 10%
C – 2.8 × 1011 10%
m – 1.16 10%

Table 3 Deterministic model parameters for the case study

Variables Value Variable Value

kt 2.6 z 3
α 1.15 ρ 2.7 × 106 g=m3

η 0.12 V F 96,514 C=mol
β 2.6 ΔH 50 kJ=mol
M 27 g=mol T 293 K
R 8.314 J=molK Vm 10 cm3=mol

Fig. 5 Flowchart of reliability analysis with pitting corrosion damage

Fig. 6 Pit depth growth curve with different corrosion time
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sampling method provides a constantly higher accuracy than the
FORM for corrosion failure probability analysis, especially with
the undergoing corrosion time gets longer. Besides the accuracy
performance, the efficiencies of corrosion failure probability analy-
sis using the MCE-based adaptive sampling method and the FORM
are also compared, as the results shown in Table 5, in which the
number of sample points being evaluated for the limit state function
is employed as the accuracy measure. For the MCE-based adaptive
sampling method, the initial samples used to build the Kriging
model are set to 28, and the samples are also used to update the
Kriging model adaptively to improve its accuracy. Thus, the total
sample points used for the MCE method are the summation of the
initial samples and the updating samples. As shown in the last two
columns in the table, the FORM generally requires more sample
points to be evaluated to conduct reliability analysis, compared with
the MCE-based method. Moreover, due to the gradient-based
searching process employed by the FORM to find the MPP, the
gradient information must be provided, which in this study the finite
difference method has been employed for the FORM to provide the

required information. As the gradient-based method is used for MPP
search, the searching process may not converge to the true MPP
efficiently in some scenarios, as shown in the table for corrosion
time of 250 days and 300 days in which the total numbers of sample
evaluations for both have reached the upper limit of 800.

From the case study results, it is clear that the unique advantages
of the MCE-based adaptive sampling approach for corrosion reli-
ability analysis are from two facets: (1) due to the adaptive nature
of the MCE-based approach, it is able to efficiently sample neces-
sary failure points for the accuracy improvement of the reliability
analysis, thus to the maximum extent enhancing the computational
efficiency while maintaining a given accuracy requirement and
(2) the confidence measure employed for sampling enables the
control of the accuracy in corrosion reliability analysis based on the
user needs. Given that the corrosion reliability analysis involves
corrosion time in the limit state function, evaluating the limit state
functions over time becomes very computationally expensive.
Employing the MCE-based adaptive sampling approach can sub-
stantially improve the efficiency and accuracy, as demonstrated
from the case study results.

6 Conclusions
A new physics-of-failure model for pitting corrosion considering

the coupled effect of corrosion environment and mechanical stresses
has been developed in this paper. With the developed model, cor-
rosion damage growth can be projected thereby corrosion failure
probability can be conveniently analyzed. It is shown that consid-
ering the coupled effect of corrosion environment with mechanical
stresses, the corrosion reliability tends to be much lower compared
with existing corrosion models that ignore this coupled effect.
To carry out corrosion reliability analysis, the developed pitting
corrosion model can be formulated as time-dependent limit state
functions considering pit to crack transition, crack growth, and frac-
ture failure mechanics. An MCE-based sequential approach has
been employed to improve the accuracy and efficiency of corrosion
reliability analysis with the time-dependent limit state functions.
A case study has been used to demonstrate the efficacy of the
developed physics-of-failure model for corrosion considering the
coupled mechanical stress effects together with the new corrosion
reliability analysis methodology. The performance of corrosion reli-
ability analysis employing the new MCE-based adaptive sampling
approach has been compared with the existing FORM approach,
and the results have shown that the new approach outperforms the
FORM approach on reliability estimation accuracy and efficiency.

Table 5 Comparison of efficiency between MCE and FORM

Corrosion
time

MCE

Number of
initial samples

Number of samples
for GP updating

Number of
total samples FORM

250 28 26 54 800
300 28 18 46 800
350 28 33 61 136
400 28 42 70 232
450 28 50 78 288
500 28 60 88 128

Fig. 7 Probability of failure analysis results at different
corrosion times

Table 4 Analysis results with different corrosion times

Corrosion
time (day)

Probability of failure

MCS MCE
MCE

error (%) FORM
FORM
error (%)

250 0.00185 0.00267 44.32432 0.00132 28.64865
300 0.00887 0.00780 12.06313 0.00504 43.17926
350 0.02964 0.02975 0.37112 0.01703 42.54386
400 0.06605 0.06132 7.16124 0.04628 29.93187
450 0.11926 0.12059 1.11521 0.09411 21.08838
500 0.18524 0.18250 1.47916 0.15888 14.23019

Fig. 8 Errors of failure probability analysis at different
corrosion times
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Future work can be done to apply the developed physics-of-failure
model for structure corrosion failure predication and corrosion life
estimation.
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