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a b s t r a c t

Probabilistic life prediction of aircraft turbine disks requires the modeling of multiple complex random
phenomena. Through combining test data with technological knowledge available from theoretical
analyses and/or previous experimental data, the Bayesian approach gives a more complete estimate and
provides a formal updating approach that leads to better results, save time and cost. The present paper
aims to develop a Bayesian framework for probabilistic low cycle fatigue (LCF) life prediction and
quantify the uncertainty of material properties, total inputs and model uncertainty resulting from choices
of different deterministic models in a LCF regime. Further, based on experimental data of turbine disk
material (Ni-base superalloy GH4133) tested at various temperatures, the capabilities of the proposed
Bayesian framework were verified using four fatigue models (the viscosity-based model, generalized
damage parameter, Smith–Watson–Topper (SWT) and plastic strain energy density (PSED)). By updating
the input parameters with new data, this Bayesian framework provides more valuable performance
information and uncertainty bounds. The results showed that the predicted distributions of fatigue life
agree well with the experimental data. Further it was shown that the viscosity-based model and the SWT
model yield more satisfactory probabilistic life prediction results for GH4133 under different tempera-
tures than the generalized damage parameter and PSED ones based on the same available knowledge.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

As a critical flight safety component of aircraft engines, the
turbine disk is subjected to high temperature, corrosive and
oxidative conditions, and its failure often leads to catastrophic
results. Low cycle fatigue (LCF) at high temperature is a key failure
mode of these turbine disks. Along with the requirement for high
thrust-weight ratio and reliability of aircraft engines, the designed
stress level of turbine disks has been greatly increased. The need
to reduce their aging maintenance cost and downtime drives the
increasing attention to the probabilistic life prediction methods.
All these factors generate new challenges to accurately predict the
LCF life of turbine disks, thus, a general probabilistic LCF life
prediction framework is worthwhile to establish.

The fatigue life shows a random behavior, and is affected by
uncertainties regarding the following items: material properties,
model errors, parameter estimates, load variation and structural
component properties in engineering [1]. Therefore, the uncertainties

due to these sources should be addressed directly for life prediction.
Compared with deterministic analyses, probabilistic methods model
the load variation and input parameters as distributions and predict
distributions of performance. By quantifying the corresponding
probability distributions, the uncertainty is propagated through the
probabilistic-based model to predict the probability distribution of
fatigue life. In principle, the case model parameters formalized, as a
prior credibility using Bayes' theorem based on the available knowl-
edge will make a more accurate fatigue life prediction. Probabilistic
methods have recently been widely used to account for the uncer-
tainty in the fatigue life prediction of structures or materials,
including fatigue crack propagation [2–4], simulation of stress–strain
level of turbine disk using finite element analysis [5], stress-life (S-N)
fatigue data analysis [6] and structural reliability modeling using
Bayesian updating [7], probabilistic fatigue life prediction using
DARWIN [8–10] and AFGROW software [11] and accounting for
model uncertainty [12] and considering microstructure [13] and
considering damaging and strengthening of low amplitude loads
[14]. However, few attempts have been made in the past to consider
the uncertainty of total inputs and model uncertainty in a LCF
regime. As engineering structural systems become more complex,
the dependence of structural analysis on physics-based model
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increases. According to the situation that more diverse models are
being used to analyze an engineering system, model uncertainty,
which is the uncertainty involved in selecting the best model from a
set of possibilities, is unavoidably accompanied by the creation of
different life prediction models for the same system. In particular, the
uncertainty of the error in model prediction as well as model
uncertainty should be incorporated into a response prediction [15].

A clear understanding of LCF behavior at high temperature is
very important for the design, selection, and safety assessment of
turbine disks. LCF at high temperature is an interactive mechanism
arising from various processes such as time-independent plastic
strain, time-dependent creep, dynamic strain aging, and oxidation.
Over the past several decades, the issue of predicting LCF life of
high temperature components has been an area of interest. To
improve the accuracy of LCF life prediction, researchers have
presented several models [16–21]. Due to the complex damage
mechanisms involved, a unified model that can provide accurate
LCF life predictions does not exist [22–23].

Combining probabilistic methods with different fatigue models, it
is possible to predict LCF life and to evaluate different possible
sources of uncertainty for turbine disks. Various LCF life prediction
models have been proposed for assessing the life of structures or
materials, include viscosity-based model [19], SWT (Smith–Watson–
Topper) [24], plastic strain energy density (PSED) [25], generalized
damage parameter (GDP) [26] and thermodynamic entropy (TE) [27].
To account for the scarcity and scatter of material properties and
fatigue test results, the uncertainty of model structure itself and its
predictions must be characterized. Probabilistic methods such as
Bayesian approach are used to quantitatively account for uncertainty
in fatigue predictions without relying upon overly conservative safety
factors. The combined effects of these uncertainties lead to a
significant scatter in the actual fatigue life of mechanical compo-
nents. Thus, this paper proposes a probabilistic LCF life prediction
framework for turbine disk alloys using Bayes' theorem, by consider-
ing all available data that contribute to uncertainties associated with
those predictions.

The paper is organized as follows: in Section 2, the authors'
previously developed viscosity-based model [19] capabilities are
addressed more extensively to account for the effects of time-
dependent damage mechanisms on the LCF life. Then, a Bayesian
framework is presented by incorporating the uncertainty of mate-
rial properties, total inputs and model uncertainty into probabilistic
LCF life prediction. In Section 3, based on the concept of white-box

approach used for assessing fire simulation code uncertainty in [28],
the uncertainty in probabilistic LCF life prediction is modeled using
Bayesian inference. In Section 4, this probabilistic life prediction
framework was verified using four different models with experi-
mental data of GH4133 under different temperatures. Finally,
conclusions are presented in Section 5.

2. Bayesian framework for probabilistic LCF life prediction

2.1. A viscosity-based model for LCF life prediction

Though several strain energy based methods for predicting LCF
life at high temperature have been developed [29–31], the authors'
previous work [19,32–33] has clearly showed that it is possible:
(1) to correlate the fatigue-creep damage and the life with the
viscosity-based parameter Ep; (2) to reflect the effects of time-
dependent damage mechanisms on the LCF life; (3) to identify the
main influential factor of LCF life, the maximum stress and stress
range at minimum stress smaxr0 and mean stress at minimum
stress smin40. In this section, further development and modifica-
tions to these issues are in progress which will make the prediction
of LCF life via Bayes' theoremwith high accuracy, simplification and
wide application scope.

In this paper, a trapezoid load diagram, as shown in Fig. 1, was
used to analyze the conditions of most alloys under high tempera-
ture and cyclic loading. In Fig. 1, Tdu,Tdl,T ′ and T″ represent the
tensile hold time, compressive hold time, tension-going time and
compression-going time respectively in one loading cycle when

Nomenclature

bp mean, error of model to the real value
bt mean, error of experiment to the real value
C material constants representing the material energy

absorption capacity
D vector of data
E Young's modulus
Fp multiplicative error of model to the real value
Ft multiplicative error of experiment to the real value
Fpt multiplicative error of experiment to the model

prediction
L :ð Þ likelihood function
LN :ð Þ lognormal distribution function
Nf number of cycles to failure
~Nf mean prediction life
Nfp model prediction
Nf t experimental result
Nreal real fatigue life
n′ cyclic strain hardening exponent

s model parameter, natural logarithm standard devia-
tion of life cycles

sp standard deviation, error of model to the real value
st standard deviation, error of experiment to the

real value
Rε strain ratio
α material constant representing the fatigue exponent
ϕ material constant
Δεt total strain range
Δεp plastic strain range
Δεin inelastic strain range
_ε strain rate
υd dynamic viscosity
smax maximum stress
smin minimum stress
sm mean stress
Δs stress range
ξ vector of parameters
π ξ Djð Þ posterior joint distribution of parameters
π0 ξð Þ prior joint distribution of parameters

t, 

T Tdl TduT

O

T0

Fig. 1. Stress-time with trapezoidal loading waveform.
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smax40 and smino0. Tdl is the tensile hold-time when smin40. T0

and T are the total time period and the period time not including
the hold time, respectively, where T ¼ T ′þT″.

According to the assumption made in [34], the effect of compres-
sive hold-time on the LCF life can be ignored usually, as creep damage
of most materials is sensitive to the tensile hold-time instead of
compressive hold-time [22]. Similar with the energy criterion pro-
posed in [35], the viscosity-based parameter Ep accumulated per cycle
under fatigue-creep interaction can be described by the stress area
under loading waveforms, and above the zero-stress line. The
viscosity-based parameter Ep per cycle can be calculated by

Ep ¼ Tdusmaxþ TdlþTð ÞsminH sminð ÞþT
2
f smax; sminð Þ ð1Þ

and the stress conversion function f smax; sminð Þ

f smax; sminð Þ ¼
Δs; smin40
s2max

Δs
; sminr0

8<
: ð2Þ

where H sminð Þ is the unit step function of smin and defined as

H sminð Þ ¼
1; sminZ0
0; smino0

(
ð3Þ

Based on ductility exhaustion theory, Goswami [36–37] devel-
oped a ductility model based on the assumption that deformation
under LCF can be represented in terms of a viscous behavior. The
dynamic viscosity should account for the strain range effects and
can be presented based on the fundamental viscosity concept. The
dynamic viscosity υd is defined as [37–38]

υd ¼ Δs Δεt=_ε
� � ð4Þ

According to the physical significance of the parameter Ep in
Eq. (1) and the dynamic viscosity υd in Eq. (4), note that the latter is
included in the former, and the essential difference between them is
that the former includes the tensile elastic energy input which causes
no damage compared with the latter. In order to estimate the real
ductility exhausted during the fatigue process, similar with the total
strain energy density method [39], an improved viscosity-based
parameter Er is presented by using the parameter Ep and the tensile
elastic energy input ΔWFL which causes no damage,

Er ¼ Ep�ΔWFLT0 ð5Þ

where the tensile elastic energy input which causes no damage [39],
ΔWFL, was determined by

ΔWFL ¼ s2lim=2E ð6Þ
where slim is the fatigue limit of material.

Substituting Eq. (1) and Eq. (6) into Eq. (5) results in the
following equation:

Er ¼
Tdusmaxþ TdlþTð Þsminþ

T
2
Δs�s2lim

2E
T0; smin40

Tdusmaxþ
T
2
s2max

Δs
�s2lim

2E
T0; sminr0

8>>><
>>>:

ð7Þ

A power law relationship exists between the improved
viscosity-based damage function, ΔWr ¼Δεin Erð Þϕ, and the num-
ber of cycles to failure,

Δεin Erð ÞϕNα
f ¼ C ð8Þ

where the inelastic strain range Δεin can be replaced by the plastic
strain range Δεp under pure fatigue loading.

Based on Eq. (8), it should be noted that the improved viscosity-
based model (VBM) enable to describe the damaging process during
the LCF as a dependence on loading parameters. This equation
describes the average behavior, and the life in different tests varies
around this average life. In order to describe the variation, a probabil-
istic LCF life prediction framework will be developed in Section 2.2.

2.2. Probabilistic LCF life prediction framework using Bayes' theorem

In engineering, the test or service data of some equipment are hard
to get or may even be inaccessible, such as aircraft engines. In this
study, the material properties were modeled as distributions, model
parameters and perturbed inputs for the probabilistic methods were
incorporated into the physical or mechanical model. As the Bayesian
approach can potentially give more accurate estimates by combining
test data with technological knowledge available from theoretical
studies and/or previous experimental data, this section will focus on
the physical and statistical model updating using Bayes' theorem.

The Bayesian inference is a technique used to update a given
state of knowledge, and expresses a decrease in uncertainty gained
by an increase in knowledge. In the Bayesian analysis, the estima-
tion of a vector of parameters ξ is updated from its prior probability
distribution function (PDF) using the observed data, D. The Bayesian
inference on D is obtained as

π ξ Djð Þ ¼ π0 ξð ÞL D ξ
��� �R

ξπ0 ξð ÞL D ξ
��� �

dξ
ð9Þ

where π0 ξð Þ is the prior distribution of parameters ξ, ξ¼ fC; α;ϕ; sg is
the vector of the model parameters C; α;ϕ and s in Eq. (8). L D ξ

��� �
is

the likelihood function of the observed data D. π ξ Djð Þ is the
posterior joint distribution of ξ.

By combining with a subjective prior distribution, the data are
represented in the form of a lognormal likelihood function.
Through replacing the log-mean of the lognormal PDF with log
life derived from Eq. (8), the lognormal likelihood function used in
the model parameter uncertainty steps is shown as follows:

where s is a model parameter equal to the natural logarithm
standard deviation of life cycles.

The intercept parameters of the improved viscosity-based model
(i.e. C; α; ϕ and s) automatically take into account any possible non-
zero mean for error. Combining this likelihood with the PDFs devel-
oped to represent the prior state of knowledge leads to an estimation
of the posterior by Eq. (9). Based on the current state of knowledge,
the prior of the model parameters can be defined as either informative
or non-informative. Informative Bayesian inference assumes that a
subject is able to express one's personal knowledge about an unknown
quantity ξ in a quantitative manner. The prior distribution π0 ξð Þ
reflects the best available knowledge of the distribution of parameters
ξ, which should contain the following information:

(1) physics, engineering, and related/additional information;
(2) mathematical or physical models;

L D fC;α;ϕ; sg
��� �¼ ∏

n

i ¼ 1

1ffiffiffiffiffiffi
2π

p
sNf

exp �1
2

ln Nf
� ��1

α
ln Cð Þþ1

α
ln Δεinð Þþϕ

α
ln Ep�ΔWFLT0
� �

s

2
64

3
75
20

BB@
1
CCA ð10Þ
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(3) expert's judgments and
(4) corporate memory, historical data.

If there is a lack of information on the parameters, then the
prior is defined as a uniform distribution using a rough idea of the
range of the parameter values. Different kinds of prior functions
can arise depending on the degree of initial personal knowledge
about model parameters.

In order to make a fatigue life prediction under a given stress
loading, the mean prediction life ~Nf by the improved VBM can be
estimated as

~Nf ¼
Z
C;α;ϕ;s

π C;α;ϕ; s
� �

Dj� �
C
1
α Δεinð Þ�

1
α Ep�ΔWFLT0
� ��ϕ

α

0
@

1
AdC dα dϕ ds

ð11Þ
In practice, the greater computational burden is usually associated

to Bayesian methods when compared to the classical methods for
these equations. Therefore Markov Chain Monte Carlo (MCMC)
simulations are used for most Bayesian analyses. The MCMC method
provides an alternative in which samples can be generated from the
posterior directly, and we obtain sample estimates of the quantities
of interest, thereby performing the integration implicitly. It generates
a sample set ξ¼ fξ1; ξ2; ξ3;⋯; ξmg, ξi ¼ fCi; αi;ϕi; sig, i¼ 1;2;3;⋯;m,
which represents the posterior density of parameters C; α;ϕ and s.
The PDF of LCF life can be readily predicted based on a given ξ.
For this study, a Bayesian updating procedure has been constructed
to estimate the parameters C; α;ϕ and s in Eq. (10). Similarly, the
developed probabilistic life prediction framework can be expanded
to other fatigue life prediction models by updating the Eqs. (10) and
(11). Given a general formulation of a fatigue criterion, which is
expressed mathematically as a relation between the number of cycles
to failure Nf of the structure and some function of its material
properties, structure size, loading waveform, and damage driving
parameters (e.g. stress, strain or force),

Nf ¼ k Φ P Uð Þ;⋯; s; ε
� �� �q ð12Þ

where P(.) denotes the parameters related to the structure, such as
material properties, structure size, loading waveform; k and q are
material dependent constants. According to Eq. (11), the mean
prediction life ~Nf based on a given fatigue criterion can be obtained as

~Nf ¼
Z
ξ;s
π fξ; sg Djð Þ k Φ P Uð Þ;⋯; s; ε

� �� �q� 	
dξ ds ð13Þ

where the lognormal likelihood function to be used with Eq. (13) is
shown as follows:

L D fξ; sg
��� �¼ ∏

n

i ¼ 1

1ffiffiffiffiffiffi
2π

p
sNf

exp �1
2

ln Nf
� �� ln k Φ P Uð Þ;⋯; s; ε

� �� �q� 	
s

2
4

3
5
20

B@
1
CA

ð14Þ
In this analysis, characterizing the posterior distribution

through sampling simulation methods using the MATLAB platform
to run the necessary MCMC simulation performs the Bayesian
inference. The posterior distribution contains an updated state-
ment of the uncertainty in ξ in light of subsequently acquired data
modeled as a probability distribution.

3. Uncertainty modeling using the white-box approach

In order to understand physical behaviors and predict the
response of a physical system, developing a life prediction model
is the process of idealizing the complicated load conditions into a
relatively simple form through making some assumptions. Uncer-
tainties in the values used as input for a life prediction model are

propagated in this model to find the effects on the output
uncertainty. In order to obtain the best possible overall estimation
of uncertainty, the uncertainty of inputs must be considered and
estimated. In this study, input uncertainties are developed using the
available information reported from experiments or other sources
of information. For cases in which uncertainty is not reported,
expert judgment given prior experience with similar experiments
and test equipment can be used to develop a PDF for the inputs.
Bayesian inference is used a second time to characterize the total
uncertainties associated with inputs, model and model parameters,
which represents the continuing research of the model uncertainty
analysis in [28]. The comparison of the model predictions with
experimental results is also considered in this approach.

In the black-box approach, both the model prediction and
experimental result are considered to be independent representa-
tions of the physical reality of interest being predicted [28,40]. In a
LCF regime, since the model prediction, experiment result, and
physical reality of interest have the same sign (all positive), the
ratio of real fatigue life and model prediction or experimental
results is simply proved to be a random variable with lognormal
distribution, and will be used to represent the likelihood of data in
the form of multiplicative errors as shown in Eqs. (15) and (16)

Nreal;i

Nf t;i
¼ Ft;i Ft � LN bt ; stð Þ ð15Þ

and

Nreal;i

Nf p;i
¼ Fp;i Fp � LN bp; sp

� � ð16Þ

where Ft;i and Fp;i are the experimental error and the model
prediction error respectively.

The relationship between the experimental and model uncer-
tainty is

Nf t;i

Nf p;i
¼ Fp;i

Ft;i
¼ Fpt;i ð17Þ

Assuming independency of Fp, Ft leads to

Fpt � LN bp�bt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2pþs2t

q� 	
ð18Þ

Using the observed number of cycles to failure Nft ¼ fNf t;1;Nf t;2;

⋯;Nf t;ng and model predictions Nfp ¼ fNfp;1;Nfp;2;⋯;Nfp;ng, the like-
lihood function used for the prior π0 bp; sp

� �
is

L Nf t;i;Nfp;i;bt ; st bp; sp
��� �¼ ∏

n

i ¼ 1

1ffiffiffiffiffiffi
2π

p Nf t;i

Nf p;i


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2pþs2t

q exp �1
2

ln
Nf t;i

Nf p;i


 �
� bp�bt
� �� 
2

s2pþs2t

0
BBB@

1
CCCA

ð19Þ

Thus, the resulting posterior joint distribution for the black-box
approach using Eq. (9) is

π bp; sp Nf t;i;Nfp;i; bt
�� ; st

� �¼ π0 bp; sp
� �

L Nf t;i;Nfp;i; bt ; st bp; sp
��� �R

sp

R
bp
π0 bp; sp
� �

L Nf t;i;Nfp;i; bt ; st bp; sp
��� �

dbp dsp

ð20Þ

where π bp; sp Nf t;i;Nfp;i; bt
�� ; st

� �
is the posterior joint distribution of

parameters.
In the current uncertainty analysis, Fpt;i is a PDF resulting from

the combination of multiple model predictions paired with a
single experimental result. The resulting posterior of this analysis
is much more complex than that shown in Eq. (20). In order to
account for this new distribution, Fpt will be multiplied by the PDF
of model predictions and integrated over each distribution
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resulting from independent cases as follows:

Fpt �
Z
bp ;sp

LN bp�bt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2pþs2t

q� 	
g bp; sp
� �

dbp dsp ð21Þ

where g bp; sp
� �

is the joint PDF of parameters bp and sp.
An important step in developing a meaningful probabilistic

model is the accurate inference of the joint distribution of model
parameters. The research on unpaired data has been made in
previous uncertainty analysis work. In order to quantify the
uncertainty surrounding the unknown of interest based on expert
opinions and evaluate the impact of the number of experts on the
accuracy of aggregated estimate, Shirazi [41] proposes a posterior
for dealing with different expert judgments. In his research, multi-
ple estimations by experts are compared to a single “true value”.
Similarly, by considering the multiple estimations made by experts
as the multiple model predictions and the “true value” as the same
as the experimental result, Shirazi's posterior can be extended in
the current research.

To evaluate multiple model predictions for one true value, the
distribution of error can be marginalized in terms of parameters ξ,
which by itself is a variable symbolized by a variability distribution
of f ξð Þ. This hyper distribution can be characterized by hyper-
parameters, ω, leads to a distribution of error f ξ ωjð Þ.

Under the assumption of independence among those model
predictions, we can get

L Nf t;i;Nfp;ik; bt ; st ωj
� �¼ ∏

N

i ¼ 1
∏
Mi

k ¼ 1

Z
bp ;sp

L Nf t;i;Nfp;ik; bt ; st bp; sp
��� �

f bp; sp ωj� �
dbp dsp

 !

ð22Þ

For each test i¼ 1;2;⋯;Nð Þ, the model prediction k¼ 1;2;ð
⋯;MiÞ of Nreal;i is Nfp;ik. Then the hyper-parameters are ω¼ ω1;ð
ω2;⋯;ωmÞ. As represented in Table 1, the model prediction error
term has two dimensions of i; kð Þ to cover all i tests.

Estimating the hyper-parameters ω using likelihood function
L Nf t;i;Nfp;ik; bt ; st ωj
� �

and data in Table 1

Moreover, the desired posterior distribution of error given the
evidence becomes the expected distribution, which is estimated
by eliminating the aleatory uncertainty over ω, the resulting
posterior specific to this analysis becomes

where N experiments will be updated with the Mi model predic-
tions of the ith experiment. The likelihood L Nf t;i;Nfp;ik;bt ; st bp; sp

��� �
to be used with Eq. (24) is shown in Eq. (19).

By given an error as defined in Eq. (15), the experimental results
(true values) are uncertain. Computing the posterior predictive
distribution of fatigue life using Eq. (24), the combined effects of
those uncertainties associated with inputs, models, model para-
meters and model outputs are considered for LCF life prediction.
As represented in Fig. 2 and Eq. (24), the posterior distribution of
error Fp can be obtained through multi-source uncertain informa-
tion fusion. Moreover, when new information reported from
experiments or other sources are available, the model prediction
error can be updated using Eq. (24). The mean or median of the
posterior is compared with the real value in order to determine if
and how much the formulated likelihood function has been able to
reduce the error of model prediction. In this section, an approach to
evaluate uncertainties during the life predictions using Bayesian
inference is developed, as depicted in Fig. 2. This methodology will
be verified by the LCF life data of GH4133 in Section 4.

4. Probabilistic LCF life predictions and output updating

To verify the feasibility and prediction capability of the prob-
abilistic LCF life prediction framework, the proposed methodology
using different LCF life prediction models was applied to experi-
mental results of turbine disk material GH4133 [42,43]. The heat
treatment conditions of this alloy are austenitization (8 h at
1080 1C, air-cooled) and tempering (16 h at 750 1C, air-cooled).
LCF data were obtained from Beijing Institute of Aeronautical
Materials, China. Details of mechanical properties of the materials,
test conditions, and strain-life data are reported in [42,43].

The tests were performed under axial total strain control with a
triangular fully reversed waveform, using an axial extensometer
placed on the specimen. Numerous tests were carried out with
various conditions: mechanical strain range of 0.5–1.4% for iso-
thermal LCF at temperature 400 1C and 500 1C under strain ratio
Rε ¼�1 respectively.

In the probabilistic analyses, the prior distributions of material
properties and input variables were determined from the test
conditions [43], theoretical and experimental data analysis in
[44,45], as shown in Tables 2 and 3.

In order to obtain the estimated parameters for the VBM
model, the natural log of both sides of Eq. (8) were taken to

transform it into the general linear regression model

ln Nf
� �¼ C1þA ln Δεinð ÞþB ln Erð Þ ð25Þ

π ω Nf t;i;Nfp;ik; bt ; st
��� �¼

∏
N

i ¼ 1
∏
Mi

k ¼ 1

R
bp ;sp

L Nf t;i;Nfp;ik; bt ; st bp; sp
��� �

f bp; sp ωj� �
dbp dsp

 !
π0 ωð Þ

R
ω ∏

N

i ¼ 1
∏
Mi

k ¼ 1

R
bp ;sp

L Nf t;i;Nfp;ik; bt ; st bp; sp
��� �

f bp; sp ωj� �
dbp dsp

 !
π0 ωð Þ dω

ð23Þ

f bp; sp Nf t;i;Nfp;ik; bt ; st
��� �¼ Z

ω
f bp; sp ωj� �

π ω Nf t;i;Nfp;ik; bt ; st
��� �

dω

¼
Z
ω
f bp; sp ωj� � ∏

N

i ¼ 1
∏
Mi

k ¼ 1

R
bp ;sp

L Nf t;i;Nfp;ik; bt ; st bp; sp
��� �

f bp; sp ωj� �
dbp dsp

 !
π0 ωð Þ

R
ω ∏

N

i ¼ 1
∏
Mi
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where

C1 ¼
1
α
ln Cð Þ; A¼�1

α
and B¼�ϕ

α

Based on the experimental results of GH4133, the marginal
posterior distributions of model parameters (A,B and C1) can be
obtained using the prior likelihood in Eq. (10) and life model in

Table 2
Input uncertainties.

Input variables Uncertainty (%)

Δεp 70.5
smax 71
T0 71

Table 3
Random variables for material constants of GH4133.

Random variables Distribution Mean value
(MPa)

Standard
deviation

Young's modulus E Normal 1.992�105 7.0�103

Stress endurance limit slim Normal 4.207�102 17.33
Cyclic strain hardening

exponent n′
Normal 0.1005 0.006093

Table 4
Summary statistics of model input parameters for the VBM.

Parameter Mean Standard Deviation 2.50% Median 97.5%

A �2.6714 0.051454 �2.9477 �2.8469 �2.736
B �2.6472 0.048906 �2.7941 �2.6982 �2.6024
C1 84.7816 0.047166 84.4699 84.5624 84.6548
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Fig. 3. Marginal distributions of model parameters (A, B and C1) using MCMC
simulation.

Table 5
White-box summary statistics using the VBM for experimental results.

Parameter Mean Standard Deviation 2.50% Median 97.5%

bp 0.054371 0.0011742 0.051888 0.054189 0.05649
sp 0.097277 0.0069799 0.084257 0.097937 0.11162
Fp 1.0016 0.039565 0.92801 1.0054 1.0828
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Fig. 2. Uncertainty modeling using Bayesian inference.

Table 1
Model prediction errors for tests.

Tests
ði¼ 1;2;⋯;NÞ

Model prediction
ðk¼ 1;2;⋯;MiÞ

Real value
ði¼ 1;2;⋯;NÞ

Model prediction

error Fp;ik ¼ Nreal;i
Nf p;ik

� 	

1 Nfp;11 ;Nfp;12;⋯;Nfp;1M1

� �
Nreal;1 Fp;11 ; Fp;12 ;⋯; Fp;1M1

� �
2 Nfp;21 ;Nfp;22;⋯;Nfp;2M2

� �
Nreal;2 Fp;21 ; Fp;22 ;⋯; Fp;2M2

� �
3 Nfp;31 ;Nfp;32;⋯;Nfp;3M3

� �
Nreal;3 Fp;31 ; Fp;32 ;⋯; Fp;3M3

� �
⋮ ⋮ ⋮ ⋮
N Nfp;N1 ;Nfp;N2 ;⋯;Nfp;NMN

� �
Nreal;N Fp;N1 ; Fp;N2;⋯; Fp;NMN

� �
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Eq. (25). The non-informative prior distributions for the model
parameters are chosen to be uniform. The result of Bayesian
analysis for the model parameters is listed in Table 4 and graphi-
cally in Fig. 3.

In order to output updating and verify the proposed probabil-
istic life prediction framework, the Bayesian inference is used to
compare multiple model predictions with experimental results for
the uncertainty modeling. The experimental uncertainty for the

tests was determined to be approximately, 18.72% as given in
[12,44]. Using the available LCF life data different from those used
in model updating, the summary statistics for the marginal
posterior PDFs of parameters bp; sp

� �
and the multiplicative error

factor Fp for the viscosity-based model are shown in Table 5.
According to the upper and lower bounds of Fp, the resulting
estimated total uncertainty for model predictions using the VBM
has an upper bound of þ8.28% and lower bound of �7.20% as
shown in Fig. 4.

With distributions over the inputs and model parameters devel-
oped, using the life prediction model with MCMC simulations results
in a distribution of the predicted life. Using the No. 6 specimen in
Fig. 4 as an example, Fig. 5 compares its tested life Nf t with the
predicted life distribution Nfp. In order to compare the results using
white-box approach, the model uncertainty were estimated by the
black-box approach, and the summary statistics are shown in Table 6.

The capability of this new model was evaluated and compared
with three other models, the GDP [26], SWT [24] and PSED [25]
ones. Similarly, the summary statistics of the white-box results
and black-box results using these three models are listed in
Tables 7 and 8, respectively. And the probabilistic life prediction
results are given in Figs. 6–8 respectively.

Figs. 4–8 show that all the predicted cyclic lives by these four
models are in a factor of 71.5 to the test ones. The value of Fp for the
model predictions shows that to correct the model. The mean values
of Fp for the GDP and PSED are less than 1 for the white-box approach,
which suggests a bias in the model to over predict the LCF life. In the
over prediction condition, the estimation of reality given the model
prediction is expected to be lower. For the VBM and SWT model

Table 6
Black-box summary statistics using the VBM for experimental results.

Parameter Mean Standard deviation 2.50% Median 97.5%

bp �0.01699 0.01819 �0.05251 �0.01699 0.0185
sp 0.01663 0.01295 0.0006126 0.01376 0.04844
Fp 0.9836 0.02737 0.9305 0.9832 1.04

Table 7
White-box summary statistics using the GDP, SWT and PSED for experimental
results.

Model Parameter Mean Standard
deviation

2.50% Median 97.5%

GDP bp 0.064486 0.0067037 0.053373 0.066512 0.079651
sp 0.097364 0.0057106 0.087548 0.09874 0.10993
Fp 0.99305 0.045837 0.89989 0.99117 1.08

SWT bp 0.07452 0.008781 0.059508 0.076718 0.093929
sp 0.086009 0.0057054 0.076582 0.087765 0.098947
Fp 1.0023 0.040348 0.92629 1.0063 1.0843

PSED bp 0.070126 0.0039076 0.062386 0.070044 0.077703
sp 0.12958 0.0090468 0.11108 0.12881 0.14654
Fp 0.98064 0.041357 0.89315 0.974 1.0552

Table 8
Black-box summary statistics using the GDP, SWT and PSED for experimental
results.

Model Parameter Mean Standard
deviation

2.50% Median 97.5%

GDP bp �0.02576 0.0183 �0.06184 �0.02579 0.01021
sp 0.0173 0.01339 0.0006596 0.01431 0.04987
Fp 0.9748 0.02769 0.9204 0.9745 1.031

SWT bp �0.01629 0.01845 �0.05277 �0.01618 0.01975
sp 0.01684 0.013 0.0006458 0.0141 0.04869
Fp 0.9842 0.02773 0.9295 0.984 1.04

PSED bp �0.03802 0.01833 �0.07384 �0.03799 �0.00226
sp 0.01683 0.01303 6.15E�04 0.01401 0.04872
Fp 0.963 0.02696 0.9098 0.9627 1.018
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results listed in Table 7, however, the mean value of Fp is 1.0016 and
1.0023 respectively, which shows a bias to under predict the LCF life.
Compared to the black-box results listed in Tables 6 and 8, using the
distribution of white-box values results in larger uncertainty bounds
for each model prediction. For the VBM, the uncertainty bound of Fp
using white-box approach is ½þ8:28%;�7:20%� and using black-box
approach is ½þ4%;�6:95%�, respectively. This is expected, as the
white-box approach accounts for the uncertainty of total inputs and
model uncertainty, rather than the black-box method considers only
the uncertainty of model parameters and model uncertainty.

Probabilistic life prediction using the viscosity-based model
shows a good agreement with the experiment results by mean and
bounds. The uncertainty bounds presented are those of the model
estimation of reality. Using the white-box approach, the VBM
method can predict the LCF life with tighter uncertainty bounds
than the others, as ½þ8:28%;�7:20%� for VBM, ½þ8:43%;�7:37%�
for SWT, ½þ8%;�10:01%� for GDP and ½þ5:52%;�10:69%� for
PSED, which leads to better decision making and model selection
based on the same available knowledge.

As aforementioned, one of the advantages of Bayesian inference
is that the previous analysis can be updated with additional data.
In this study, the proposed probabilistic LCF life prediction frame-
work offers the capability to propagate the various uncertainties
through a life prediction model to determine their combined effect
on the distribution of fatigue life, which can be used to predict the
LCF life for most metallic materials by quantifying the uncertainties
associated with the total inputs and model uncertainty. Moreover,
nested sampling using the MATLAB platform solved the complex
Bayesian posterior calculations and the complete numerical solu-
tion of nonpaired data. Besides, the application of this probabilistic
methodology to other cases such as random loading spectrum and
updating with new data will be further evaluated.

5. Conclusions

In this paper, a probabilistic LCF life prediction framework
using Bayesian inference is developed to systematically incorpo-
rate information from new data with the prior knowledge of the
variability in the material properties, total inputs (model para-
meters and measured stress or strain etc.) and the model uncer-
tainty resulting from choices of different deterministic models.
To check the feasibility and validity of this methodology, the LCF
test data of GH4133 under high temperature were compared with
the predicted results by the viscosity-based model, GDP, SWT and
PSED methods.

Through comparing the distribution of the multiplicative error
Fp for each model, both the viscosity-based method and SWTmodel
yield more satisfactory probabilistic life prediction results for
GH4133 under different temperatures than the GDP and PSED ones.
Moreover, the probabilistic life prediction using the viscosity-based
method has a tighter uncertainty bounds than the others based on
the same available knowledge. In the probabilistic LCF life predic-
tion, the uncertainty bounds for the white-box analysis were wider
than those for a black-box analysis. The larger bounds result from
the recognition, quantification, and inclusion of inputs and para-
meter uncertainties associated with different deterministic models.

Through updating, the uncertainty in fatigue life can be
reduced for individual components and the proposed framework
provides more valuable information for assessing their updated
remaining life distributions. In addition, it provides a theoretical
basis for model selection based on the same available knowledge
and output updating when new data are available. The proposed
probabilistic framework appears to be an interesting alternative to
the deterministic methods for LCF life prediction.
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